enable qdrant as vector search tool for crew agents

This commit is contained in:
Lorenze Jay
2025-02-01 23:31:15 -08:00
parent 6b93ebb97b
commit dcd4481ae2
4 changed files with 242 additions and 0 deletions

View File

@@ -30,6 +30,7 @@ from .tools import (
PatronusPredefinedCriteriaEvalTool,
PDFSearchTool,
PGSearchTool,
QdrantVectorSearchTool,
RagTool,
ScrapeElementFromWebsiteTool,
ScrapegraphScrapeTool,

View File

@@ -35,6 +35,7 @@ from .patronus_eval_tool import (
)
from .pdf_search_tool.pdf_search_tool import PDFSearchTool
from .pg_seach_tool.pg_search_tool import PGSearchTool
from .qdrant_vector_search_tool.qdrant_search_tool import QdrantVectorSearchTool
from .rag.rag_tool import RagTool
from .scrape_element_from_website.scrape_element_from_website import (
ScrapeElementFromWebsiteTool,

View File

@@ -0,0 +1,49 @@
# QdrantVectorSearchTool
## Description
This tool is specifically crafted for conducting semantic searches within docs within a Qdrant vector database. Use this tool to find semantically similar docs to a given query.
Qdrant is a vector database that is used to store and query vector embeddings. You can follow their docs here: https://qdrant.tech/documentation/
## Installation
Install the crewai_tools package by executing the following command in your terminal:
```shell
uv pip install 'crewai[tools]'
```
## Example
To utilize the QdrantVectorSearchTool for different use cases, follow these examples:
```python
from crewai_tools import QdrantVectorSearchTool
# To enable the tool to search any website the agent comes across or learns about during its operation
tool = QdrantVectorSearchTool(
collection_name="example_collections",
limit=3,
qdrant_url="https://your-qdrant-cluster-url.com",
qdrant_api_key="your-qdrant-api-key",
)
# Adding the tool to an agent
rag_agent = Agent(
name="rag_agent",
role="You are a helpful assistant that can answer questions with the help of the QdrantVectorSearchTool. Retrieve the most relevant docs from the Qdrant database.",
llm="gpt-4o-mini",
tools=[tool],
)
```
## Arguments
- `collection_name` : The name of the collection to search within. (Required)
- `qdrant_url` : The URL of the Qdrant cluster. (Required)
- `qdrant_api_key` : The API key for the Qdrant cluster. (Required)
- `limit` : The number of results to return. (Optional)
- `vectorizer` : The vectorizer to use. (Optional)

View File

@@ -0,0 +1,191 @@
import json
from typing import Any, Optional, Type
try:
from qdrant_client import QdrantClient
from qdrant_client.http.models import Filter, FieldCondition, MatchValue
QDRANT_AVAILABLE = True
except ImportError:
QDRANT_AVAILABLE = False
QdrantClient = Any
Filter = Any
FieldCondition = Any
MatchValue = Any
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class QdrantToolSchema(BaseModel):
"""Input for QdrantTool."""
query: str = Field(
...,
description="The query to search retrieve relevant information from the Qdrant database. Pass only the query, not the question.",
)
filter_by: Optional[str] = Field(
default=None,
description="Filter by properties. Pass only the properties, not the question.",
)
filter_value: Optional[str] = Field(
default=None,
description="Filter by value. Pass only the value, not the question.",
)
class QdrantVectorSearchTool(BaseTool):
"""Tool to query and filter results from a Qdrant vector database.
This tool provides functionality to perform semantic search operations on documents
stored in a Qdrant collection, with optional filtering capabilities.
Attributes:
name (str): Name of the tool
description (str): Description of the tool's functionality
client (QdrantClient): Qdrant client instance
collection_name (str): Name of the Qdrant collection to search
limit (int): Maximum number of results to return
score_threshold (float): Minimum similarity score threshold
"""
name: str = "QdrantVectorSearchTool"
description: str = "A tool to search the Qdrant database for relevant information on internal documents."
args_schema: Type[BaseModel] = QdrantToolSchema
model_config = {"arbitrary_types_allowed": True}
client: Optional[QdrantClient] = None
collection_name: str = Field(
...,
description="The name of the Qdrant collection to search",
)
limit: Optional[int] = Field(default=3)
score_threshold: float = Field(default=0.35)
qdrant_url: str = Field(
...,
description="The URL of the Qdrant server",
)
qdrant_api_key: Optional[str] = Field(
default=None,
description="The API key for the Qdrant server",
)
vectorizer: Optional[str] = Field(
default="BAAI/bge-small-en-v1.5",
description="The vectorizer to use for the Qdrant server",
)
def __init__(
self,
qdrant_url: str,
collection_name: str,
qdrant_api_key: Optional[str] = None,
vectorizer: Optional[str] = None,
**kwargs,
) -> None:
"""Initialize the QdrantVectorSearchTool.
Args:
qdrant_url: URL of the Qdrant server
collection_name: Name of the collection to search
qdrant_api_key: Optional API key for authentication
vectorizer: Optional model name for text vectorization
Raises:
ImportError: If qdrant-client package is not installed
ConnectionError: If unable to connect to Qdrant server
"""
kwargs["qdrant_url"] = qdrant_url
kwargs["collection_name"] = collection_name
kwargs["qdrant_api_key"] = qdrant_api_key
if vectorizer:
kwargs["vectorizer"] = vectorizer
super().__init__(**kwargs)
if QDRANT_AVAILABLE:
try:
self.client = QdrantClient(
url=qdrant_url,
api_key=qdrant_api_key,
)
# Verify connection
self.client.get_collections()
except Exception as e:
raise ConnectionError(f"Failed to connect to Qdrant server: {str(e)}")
else:
import click
if click.confirm(
"You are missing the 'qdrant-client' package. Would you like to install it?"
):
import subprocess
subprocess.run(
["uv", "add", "crewai[tools]", "qdrant-client"], check=True
)
else:
raise ImportError(
"The 'qdrant-client' package is required to use the QdrantVectorSearchTool. "
"Please install it with: uv add crewai[tools] qdrant-client"
)
if vectorizer:
self.client.set_model(self.vectorizer)
def _run(
self,
query: str,
filter_by: Optional[str] = None,
filter_value: Optional[str] = None,
) -> str:
"""Execute the vector search query.
Args:
query: Search query text
filter_by: Optional field name to filter results
filter_value: Optional value to filter by
Returns:
JSON string containing search results with metadata
Raises:
ValueError: If filter_by is provided without filter_value or vice versa
"""
if bool(filter_by) != bool(filter_value):
raise ValueError(
"Both filter_by and filter_value must be provided together"
)
search_filter = None
if filter_by and filter_value:
search_filter = Filter(
must=[
FieldCondition(key=filter_by, match=MatchValue(value=filter_value))
]
)
try:
search_results = self.client.query(
collection_name=self.collection_name,
query_text=[query],
query_filter=search_filter,
limit=self.limit,
score_threshold=self.score_threshold,
)
results = [
{
"id": point.id,
"metadata": point.metadata,
"context": point.document,
"score": point.score,
}
for point in search_results
]
if not results:
return json.dumps({"message": "No results found", "results": []})
return json.dumps(results, indent=2)
except Exception as e:
raise RuntimeError(f"Error executing Qdrant search: {str(e)}")