* ruff linted
* using native sdks with litellm fallback
* drop exa
* drop print on completion
* Refactor LLM and utility functions for type consistency
- Updated `max_tokens` parameter in `LLM` class to accept `float` in addition to `int`.
- Modified `create_llm` function to ensure consistent type hints and return types, now returning `LLM | BaseLLM | None`.
- Adjusted type hints for various parameters in `create_llm` and `_llm_via_environment_or_fallback` functions for improved clarity and type safety.
- Enhanced test cases to reflect changes in type handling and ensure proper instantiation of LLM instances.
* fix agent_tests
* fix litellm tests and usagemetrics fix
* drop print
* Refactor LLM event handling and improve test coverage
- Removed commented-out event emission for LLM call failures in `llm.py`.
- Added `from_agent` parameter to `CrewAgentExecutor` for better context in LLM responses.
- Enhanced test for LLM call failure to simulate OpenAI API failure and updated assertions for clarity.
- Updated agent and task ID assertions in tests to ensure they are consistently treated as strings.
* fix test_converter
* fixed tests/agents/test_agent.py
* Refactor LLM context length exception handling and improve provider integration
- Renamed `LLMContextLengthExceededException` to `LLMContextLengthExceededExceptionError` for clarity and consistency.
- Updated LLM class to pass the provider parameter correctly during initialization.
- Enhanced error handling in various LLM provider implementations to raise the new exception type.
- Adjusted tests to reflect the updated exception name and ensure proper error handling in context length scenarios.
* Enhance LLM context window handling across providers
- Introduced CONTEXT_WINDOW_USAGE_RATIO to adjust context window sizes dynamically for Anthropic, Azure, Gemini, and OpenAI LLMs.
- Added validation for context window sizes in Azure and Gemini providers to ensure they fall within acceptable limits.
- Updated context window size calculations to use the new ratio, improving consistency and adaptability across different models.
- Removed hardcoded context window sizes in favor of ratio-based calculations for better flexibility.
* fix test agent again
* fix test agent
* feat: add native LLM providers for Anthropic, Azure, and Gemini
- Introduced new completion implementations for Anthropic, Azure, and Gemini, integrating their respective SDKs.
- Added utility functions for tool validation and extraction to support function calling across LLM providers.
- Enhanced context window management and token usage extraction for each provider.
- Created a common utility module for shared functionality among LLM providers.
* chore: update dependencies and improve context management
- Removed direct dependency on `litellm` from the main dependencies and added it under extras for better modularity.
- Updated the `litellm` dependency specification to allow for greater flexibility in versioning.
- Refactored context length exception handling across various LLM providers to use a consistent error class.
- Enhanced platform-specific dependency markers for NVIDIA packages to ensure compatibility across different systems.
* refactor(tests): update LLM instantiation to include is_litellm flag in test cases
- Modified multiple test cases in test_llm.py to set the is_litellm parameter to True when instantiating the LLM class.
- This change ensures that the tests are aligned with the latest LLM configuration requirements and improves consistency across test scenarios.
- Adjusted relevant assertions and comments to reflect the updated LLM behavior.
* linter
* linted
* revert constants
* fix(tests): correct type hint in expected model description
- Updated the expected description in the test_generate_model_description_dict_field function to use 'Dict' instead of 'dict' for consistency with type hinting conventions.
- This change ensures that the test accurately reflects the expected output format for model descriptions.
* refactor(llm): enhance LLM instantiation and error handling
- Updated the LLM class to include validation for the model parameter, ensuring it is a non-empty string.
- Improved error handling by logging warnings when the native SDK fails, allowing for a fallback to LiteLLM.
- Adjusted the instantiation of LLM in test cases to consistently include the is_litellm flag, aligning with recent changes in LLM configuration.
- Modified relevant tests to reflect these updates, ensuring better coverage and accuracy in testing scenarios.
* fixed test
* refactor(llm): enhance token usage tracking and add copy methods
- Updated the LLM class to track token usage and log callbacks in streaming mode, improving monitoring capabilities.
- Introduced shallow and deep copy methods for the LLM instance, allowing for better management of LLM configurations and parameters.
- Adjusted test cases to instantiate LLM with the is_litellm flag, ensuring alignment with recent changes in LLM configuration.
* refactor(tests): reorganize imports and enhance error messages in test cases
- Cleaned up import statements in test_crew.py for better organization and readability.
- Enhanced error messages in test cases to use `re.escape` for improved regex matching, ensuring more robust error handling.
- Adjusted comments for clarity and consistency across test scenarios.
- Ensured that all necessary modules are imported correctly to avoid potential runtime issues.
- Introduced a new documentation page for CrewAI Tracing, detailing setup and usage.
- Updated the main documentation to include the new tracing page in the observability section.
- Added example code snippets for enabling tracing in both Crews and Flows.
- Included instructions for global tracing configuration via environment variables.
- Added a new image for the CrewAI Tracing interface.
- prefix provider env vars with embeddings_
- rename watson → watsonx in providers
- add deprecation warning and alias for legacy 'watson' key (to be removed in v1.0.0)
- Bump CrewAI version to 0.201.0 in __init__.py
- Update dependency versions in pyproject.toml for crew, flow, and tool templates to require CrewAI 0.201.0
- Remove unnecessary blank line in pyproject.toml
- update imports and include handling for chromadb v1.1.0
- fix mypy and typing_compat issues (required, typeddict, voyageai)
- refine embedderconfig typing and allow base provider instances
- handle mem0 as special case for external memory storage
- bump tools and clean up redundant deps
- introduce baseembeddingsprovider and helper for embedding functions
- add core embedding types and migrate providers, factory, and storage modules
- remove unused type aliases and fix pydantic schema error
- update providers with env var support and related fixes
- Add pydantic-settings>=2.10.1 dependency for configuration management
- Update pydantic to 2.11.9 and python-dotenv to 1.1.1
- Migrate from deprecated tool.uv.dev-dependencies to dependency-groups.dev format
- Remove unnecessary dev dependencies: pillow, cairosvg
- Update all dev tooling to latest versions
- Remove duplicate python-dotenv from dev dependencies
- add batch_size field to baseragconfig (default=100)
- update chromadb/qdrant clients and factories to use batch_size
- extract and filter batch_size from embedder config in knowledgestorage
- fix large csv files exceeding embedder token limits (#3574)
- remove unneeded conditional for type
Co-authored-by: Vini Brasil <vini@hey.com>
- support nested config format with embedderconfig typeddict
- fix parsing for model/model_name compatibility
- add validation, typing_extensions, and improved type hints
- enhance embedding factory with env var injection and provider support
- add tests for openai, azure, and all embedding providers
- misc fixes: test file rename, updated mocking patterns