mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 08:08:32 +00:00
feat: add GoalAlignment metric for Agent evaluation
This commit is contained in:
0
src/crewai/evaluation/metrics/__init__.py
Normal file
0
src/crewai/evaluation/metrics/__init__.py
Normal file
64
src/crewai/evaluation/metrics/goal_metrics.py
Normal file
64
src/crewai/evaluation/metrics/goal_metrics.py
Normal file
@@ -0,0 +1,64 @@
|
||||
from typing import Any, Dict
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
|
||||
from crewai.evaluation.base_evaluator import BaseEvaluator, EvaluationScore, MetricCategory
|
||||
from crewai.evaluation.json_parser import extract_json_from_llm_response
|
||||
|
||||
class GoalAlignmentEvaluator(BaseEvaluator):
|
||||
@property
|
||||
def metric_category(self) -> MetricCategory:
|
||||
return MetricCategory.GOAL_ALIGNMENT
|
||||
|
||||
def evaluate(
|
||||
self,
|
||||
agent: Agent,
|
||||
task: Task,
|
||||
execution_trace: Dict[str, Any],
|
||||
final_output: Any,
|
||||
) -> EvaluationScore:
|
||||
prompt = [
|
||||
{"role": "system", "content": """You are an expert evaluator assessing how well an AI agent's output aligns with its assigned task goal.
|
||||
|
||||
Score the agent's goal alignment on a scale from 0-10 where:
|
||||
- 0: Complete misalignment, agent did not understand or attempt the task goal
|
||||
- 5: Partial alignment, agent attempted the task but missed key requirements
|
||||
- 10: Perfect alignment, agent fully satisfied all task requirements
|
||||
|
||||
Consider:
|
||||
1. Did the agent correctly interpret the task goal?
|
||||
2. Did the final output directly address the requirements?
|
||||
3. Did the agent focus on relevant aspects of the task?
|
||||
4. Did the agent provide all requested information or deliverables?
|
||||
|
||||
Return your evaluation as JSON with fields 'score' (number) and 'feedback' (string).
|
||||
"""},
|
||||
{"role": "user", "content": f"""
|
||||
Agent role: {agent.role}
|
||||
Agent goal: {agent.goal}
|
||||
Task description: {task.description}
|
||||
Expected output: {task.expected_output}
|
||||
|
||||
Agent's final output:
|
||||
{final_output}
|
||||
|
||||
Evaluate how well the agent's output aligns with the assigned task goal.
|
||||
"""}
|
||||
]
|
||||
|
||||
response = self.llm.call(prompt)
|
||||
|
||||
try:
|
||||
evaluation_data = extract_json_from_llm_response(response)
|
||||
return EvaluationScore(
|
||||
score=float(evaluation_data.get("score", None)),
|
||||
feedback=evaluation_data.get("feedback", response),
|
||||
raw_response=response
|
||||
)
|
||||
except Exception as e:
|
||||
return EvaluationScore(
|
||||
score=None,
|
||||
feedback=f"Failed to parse evaluation. Raw response: {response}",
|
||||
raw_response=response
|
||||
)
|
||||
Reference in New Issue
Block a user