mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
working
This commit is contained in:
@@ -33,8 +33,11 @@ with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore", UserWarning)
|
||||
import litellm
|
||||
from litellm import Choices
|
||||
from litellm.litellm_core_utils.get_supported_openai_params import (
|
||||
get_supported_openai_params,
|
||||
)
|
||||
from litellm.types.utils import ModelResponse
|
||||
from litellm.utils import get_supported_openai_params, supports_response_schema
|
||||
from litellm.utils import supports_response_schema
|
||||
|
||||
|
||||
from crewai.utilities.events import crewai_event_bus
|
||||
@@ -296,6 +299,7 @@ class LLM:
|
||||
full_response = ""
|
||||
last_chunk = None
|
||||
chunk_count = 0
|
||||
usage_info = None
|
||||
|
||||
# --- 2) Make sure stream is set to True and include usage metrics
|
||||
params["stream"] = True
|
||||
@@ -310,39 +314,55 @@ class LLM:
|
||||
# Extract content from the chunk
|
||||
chunk_content = None
|
||||
|
||||
# Handle ModelResponse objects
|
||||
if isinstance(chunk, ModelResponse):
|
||||
# Get usage information from the chunk (if any)
|
||||
usage_info = getattr(chunk, "usage", None)
|
||||
# Safely extract content from various chunk formats
|
||||
try:
|
||||
# Try to access choices safely
|
||||
choices = None
|
||||
if isinstance(chunk, dict) and "choices" in chunk:
|
||||
choices = chunk["choices"]
|
||||
elif hasattr(chunk, "choices"):
|
||||
# Check if choices is not a type but an actual attribute with value
|
||||
if not isinstance(getattr(chunk, "choices"), type):
|
||||
choices = getattr(chunk, "choices")
|
||||
|
||||
# Try to extract usage information if available
|
||||
if isinstance(chunk, dict) and "usage" in chunk:
|
||||
usage_info = chunk["usage"]
|
||||
elif hasattr(chunk, "usage"):
|
||||
# Check if usage is not a type but an actual attribute with value
|
||||
if not isinstance(getattr(chunk, "usage"), type):
|
||||
usage_info = getattr(chunk, "usage")
|
||||
|
||||
choices = getattr(chunk, "choices", [])
|
||||
if choices and len(choices) > 0:
|
||||
choice = choices[0]
|
||||
|
||||
# Handle dictionary-style choices
|
||||
if isinstance(choice, dict):
|
||||
delta = choice.get("delta", {})
|
||||
if (
|
||||
isinstance(delta, dict)
|
||||
and "content" in delta
|
||||
and delta["content"] is not None
|
||||
):
|
||||
chunk_content = delta["content"]
|
||||
# Handle different delta formats
|
||||
delta = None
|
||||
if isinstance(choice, dict) and "delta" in choice:
|
||||
delta = choice["delta"]
|
||||
elif hasattr(choice, "delta"):
|
||||
delta = getattr(choice, "delta")
|
||||
|
||||
# Handle object-style choices
|
||||
else:
|
||||
delta = getattr(choice, "delta", None)
|
||||
# Extract content from delta
|
||||
if delta:
|
||||
# Handle dict format
|
||||
if isinstance(delta, dict):
|
||||
if "content" in delta and delta["content"] is not None:
|
||||
chunk_content = delta["content"]
|
||||
# Handle object format
|
||||
elif hasattr(delta, "content"):
|
||||
chunk_content = getattr(delta, "content")
|
||||
|
||||
if delta is not None:
|
||||
if (
|
||||
hasattr(delta, "content")
|
||||
and getattr(delta, "content", None) is not None
|
||||
):
|
||||
chunk_content = getattr(delta, "content")
|
||||
elif isinstance(delta, str):
|
||||
chunk_content = delta
|
||||
# Handle case where content might be None or empty
|
||||
if chunk_content is None and isinstance(delta, dict):
|
||||
# Some models might send empty content chunks
|
||||
chunk_content = ""
|
||||
except Exception as e:
|
||||
logging.debug(f"Error extracting content from chunk: {e}")
|
||||
logging.debug(f"Chunk format: {type(chunk)}, content: {chunk}")
|
||||
|
||||
if chunk_content:
|
||||
# Only add non-None content to the response
|
||||
if chunk_content is not None:
|
||||
# Add the chunk content to the full response
|
||||
full_response += chunk_content
|
||||
|
||||
@@ -368,47 +388,110 @@ class LLM:
|
||||
|
||||
# --- 5) Handle empty response with chunks
|
||||
if not full_response.strip() and chunk_count > 0:
|
||||
if last_chunk is not None and isinstance(last_chunk, ModelResponse):
|
||||
usage_info = getattr(last_chunk, "usage", None)
|
||||
logging.warning(
|
||||
f"Received {chunk_count} chunks but no content was extracted"
|
||||
)
|
||||
if last_chunk is not None:
|
||||
try:
|
||||
# Try to extract content from the last chunk's message
|
||||
choices = None
|
||||
if isinstance(last_chunk, dict) and "choices" in last_chunk:
|
||||
choices = last_chunk["choices"]
|
||||
elif hasattr(last_chunk, "choices"):
|
||||
if not isinstance(getattr(last_chunk, "choices"), type):
|
||||
choices = getattr(last_chunk, "choices")
|
||||
|
||||
if choices and len(choices) > 0:
|
||||
choice = choices[0]
|
||||
|
||||
# Try to get content from message
|
||||
message = None
|
||||
if isinstance(choice, dict) and "message" in choice:
|
||||
message = choice["message"]
|
||||
elif hasattr(choice, "message"):
|
||||
message = getattr(choice, "message")
|
||||
|
||||
if message:
|
||||
content = None
|
||||
if isinstance(message, dict) and "content" in message:
|
||||
content = message["content"]
|
||||
elif hasattr(message, "content"):
|
||||
content = getattr(message, "content")
|
||||
|
||||
if content:
|
||||
full_response = content
|
||||
logging.info(
|
||||
f"Extracted content from last chunk message: {full_response}"
|
||||
)
|
||||
except Exception as e:
|
||||
logging.debug(f"Error extracting content from last chunk: {e}")
|
||||
logging.debug(
|
||||
f"Last chunk format: {type(last_chunk)}, content: {last_chunk}"
|
||||
)
|
||||
|
||||
# --- 6) If still empty, use a default response
|
||||
if not full_response.strip():
|
||||
logging.warning("Using default response as fallback")
|
||||
full_response = "I apologize, but I couldn't generate a proper response. Please try again or rephrase your request."
|
||||
|
||||
# --- 7) Check for tool calls in the final response
|
||||
try:
|
||||
if last_chunk:
|
||||
choices = None
|
||||
if isinstance(last_chunk, dict) and "choices" in last_chunk:
|
||||
choices = last_chunk["choices"]
|
||||
elif hasattr(last_chunk, "choices"):
|
||||
if not isinstance(getattr(last_chunk, "choices"), type):
|
||||
choices = getattr(last_chunk, "choices")
|
||||
|
||||
choices = getattr(last_chunk, "choices", [])
|
||||
if choices and len(choices) > 0:
|
||||
choice = choices[0]
|
||||
message = getattr(choice, "message", None)
|
||||
if message is not None and getattr(message, "content", None):
|
||||
full_response = getattr(message, "content")
|
||||
logging.info(
|
||||
f"Extracted content from last chunk message: {full_response}"
|
||||
)
|
||||
elif getattr(choice, "text", None):
|
||||
full_response = getattr(choice, "text")
|
||||
logging.info(
|
||||
f"Extracted text from last chunk: {full_response}"
|
||||
)
|
||||
|
||||
# --- 6) Check for tool calls in the final response
|
||||
if isinstance(last_chunk, ModelResponse):
|
||||
usage_info = getattr(last_chunk, "usage", None)
|
||||
choices = getattr(last_chunk, "choices", [])
|
||||
if choices and len(choices) > 0:
|
||||
choice = choices[0]
|
||||
message = getattr(choice, "message", None)
|
||||
if message is not None:
|
||||
tool_calls = getattr(message, "tool_calls", [])
|
||||
tool_result = self._handle_tool_call(
|
||||
tool_calls, available_functions
|
||||
)
|
||||
if tool_result is not None:
|
||||
return tool_result
|
||||
message = None
|
||||
if isinstance(choice, dict) and "message" in choice:
|
||||
message = choice["message"]
|
||||
elif hasattr(choice, "message"):
|
||||
message = getattr(choice, "message")
|
||||
|
||||
# --- 7) Log token usage if available in streaming mode
|
||||
if message:
|
||||
tool_calls = None
|
||||
if isinstance(message, dict) and "tool_calls" in message:
|
||||
tool_calls = message["tool_calls"]
|
||||
elif hasattr(message, "tool_calls"):
|
||||
tool_calls = getattr(message, "tool_calls")
|
||||
|
||||
if tool_calls:
|
||||
tool_result = self._handle_tool_call(
|
||||
tool_calls, available_functions
|
||||
)
|
||||
if tool_result is not None:
|
||||
return tool_result
|
||||
except Exception as e:
|
||||
logging.debug(f"Error checking for tool calls: {e}")
|
||||
|
||||
# --- 8) Log token usage if available in streaming mode
|
||||
# Safely handle callbacks with usage info
|
||||
if callbacks and len(callbacks) > 0:
|
||||
for callback in callbacks:
|
||||
if hasattr(callback, "log_success_event"):
|
||||
usage_info = (
|
||||
getattr(last_chunk, "usage", None) if last_chunk else None
|
||||
)
|
||||
# Use the usage_info we've been tracking
|
||||
if not usage_info:
|
||||
# Try to get usage from the last chunk if we haven't already
|
||||
try:
|
||||
if last_chunk:
|
||||
if (
|
||||
isinstance(last_chunk, dict)
|
||||
and "usage" in last_chunk
|
||||
):
|
||||
usage_info = last_chunk["usage"]
|
||||
elif hasattr(last_chunk, "usage"):
|
||||
if not isinstance(
|
||||
getattr(last_chunk, "usage"), type
|
||||
):
|
||||
usage_info = getattr(last_chunk, "usage")
|
||||
except Exception as e:
|
||||
logging.debug(f"Error extracting usage info: {e}")
|
||||
|
||||
if usage_info:
|
||||
callback.log_success_event(
|
||||
kwargs=params,
|
||||
@@ -417,7 +500,7 @@ class LLM:
|
||||
end_time=0,
|
||||
)
|
||||
|
||||
# --- 8) Emit completion event and return response
|
||||
# --- 9) Emit completion event and return response
|
||||
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
|
||||
return full_response
|
||||
|
||||
@@ -614,6 +697,8 @@ class LLM:
|
||||
# --- 6) Prepare parameters for the completion call
|
||||
params = self._prepare_completion_params(messages, tools)
|
||||
|
||||
print("IS STREAMING", self.stream)
|
||||
|
||||
# --- 7) Make the completion call and handle response
|
||||
if self.stream:
|
||||
return self._handle_streaming_response(
|
||||
@@ -697,7 +782,7 @@ class LLM:
|
||||
|
||||
return messages
|
||||
|
||||
def _get_custom_llm_provider(self) -> str:
|
||||
def _get_custom_llm_provider(self) -> Optional[str]:
|
||||
"""
|
||||
Derives the custom_llm_provider from the model string.
|
||||
- For example, if the model is "openrouter/deepseek/deepseek-chat", returns "openrouter".
|
||||
@@ -706,7 +791,7 @@ class LLM:
|
||||
"""
|
||||
if "/" in self.model:
|
||||
return self.model.split("/")[0]
|
||||
return "openai"
|
||||
return None
|
||||
|
||||
def _validate_call_params(self) -> None:
|
||||
"""
|
||||
@@ -729,10 +814,12 @@ class LLM:
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
try:
|
||||
params = get_supported_openai_params(model=self.model)
|
||||
return params is not None and "tools" in params
|
||||
provider = self._get_custom_llm_provider()
|
||||
return litellm.utils.supports_function_calling(
|
||||
self.model, custom_llm_provider=provider
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to get supported params: {str(e)}")
|
||||
logging.error(f"Failed to check function calling support: {str(e)}")
|
||||
return False
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
|
||||
Reference in New Issue
Block a user