mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-02-06 22:18:14 +00:00
Compare commits
13 Commits
0.119.0
...
lg-support
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ebcda8b2ec | ||
|
|
fed397f745 | ||
|
|
d55e596800 | ||
|
|
f700e014c9 | ||
|
|
fced8ba47f | ||
|
|
7204910da4 | ||
|
|
4e496d7a20 | ||
|
|
8663c7e1c2 | ||
|
|
971a90f534 | ||
|
|
cb1a98cabf | ||
|
|
369e6d109c | ||
|
|
2c011631f9 | ||
|
|
d3fc2b4477 |
38
.github/security.md
vendored
38
.github/security.md
vendored
@@ -1,19 +1,27 @@
|
||||
CrewAI takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organization.
|
||||
If you believe you have found a security vulnerability in any CrewAI product or service, please report it to us as described below.
|
||||
## CrewAI Security Vulnerability Reporting Policy
|
||||
|
||||
## Reporting a Vulnerability
|
||||
Please do not report security vulnerabilities through public GitHub issues.
|
||||
To report a vulnerability, please email us at security@crewai.com.
|
||||
Please include the requested information listed below so that we can triage your report more quickly
|
||||
CrewAI prioritizes the security of our software products, services, and GitHub repositories. To promptly address vulnerabilities, follow these steps for reporting security issues:
|
||||
|
||||
- Type of issue (e.g. SQL injection, cross-site scripting, etc.)
|
||||
- Full paths of source file(s) related to the manifestation of the issue
|
||||
- The location of the affected source code (tag/branch/commit or direct URL)
|
||||
- Any special configuration required to reproduce the issue
|
||||
- Step-by-step instructions to reproduce the issue (please include screenshots if needed)
|
||||
- Proof-of-concept or exploit code (if possible)
|
||||
- Impact of the issue, including how an attacker might exploit the issue
|
||||
### Reporting Process
|
||||
Do **not** report vulnerabilities via public GitHub issues.
|
||||
|
||||
Once we have received your report, we will respond to you at the email address you provide. If the issue is confirmed, we will release a patch as soon as possible depending on the complexity of the issue.
|
||||
Email all vulnerability reports directly to:
|
||||
**security@crewai.com**
|
||||
|
||||
At this time, we are not offering a bug bounty program. Any rewards will be at our discretion.
|
||||
### Required Information
|
||||
To help us quickly validate and remediate the issue, your report must include:
|
||||
|
||||
- **Vulnerability Type:** Clearly state the vulnerability type (e.g., SQL injection, XSS, privilege escalation).
|
||||
- **Affected Source Code:** Provide full file paths and direct URLs (branch, tag, or commit).
|
||||
- **Reproduction Steps:** Include detailed, step-by-step instructions. Screenshots are recommended.
|
||||
- **Special Configuration:** Document any special settings or configurations required to reproduce.
|
||||
- **Proof-of-Concept (PoC):** Provide exploit or PoC code (if available).
|
||||
- **Impact Assessment:** Clearly explain the severity and potential exploitation scenarios.
|
||||
|
||||
### Our Response
|
||||
- We will acknowledge receipt of your report promptly via your provided email.
|
||||
- Confirmed vulnerabilities will receive priority remediation based on severity.
|
||||
- Patches will be released as swiftly as possible following verification.
|
||||
|
||||
### Reward Notice
|
||||
Currently, we do not offer a bug bounty program. Rewards, if issued, are discretionary.
|
||||
|
||||
25
.github/workflows/linter.yml
vendored
25
.github/workflows/linter.yml
vendored
@@ -5,12 +5,29 @@ on: [pull_request]
|
||||
jobs:
|
||||
lint:
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
TARGET_BRANCH: ${{ github.event.pull_request.base.ref }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install Requirements
|
||||
- name: Fetch Target Branch
|
||||
run: git fetch origin $TARGET_BRANCH --depth=1
|
||||
|
||||
- name: Install Ruff
|
||||
run: pip install ruff
|
||||
|
||||
- name: Get Changed Python Files
|
||||
id: changed-files
|
||||
run: |
|
||||
pip install ruff
|
||||
merge_base=$(git merge-base origin/"$TARGET_BRANCH" HEAD)
|
||||
changed_files=$(git diff --name-only --diff-filter=ACMRTUB "$merge_base" | grep '\.py$' || true)
|
||||
echo "files<<EOF" >> $GITHUB_OUTPUT
|
||||
echo "$changed_files" >> $GITHUB_OUTPUT
|
||||
echo "EOF" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Run Ruff Linter
|
||||
run: ruff check
|
||||
- name: Run Ruff on Changed Files
|
||||
if: ${{ steps.changed-files.outputs.files != '' }}
|
||||
run: |
|
||||
echo "${{ steps.changed-files.outputs.files }}" | tr " " "\n" | xargs -I{} ruff check "{}"
|
||||
|
||||
@@ -2,8 +2,3 @@ exclude = [
|
||||
"templates",
|
||||
"__init__.py",
|
||||
]
|
||||
|
||||
[lint]
|
||||
select = [
|
||||
"I", # isort rules
|
||||
]
|
||||
|
||||
@@ -700,4 +700,11 @@ recent_news = SpaceNewsKnowledgeSource(
|
||||
- Configure appropriate embedding models
|
||||
- Consider using local embedding providers for faster processing
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="One Time Knowledge">
|
||||
- With the typical file structure provided by CrewAI, knowledge sources are embedded every time the kickoff is triggered.
|
||||
- If the knowledge sources are large, this leads to inefficiency and increased latency, as the same data is embedded each time.
|
||||
- To resolve this, directly initialize the knowledge parameter instead of the knowledge_sources parameter.
|
||||
- Link to the issue to get complete idea [Github Issue](https://github.com/crewAIInc/crewAI/issues/2755)
|
||||
</Accordion>
|
||||
</AccordionGroup>
|
||||
|
||||
@@ -169,19 +169,55 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Google">
|
||||
Set the following environment variables in your `.env` file:
|
||||
<Accordion title="Google (Gemini API)">
|
||||
Set your API key in your `.env` file. If you need a key, or need to find an
|
||||
existing key, check [AI Studio](https://aistudio.google.com/apikey).
|
||||
|
||||
```toml Code
|
||||
# Option 1: Gemini accessed with an API key.
|
||||
```toml .env
|
||||
# https://ai.google.dev/gemini-api/docs/api-key
|
||||
GEMINI_API_KEY=<your-api-key>
|
||||
|
||||
# Option 2: Vertex AI IAM credentials for Gemini, Anthropic, and Model Garden.
|
||||
# https://cloud.google.com/vertex-ai/generative-ai/docs/overview
|
||||
```
|
||||
|
||||
Get credentials from your Google Cloud Console and save it to a JSON file with the following code:
|
||||
Example usage in your CrewAI project:
|
||||
```python Code
|
||||
from crewai import LLM
|
||||
|
||||
llm = LLM(
|
||||
model="gemini/gemini-2.0-flash",
|
||||
temperature=0.7,
|
||||
)
|
||||
```
|
||||
|
||||
### Gemini models
|
||||
|
||||
Google offers a range of powerful models optimized for different use cases.
|
||||
|
||||
| Model | Context Window | Best For |
|
||||
|--------------------------------|----------------|-------------------------------------------------------------------|
|
||||
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
|
||||
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
|
||||
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
|
||||
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
|
||||
The full list of models is available in the [Gemini model docs](https://ai.google.dev/gemini-api/docs/models).
|
||||
|
||||
### Gemma
|
||||
|
||||
The Gemini API also allows you to use your API key to access [Gemma models](https://ai.google.dev/gemma/docs) hosted on Google infrastructure.
|
||||
|
||||
| Model | Context Window |
|
||||
|----------------|----------------|
|
||||
| gemma-3-1b-it | 32k tokens |
|
||||
| gemma-3-4b-it | 32k tokens |
|
||||
| gemma-3-12b-it | 32k tokens |
|
||||
| gemma-3-27b-it | 128k tokens |
|
||||
|
||||
</Accordion>
|
||||
<Accordion title="Google (Vertex AI)">
|
||||
Get credentials from your Google Cloud Console and save it to a JSON file, then load it with the following code:
|
||||
```python Code
|
||||
import json
|
||||
|
||||
@@ -205,14 +241,18 @@ In this section, you'll find detailed examples that help you select, configure,
|
||||
vertex_credentials=vertex_credentials_json
|
||||
)
|
||||
```
|
||||
|
||||
Google offers a range of powerful models optimized for different use cases:
|
||||
|
||||
| Model | Context Window | Best For |
|
||||
|-----------------------|----------------|------------------------------------------------------------------|
|
||||
| gemini-2.0-flash-exp | 1M tokens | Higher quality at faster speed, multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
| Model | Context Window | Best For |
|
||||
|--------------------------------|----------------|-------------------------------------------------------------------|
|
||||
| gemini-2.5-flash-preview-04-17 | 1M tokens | Adaptive thinking, cost efficiency |
|
||||
| gemini-2.5-pro-preview-05-06 | 1M tokens | Enhanced thinking and reasoning, multimodal understanding, advanced coding, and more |
|
||||
| gemini-2.0-flash | 1M tokens | Next generation features, speed, thinking, and realtime streaming |
|
||||
| gemini-2.0-flash-lite | 1M tokens | Cost efficiency and low latency |
|
||||
| gemini-1.5-flash | 1M tokens | Balanced multimodal model, good for most tasks |
|
||||
| gemini-1.5-flash-8B | 1M tokens | Fastest, most cost-efficient, good for high-frequency tasks |
|
||||
| gemini-1.5-pro | 2M tokens | Best performing, wide variety of reasoning tasks including logical reasoning, coding, and creative collaboration |
|
||||
</Accordion>
|
||||
|
||||
<Accordion title="Azure">
|
||||
|
||||
@@ -68,7 +68,13 @@ We'll create a CrewAI application where two agents collaborate to research and w
|
||||
```python
|
||||
from crewai import Agent, Crew, Process, Task
|
||||
from crewai_tools import SerperDevTool
|
||||
from openinference.instrumentation.crewai import CrewAIInstrumentor
|
||||
from phoenix.otel import register
|
||||
|
||||
# setup monitoring for your crew
|
||||
tracer_provider = register(
|
||||
endpoint="http://localhost:6006/v1/traces")
|
||||
CrewAIInstrumentor().instrument(skip_dep_check=True, tracer_provider=tracer_provider)
|
||||
search_tool = SerperDevTool()
|
||||
|
||||
# Define your agents with roles and goals
|
||||
|
||||
@@ -20,6 +20,7 @@ from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.utilities import Converter, Prompts
|
||||
from crewai.utilities.agent_utils import (
|
||||
get_tool_names,
|
||||
load_agent_from_repository,
|
||||
parse_tools,
|
||||
render_text_description_and_args,
|
||||
)
|
||||
@@ -134,6 +135,16 @@ class Agent(BaseAgent):
|
||||
default=None,
|
||||
description="Knowledge search query for the agent dynamically generated by the agent.",
|
||||
)
|
||||
from_repository: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The Agent's role to be used from your repository.",
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
def validate_from_repository(cls, v):
|
||||
if v is not None and (from_repository := v.get("from_repository")):
|
||||
return load_agent_from_repository(from_repository) | v
|
||||
return v
|
||||
|
||||
@model_validator(mode="after")
|
||||
def post_init_setup(self):
|
||||
|
||||
@@ -5,5 +5,5 @@ def get_auth_token() -> str:
|
||||
"""Get the authentication token."""
|
||||
access_token = TokenManager().get_token()
|
||||
if not access_token:
|
||||
raise Exception()
|
||||
raise Exception("No token found, make sure you are logged in")
|
||||
return access_token
|
||||
|
||||
@@ -13,7 +13,7 @@ ENV_VARS = {
|
||||
],
|
||||
"gemini": [
|
||||
{
|
||||
"prompt": "Enter your GEMINI API key (press Enter to skip)",
|
||||
"prompt": "Enter your GEMINI API key from https://ai.dev/apikey (press Enter to skip)",
|
||||
"key_name": "GEMINI_API_KEY",
|
||||
}
|
||||
],
|
||||
|
||||
@@ -14,6 +14,7 @@ class PlusAPI:
|
||||
|
||||
TOOLS_RESOURCE = "/crewai_plus/api/v1/tools"
|
||||
CREWS_RESOURCE = "/crewai_plus/api/v1/crews"
|
||||
AGENTS_RESOURCE = "/crewai_plus/api/v1/agents"
|
||||
|
||||
def __init__(self, api_key: str) -> None:
|
||||
self.api_key = api_key
|
||||
@@ -37,6 +38,9 @@ class PlusAPI:
|
||||
def get_tool(self, handle: str):
|
||||
return self._make_request("GET", f"{self.TOOLS_RESOURCE}/{handle}")
|
||||
|
||||
def get_agent(self, handle: str):
|
||||
return self._make_request("GET", f"{self.AGENTS_RESOURCE}/{handle}")
|
||||
|
||||
def publish_tool(
|
||||
self,
|
||||
handle: str,
|
||||
|
||||
@@ -52,7 +52,7 @@ from crewai.tools.agent_tools.agent_tools import AgentTools
|
||||
from crewai.tools.base_tool import BaseTool, Tool
|
||||
from crewai.types.usage_metrics import UsageMetrics
|
||||
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.constants import NOT_SPECIFIED, TRAINING_DATA_FILE
|
||||
from crewai.utilities.evaluators.crew_evaluator_handler import CrewEvaluator
|
||||
from crewai.utilities.evaluators.task_evaluator import TaskEvaluator
|
||||
from crewai.utilities.events.crew_events import (
|
||||
@@ -478,7 +478,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
separated by a synchronous task.
|
||||
"""
|
||||
for i, task in enumerate(self.tasks):
|
||||
if task.async_execution and task.context:
|
||||
if task.async_execution and isinstance(task.context, list):
|
||||
for context_task in task.context:
|
||||
if context_task.async_execution:
|
||||
for j in range(i - 1, -1, -1):
|
||||
@@ -496,7 +496,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
task_indices = {id(task): i for i, task in enumerate(self.tasks)}
|
||||
|
||||
for task in self.tasks:
|
||||
if task.context:
|
||||
if isinstance(task.context, list):
|
||||
for context_task in task.context:
|
||||
if id(context_task) not in task_indices:
|
||||
continue # Skip context tasks not in the main tasks list
|
||||
@@ -1034,11 +1034,14 @@ class Crew(FlowTrackable, BaseModel):
|
||||
)
|
||||
return cast(List[BaseTool], tools)
|
||||
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]):
|
||||
def _get_context(self, task: Task, task_outputs: List[TaskOutput]) -> str:
|
||||
if not task.context:
|
||||
return ""
|
||||
|
||||
context = (
|
||||
aggregate_raw_outputs_from_tasks(task.context)
|
||||
if task.context
|
||||
else aggregate_raw_outputs_from_task_outputs(task_outputs)
|
||||
aggregate_raw_outputs_from_task_outputs(task_outputs)
|
||||
if task.context is NOT_SPECIFIED
|
||||
else aggregate_raw_outputs_from_tasks(task.context)
|
||||
)
|
||||
return context
|
||||
|
||||
@@ -1226,7 +1229,7 @@ class Crew(FlowTrackable, BaseModel):
|
||||
task_mapping[task.key] = cloned_task
|
||||
|
||||
for cloned_task, original_task in zip(cloned_tasks, self.tasks):
|
||||
if original_task.context:
|
||||
if isinstance(original_task.context, list):
|
||||
cloned_context = [
|
||||
task_mapping[context_task.key]
|
||||
for context_task in original_task.context
|
||||
|
||||
@@ -5,8 +5,7 @@ import sys
|
||||
import threading
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from contextlib import contextmanager
|
||||
from types import SimpleNamespace
|
||||
from contextlib import contextmanager, redirect_stderr, redirect_stdout
|
||||
from typing import (
|
||||
Any,
|
||||
DefaultDict,
|
||||
@@ -31,7 +30,6 @@ from crewai.utilities.events.llm_events import (
|
||||
LLMCallType,
|
||||
LLMStreamChunkEvent,
|
||||
)
|
||||
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
@@ -45,6 +43,9 @@ with warnings.catch_warnings():
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
||||
import io
|
||||
from typing import TextIO
|
||||
|
||||
from crewai.llms.base_llm import BaseLLM
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
@@ -54,12 +55,17 @@ from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
load_dotenv()
|
||||
|
||||
|
||||
class FilteredStream:
|
||||
def __init__(self, original_stream):
|
||||
class FilteredStream(io.TextIOBase):
|
||||
_lock = None
|
||||
|
||||
def __init__(self, original_stream: TextIO):
|
||||
self._original_stream = original_stream
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def write(self, s) -> int:
|
||||
def write(self, s: str) -> int:
|
||||
if not self._lock:
|
||||
self._lock = threading.Lock()
|
||||
|
||||
with self._lock:
|
||||
# Filter out extraneous messages from LiteLLM
|
||||
if (
|
||||
@@ -214,15 +220,11 @@ def suppress_warnings():
|
||||
)
|
||||
|
||||
# Redirect stdout and stderr
|
||||
old_stdout = sys.stdout
|
||||
old_stderr = sys.stderr
|
||||
sys.stdout = FilteredStream(old_stdout)
|
||||
sys.stderr = FilteredStream(old_stderr)
|
||||
try:
|
||||
with (
|
||||
redirect_stdout(FilteredStream(sys.stdout)),
|
||||
redirect_stderr(FilteredStream(sys.stderr)),
|
||||
):
|
||||
yield
|
||||
finally:
|
||||
sys.stdout = old_stdout
|
||||
sys.stderr = old_stderr
|
||||
|
||||
|
||||
class Delta(TypedDict):
|
||||
|
||||
@@ -2,7 +2,6 @@ import datetime
|
||||
import inspect
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import threading
|
||||
import uuid
|
||||
from concurrent.futures import Future
|
||||
@@ -41,6 +40,7 @@ from crewai.tasks.output_format import OutputFormat
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.utilities.config import process_config
|
||||
from crewai.utilities.constants import NOT_SPECIFIED
|
||||
from crewai.utilities.converter import Converter, convert_to_model
|
||||
from crewai.utilities.events import (
|
||||
TaskCompletedEvent,
|
||||
@@ -97,7 +97,7 @@ class Task(BaseModel):
|
||||
)
|
||||
context: Optional[List["Task"]] = Field(
|
||||
description="Other tasks that will have their output used as context for this task.",
|
||||
default=None,
|
||||
default=NOT_SPECIFIED,
|
||||
)
|
||||
async_execution: Optional[bool] = Field(
|
||||
description="Whether the task should be executed asynchronously or not.",
|
||||
@@ -643,7 +643,7 @@ class Task(BaseModel):
|
||||
|
||||
cloned_context = (
|
||||
[task_mapping[context_task.key] for context_task in self.context]
|
||||
if self.context
|
||||
if isinstance(self.context, list)
|
||||
else None
|
||||
)
|
||||
|
||||
|
||||
@@ -10,6 +10,18 @@ from contextlib import contextmanager
|
||||
from importlib.metadata import version
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
from opentelemetry import trace
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import (
|
||||
OTLPSpanExporter,
|
||||
)
|
||||
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
|
||||
from opentelemetry.sdk.trace import TracerProvider
|
||||
from opentelemetry.sdk.trace.export import (
|
||||
BatchSpanProcessor,
|
||||
SpanExportResult,
|
||||
)
|
||||
from opentelemetry.trace import Span, Status, StatusCode
|
||||
|
||||
from crewai.telemetry.constants import (
|
||||
CREWAI_TELEMETRY_BASE_URL,
|
||||
CREWAI_TELEMETRY_SERVICE_NAME,
|
||||
@@ -25,18 +37,6 @@ def suppress_warnings():
|
||||
yield
|
||||
|
||||
|
||||
from opentelemetry import trace # noqa: E402
|
||||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import (
|
||||
OTLPSpanExporter, # noqa: E402
|
||||
)
|
||||
from opentelemetry.sdk.resources import SERVICE_NAME, Resource # noqa: E402
|
||||
from opentelemetry.sdk.trace import TracerProvider # noqa: E402
|
||||
from opentelemetry.sdk.trace.export import ( # noqa: E402
|
||||
BatchSpanProcessor,
|
||||
SpanExportResult,
|
||||
)
|
||||
from opentelemetry.trace import Span, Status, StatusCode # noqa: E402
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.crew import Crew
|
||||
from crewai.task import Task
|
||||
@@ -232,7 +232,7 @@ class Telemetry:
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"context": (
|
||||
[task.description for task in task.context]
|
||||
if task.context
|
||||
if isinstance(task.context, list)
|
||||
else None
|
||||
),
|
||||
"tools_names": [
|
||||
@@ -748,7 +748,7 @@ class Telemetry:
|
||||
"agent_key": task.agent.key if task.agent else None,
|
||||
"context": (
|
||||
[task.description for task in task.context]
|
||||
if task.context
|
||||
if isinstance(task.context, list)
|
||||
else None
|
||||
),
|
||||
"tools_names": [
|
||||
|
||||
@@ -16,6 +16,7 @@ from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
from crewai.tools.tool_types import ToolResult
|
||||
from crewai.utilities import I18N, Printer
|
||||
from crewai.utilities.errors import AgentRepositoryError
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
@@ -428,3 +429,36 @@ def show_agent_logs(
|
||||
printer.print(
|
||||
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
|
||||
)
|
||||
|
||||
|
||||
def load_agent_from_repository(from_repository: str) -> Dict[str, Any]:
|
||||
attributes: Dict[str, Any] = {}
|
||||
if from_repository:
|
||||
import importlib
|
||||
|
||||
from crewai.cli.authentication.token import get_auth_token
|
||||
from crewai.cli.plus_api import PlusAPI
|
||||
|
||||
client = PlusAPI(api_key=get_auth_token())
|
||||
response = client.get_agent(from_repository)
|
||||
if response.status_code != 200:
|
||||
raise AgentRepositoryError(
|
||||
f"Agent {from_repository} could not be loaded: {response.text}"
|
||||
)
|
||||
|
||||
agent = response.json()
|
||||
for key, value in agent.items():
|
||||
if key == "tools":
|
||||
attributes[key] = []
|
||||
for tool_name in value:
|
||||
try:
|
||||
module = importlib.import_module("crewai_tools")
|
||||
tool_class = getattr(module, tool_name)
|
||||
attributes[key].append(tool_class())
|
||||
except Exception as e:
|
||||
raise AgentRepositoryError(
|
||||
f"Tool {tool_name} could not be loaded: {e}"
|
||||
) from e
|
||||
else:
|
||||
attributes[key] = value
|
||||
return attributes
|
||||
|
||||
@@ -5,3 +5,14 @@ KNOWLEDGE_DIRECTORY = "knowledge"
|
||||
MAX_LLM_RETRY = 3
|
||||
MAX_FILE_NAME_LENGTH = 255
|
||||
EMITTER_COLOR = "bold_blue"
|
||||
|
||||
|
||||
class _NotSpecified:
|
||||
def __repr__(self):
|
||||
return "NOT_SPECIFIED"
|
||||
|
||||
|
||||
# Sentinel value used to detect when no value has been explicitly provided.
|
||||
# Unlike `None`, which might be a valid value from the user, `NOT_SPECIFIED` allows
|
||||
# us to distinguish between "not passed at all" and "explicitly passed None" or "[]".
|
||||
NOT_SPECIFIED = _NotSpecified()
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
"""Error message definitions for CrewAI database operations."""
|
||||
|
||||
from typing import Optional
|
||||
|
||||
|
||||
@@ -37,3 +38,9 @@ class DatabaseError:
|
||||
The formatted error message
|
||||
"""
|
||||
return template.format(str(error))
|
||||
|
||||
|
||||
class AgentRepositoryError(Exception):
|
||||
"""Exception raised when an agent repository is not found."""
|
||||
|
||||
...
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import re
|
||||
from typing import TYPE_CHECKING, List
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from crewai.task import Task
|
||||
from crewai.tasks.task_output import TaskOutput
|
||||
@@ -17,6 +17,11 @@ def aggregate_raw_outputs_from_task_outputs(task_outputs: List["TaskOutput"]) ->
|
||||
|
||||
def aggregate_raw_outputs_from_tasks(tasks: List["Task"]) -> str:
|
||||
"""Generate string context from the tasks."""
|
||||
task_outputs = [task.output for task in tasks if task.output is not None]
|
||||
|
||||
task_outputs = (
|
||||
[task.output for task in tasks if task.output is not None]
|
||||
if isinstance(tasks, list)
|
||||
else []
|
||||
)
|
||||
|
||||
return aggregate_raw_outputs_from_task_outputs(task_outputs)
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
import os
|
||||
from unittest import mock
|
||||
from unittest.mock import patch
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
@@ -18,6 +18,7 @@ from crewai.tools import tool
|
||||
from crewai.tools.tool_calling import InstructorToolCalling
|
||||
from crewai.tools.tool_usage import ToolUsage
|
||||
from crewai.utilities import RPMController
|
||||
from crewai.utilities.errors import AgentRepositoryError
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
from crewai.utilities.events.tool_usage_events import ToolUsageFinishedEvent
|
||||
|
||||
@@ -308,9 +309,7 @@ def test_cache_hitting():
|
||||
def handle_tool_end(source, event):
|
||||
received_events.append(event)
|
||||
|
||||
with (
|
||||
patch.object(CacheHandler, "read") as read,
|
||||
):
|
||||
with (patch.object(CacheHandler, "read") as read,):
|
||||
read.return_value = "0"
|
||||
task = Task(
|
||||
description="What is 2 times 6? Ignore correctness and just return the result of the multiplication tool, you must use the tool.",
|
||||
@@ -1040,7 +1039,7 @@ def test_agent_human_input():
|
||||
CrewAgentExecutor,
|
||||
"_invoke_loop",
|
||||
return_value=AgentFinish(output="Hello", thought="", text=""),
|
||||
) as mock_invoke_loop,
|
||||
),
|
||||
):
|
||||
# Execute the task
|
||||
output = agent.execute_task(task)
|
||||
@@ -2025,3 +2024,86 @@ def test_get_knowledge_search_query():
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_get_auth_token():
|
||||
with patch(
|
||||
"crewai.cli.authentication.token.get_auth_token", return_value="test_token"
|
||||
):
|
||||
yield
|
||||
|
||||
|
||||
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
|
||||
def test_agent_from_repository(mock_get_agent, mock_get_auth_token):
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
mock_get_response = MagicMock()
|
||||
mock_get_response.status_code = 200
|
||||
mock_get_response.json.return_value = {
|
||||
"role": "test role",
|
||||
"goal": "test goal",
|
||||
"backstory": "test backstory",
|
||||
"tools": ["SerperDevTool"],
|
||||
}
|
||||
mock_get_agent.return_value = mock_get_response
|
||||
agent = Agent(from_repository="test_agent")
|
||||
|
||||
assert agent.role == "test role"
|
||||
assert agent.goal == "test goal"
|
||||
assert agent.backstory == "test backstory"
|
||||
assert len(agent.tools) == 1
|
||||
assert isinstance(agent.tools[0], SerperDevTool)
|
||||
|
||||
|
||||
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
|
||||
def test_agent_from_repository_override_attributes(mock_get_agent, mock_get_auth_token):
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
mock_get_response = MagicMock()
|
||||
mock_get_response.status_code = 200
|
||||
mock_get_response.json.return_value = {
|
||||
"role": "test role",
|
||||
"goal": "test goal",
|
||||
"backstory": "test backstory",
|
||||
"tools": ["SerperDevTool"],
|
||||
}
|
||||
mock_get_agent.return_value = mock_get_response
|
||||
agent = Agent(from_repository="test_agent", role="Custom Role")
|
||||
|
||||
assert agent.role == "Custom Role"
|
||||
assert agent.goal == "test goal"
|
||||
assert agent.backstory == "test backstory"
|
||||
assert len(agent.tools) == 1
|
||||
assert isinstance(agent.tools[0], SerperDevTool)
|
||||
|
||||
|
||||
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
|
||||
def test_agent_from_repository_with_invalid_tools(mock_get_agent, mock_get_auth_token):
|
||||
mock_get_response = MagicMock()
|
||||
mock_get_response.status_code = 200
|
||||
mock_get_response.json.return_value = {
|
||||
"role": "test role",
|
||||
"goal": "test goal",
|
||||
"backstory": "test backstory",
|
||||
"tools": ["DoesNotExist"],
|
||||
}
|
||||
mock_get_agent.return_value = mock_get_response
|
||||
with pytest.raises(
|
||||
AgentRepositoryError,
|
||||
match="Tool DoesNotExist could not be loaded: module 'crewai_tools' has no attribute 'DoesNotExist'",
|
||||
):
|
||||
Agent(from_repository="test_agent")
|
||||
|
||||
|
||||
@patch("crewai.cli.plus_api.PlusAPI.get_agent")
|
||||
def test_agent_from_repository_agent_not_found(mock_get_agent, mock_get_auth_token):
|
||||
mock_get_response = MagicMock()
|
||||
mock_get_response.status_code = 404
|
||||
mock_get_response.text = "Agent not found"
|
||||
mock_get_agent.return_value = mock_get_response
|
||||
with pytest.raises(
|
||||
AgentRepositoryError,
|
||||
match="Agent NOT_FOUND could not be loaded: Agent not found",
|
||||
):
|
||||
Agent(from_repository="NOT_FOUND")
|
||||
|
||||
@@ -2,22 +2,18 @@
|
||||
|
||||
import hashlib
|
||||
import json
|
||||
import os
|
||||
import tempfile
|
||||
from concurrent.futures import Future
|
||||
from unittest import mock
|
||||
from unittest.mock import MagicMock, patch
|
||||
from unittest.mock import ANY, MagicMock, patch
|
||||
|
||||
import pydantic_core
|
||||
import pytest
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.agents import CacheHandler
|
||||
from crewai.agents.cache import CacheHandler
|
||||
from crewai.agents.crew_agent_executor import CrewAgentExecutor
|
||||
from crewai.crew import Crew
|
||||
from crewai.crews.crew_output import CrewOutput
|
||||
from crewai.flow import Flow, listen, start
|
||||
from crewai.flow import Flow, start
|
||||
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
|
||||
from crewai.llm import LLM
|
||||
from crewai.memory.contextual.contextual_memory import ContextualMemory
|
||||
@@ -3141,6 +3137,30 @@ def test_replay_with_context():
|
||||
assert crew.tasks[1].context[0].output.raw == "context raw output"
|
||||
|
||||
|
||||
def test_replay_with_context_set_to_nullable():
|
||||
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
|
||||
task1 = Task(
|
||||
description="Context Task", expected_output="Say Task Output", agent=agent
|
||||
)
|
||||
task2 = Task(
|
||||
description="Test Task", expected_output="Say Hi", agent=agent, context=[]
|
||||
)
|
||||
task3 = Task(
|
||||
description="Test Task 3", expected_output="Say Hi", agent=agent, context=None
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task1, task2, task3], process=Process.sequential)
|
||||
with patch("crewai.task.Task.execute_sync") as mock_execute_task:
|
||||
mock_execute_task.return_value = TaskOutput(
|
||||
description="Test Task Output",
|
||||
raw="test raw output",
|
||||
agent="test_agent",
|
||||
)
|
||||
crew.kickoff()
|
||||
|
||||
mock_execute_task.assert_called_with(agent=ANY, context="", tools=ANY)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_replay_with_invalid_task_id():
|
||||
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
|
||||
|
||||
Reference in New Issue
Block a user