mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
Fix CI: Make pgvector an optional dependency, fix SQL injection and type errors
Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
@@ -67,6 +67,11 @@ docling = [
|
||||
aisuite = [
|
||||
"aisuite>=0.1.10",
|
||||
]
|
||||
pgvector = [
|
||||
"pgvector>=0.2.0",
|
||||
"sqlalchemy>=2.0.0",
|
||||
"psycopg2-binary>=2.9.0",
|
||||
]
|
||||
|
||||
[tool.uv]
|
||||
dev-dependencies = [
|
||||
|
||||
@@ -1 +1,5 @@
|
||||
from crewai.knowledge.storage.pgvector_knowledge_storage import PGVectorKnowledgeStorage
|
||||
try:
|
||||
from crewai.knowledge.storage.pgvector_knowledge_storage import PGVectorKnowledgeStorage
|
||||
__all__ = ["PGVectorKnowledgeStorage"]
|
||||
except ImportError:
|
||||
__all__ = []
|
||||
|
||||
@@ -2,24 +2,34 @@ from typing import Any, Dict, List, Optional
|
||||
import hashlib
|
||||
import logging
|
||||
import os
|
||||
from sqlalchemy import create_engine, Column, String, Text, Float
|
||||
from sqlalchemy import create_engine, Column, String, Text
|
||||
from sqlalchemy.ext.declarative import declarative_base
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
from pgvector.sqlalchemy import Vector
|
||||
from sqlalchemy.sql import text
|
||||
|
||||
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
|
||||
try:
|
||||
from pgvector.sqlalchemy import Vector
|
||||
HAS_PGVECTOR = True
|
||||
except ImportError:
|
||||
HAS_PGVECTOR = False
|
||||
class VectorType:
|
||||
def __init__(self, dimensions: int):
|
||||
self.dimensions = dimensions
|
||||
Vector = VectorType # type: ignore
|
||||
|
||||
Base = declarative_base()
|
||||
|
||||
class Document(Base):
|
||||
class Document(Base): # type: ignore
|
||||
"""SQLAlchemy model for document storage with pgvector."""
|
||||
__tablename__ = "documents"
|
||||
|
||||
id = Column(String, primary_key=True)
|
||||
content = Column(Text)
|
||||
metadata = Column(Text) # JSON serialized metadata
|
||||
embedding = Column(Vector(1536)) # Adjust dimension based on embedding model
|
||||
embedding: Column = Column(Vector(1536)) # Adjust dimension based on embedding model
|
||||
|
||||
class PGVectorKnowledgeStorage(BaseKnowledgeStorage):
|
||||
"""
|
||||
@@ -45,6 +55,11 @@ class PGVectorKnowledgeStorage(BaseKnowledgeStorage):
|
||||
table_name: Name of the table to store documents
|
||||
embedding_dimension: Dimension of the embedding vectors
|
||||
"""
|
||||
if not HAS_PGVECTOR:
|
||||
raise ImportError(
|
||||
"pgvector is not installed. Please install it with: pip install pgvector"
|
||||
)
|
||||
|
||||
self.connection_string = connection_string
|
||||
self.table_name = table_name
|
||||
self.embedding_dimension = embedding_dimension
|
||||
@@ -94,14 +109,17 @@ class PGVectorKnowledgeStorage(BaseKnowledgeStorage):
|
||||
try:
|
||||
query_embedding = self.embedder([query[0]])[0]
|
||||
|
||||
sql_query = f"""
|
||||
SELECT id, content, metadata, 1 - (embedding <=> '{query_embedding}') as similarity
|
||||
sql_query = text(f"""
|
||||
SELECT id, content, metadata, 1 - (embedding <=> :query_embedding) as similarity
|
||||
FROM {self.table_name}
|
||||
ORDER BY embedding <=> '{query_embedding}'
|
||||
LIMIT {limit}
|
||||
"""
|
||||
ORDER BY embedding <=> :query_embedding
|
||||
LIMIT :limit
|
||||
""")
|
||||
|
||||
results = session.execute(sql_query).fetchall()
|
||||
results = session.execute(
|
||||
sql_query,
|
||||
{"query_embedding": query_embedding, "limit": limit}
|
||||
).fetchall()
|
||||
|
||||
formatted_results = []
|
||||
for row in results:
|
||||
@@ -154,9 +172,9 @@ class PGVectorKnowledgeStorage(BaseKnowledgeStorage):
|
||||
existing = session.query(Document).filter(Document.id == doc_id).first()
|
||||
|
||||
if existing:
|
||||
existing.content = doc
|
||||
existing.metadata = str(meta) if meta else None
|
||||
existing.embedding = embedding
|
||||
setattr(existing, "content", doc)
|
||||
setattr(existing, "metadata", str(meta) if meta else None)
|
||||
setattr(existing, "embedding", embedding)
|
||||
else:
|
||||
new_doc = Document(
|
||||
id=doc_id,
|
||||
|
||||
@@ -1,6 +1,4 @@
|
||||
import os
|
||||
import pytest
|
||||
from typing import Dict, Any, List
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
from crewai.knowledge.storage.pgvector_knowledge_storage import PGVectorKnowledgeStorage
|
||||
|
||||
Reference in New Issue
Block a user