Merge branch 'main' of github.com:crewAIInc/crewAI into lorenze/experimental-environment-tools

This commit is contained in:
lorenzejay
2026-01-12 09:49:53 -08:00
29 changed files with 2825 additions and 49 deletions

View File

@@ -61,7 +61,9 @@
"groups": [
{
"group": "Welcome",
"pages": ["index"]
"pages": [
"index"
]
}
]
},
@@ -71,7 +73,11 @@
"groups": [
{
"group": "Get Started",
"pages": ["en/introduction", "en/installation", "en/quickstart"]
"pages": [
"en/introduction",
"en/installation",
"en/quickstart"
]
},
{
"group": "Guides",
@@ -79,17 +85,23 @@
{
"group": "Strategy",
"icon": "compass",
"pages": ["en/guides/concepts/evaluating-use-cases"]
"pages": [
"en/guides/concepts/evaluating-use-cases"
]
},
{
"group": "Agents",
"icon": "user",
"pages": ["en/guides/agents/crafting-effective-agents"]
"pages": [
"en/guides/agents/crafting-effective-agents"
]
},
{
"group": "Crews",
"icon": "users",
"pages": ["en/guides/crews/first-crew"]
"pages": [
"en/guides/crews/first-crew"
]
},
{
"group": "Flows",
@@ -324,7 +336,9 @@
},
{
"group": "Telemetry",
"pages": ["en/telemetry"]
"pages": [
"en/telemetry"
]
}
]
},
@@ -334,7 +348,9 @@
"groups": [
{
"group": "Getting Started",
"pages": ["en/enterprise/introduction"]
"pages": [
"en/enterprise/introduction"
]
},
{
"group": "Build",
@@ -343,7 +359,8 @@
"en/enterprise/features/crew-studio",
"en/enterprise/features/marketplace",
"en/enterprise/features/agent-repositories",
"en/enterprise/features/tools-and-integrations"
"en/enterprise/features/tools-and-integrations",
"en/enterprise/features/pii-trace-redactions"
]
},
{
@@ -426,7 +443,9 @@
},
{
"group": "Resources",
"pages": ["en/enterprise/resources/frequently-asked-questions"]
"pages": [
"en/enterprise/resources/frequently-asked-questions"
]
}
]
},
@@ -452,7 +471,10 @@
"groups": [
{
"group": "Examples",
"pages": ["en/examples/example", "en/examples/cookbooks"]
"pages": [
"en/examples/example",
"en/examples/cookbooks"
]
}
]
},
@@ -462,7 +484,9 @@
"groups": [
{
"group": "Release Notes",
"pages": ["en/changelog"]
"pages": [
"en/changelog"
]
}
]
}
@@ -501,7 +525,9 @@
"groups": [
{
"group": "Bem-vindo",
"pages": ["pt-BR/index"]
"pages": [
"pt-BR/index"
]
}
]
},
@@ -523,17 +549,23 @@
{
"group": "Estratégia",
"icon": "compass",
"pages": ["pt-BR/guides/concepts/evaluating-use-cases"]
"pages": [
"pt-BR/guides/concepts/evaluating-use-cases"
]
},
{
"group": "Agentes",
"icon": "user",
"pages": ["pt-BR/guides/agents/crafting-effective-agents"]
"pages": [
"pt-BR/guides/agents/crafting-effective-agents"
]
},
{
"group": "Crews",
"icon": "users",
"pages": ["pt-BR/guides/crews/first-crew"]
"pages": [
"pt-BR/guides/crews/first-crew"
]
},
{
"group": "Flows",
@@ -754,7 +786,9 @@
},
{
"group": "Telemetria",
"pages": ["pt-BR/telemetry"]
"pages": [
"pt-BR/telemetry"
]
}
]
},
@@ -764,7 +798,9 @@
"groups": [
{
"group": "Começando",
"pages": ["pt-BR/enterprise/introduction"]
"pages": [
"pt-BR/enterprise/introduction"
]
},
{
"group": "Construir",
@@ -773,7 +809,8 @@
"pt-BR/enterprise/features/crew-studio",
"pt-BR/enterprise/features/marketplace",
"pt-BR/enterprise/features/agent-repositories",
"pt-BR/enterprise/features/tools-and-integrations"
"pt-BR/enterprise/features/tools-and-integrations",
"pt-BR/enterprise/features/pii-trace-redactions"
]
},
{
@@ -883,7 +920,10 @@
"groups": [
{
"group": "Exemplos",
"pages": ["pt-BR/examples/example", "pt-BR/examples/cookbooks"]
"pages": [
"pt-BR/examples/example",
"pt-BR/examples/cookbooks"
]
}
]
},
@@ -893,7 +933,9 @@
"groups": [
{
"group": "Notas de Versão",
"pages": ["pt-BR/changelog"]
"pages": [
"pt-BR/changelog"
]
}
]
}
@@ -932,7 +974,9 @@
"groups": [
{
"group": "환영합니다",
"pages": ["ko/index"]
"pages": [
"ko/index"
]
}
]
},
@@ -942,7 +986,11 @@
"groups": [
{
"group": "시작 안내",
"pages": ["ko/introduction", "ko/installation", "ko/quickstart"]
"pages": [
"ko/introduction",
"ko/installation",
"ko/quickstart"
]
},
{
"group": "가이드",
@@ -950,17 +998,23 @@
{
"group": "전략",
"icon": "compass",
"pages": ["ko/guides/concepts/evaluating-use-cases"]
"pages": [
"ko/guides/concepts/evaluating-use-cases"
]
},
{
"group": "에이전트 (Agents)",
"icon": "user",
"pages": ["ko/guides/agents/crafting-effective-agents"]
"pages": [
"ko/guides/agents/crafting-effective-agents"
]
},
{
"group": "크루 (Crews)",
"icon": "users",
"pages": ["ko/guides/crews/first-crew"]
"pages": [
"ko/guides/crews/first-crew"
]
},
{
"group": "플로우 (Flows)",
@@ -1193,7 +1247,9 @@
},
{
"group": "Telemetry",
"pages": ["ko/telemetry"]
"pages": [
"ko/telemetry"
]
}
]
},
@@ -1203,7 +1259,9 @@
"groups": [
{
"group": "시작 안내",
"pages": ["ko/enterprise/introduction"]
"pages": [
"ko/enterprise/introduction"
]
},
{
"group": "빌드",
@@ -1212,7 +1270,8 @@
"ko/enterprise/features/crew-studio",
"ko/enterprise/features/marketplace",
"ko/enterprise/features/agent-repositories",
"ko/enterprise/features/tools-and-integrations"
"ko/enterprise/features/tools-and-integrations",
"ko/enterprise/features/pii-trace-redactions"
]
},
{
@@ -1294,7 +1353,9 @@
},
{
"group": "학습 자원",
"pages": ["ko/enterprise/resources/frequently-asked-questions"]
"pages": [
"ko/enterprise/resources/frequently-asked-questions"
]
}
]
},
@@ -1320,7 +1381,10 @@
"groups": [
{
"group": "예시",
"pages": ["ko/examples/example", "ko/examples/cookbooks"]
"pages": [
"ko/examples/example",
"ko/examples/cookbooks"
]
}
]
},
@@ -1330,7 +1394,9 @@
"groups": [
{
"group": "릴리스 노트",
"pages": ["ko/changelog"]
"pages": [
"ko/changelog"
]
}
]
}

View File

@@ -4,6 +4,516 @@ description: "Product updates, improvements, and bug fixes for CrewAI"
icon: "clock"
mode: "wide"
---
<Update label="Jan 08, 2026">
## v1.8.0
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.8.0)
## What's Changed
### Features
- Add native async chain for a2a
- Add a2a update mechanisms (poll/stream/push) with handlers and config
- Introduce global flow configuration for human-in-the-loop feedback
- Add streaming tool call events and fix provider ID tracking
- Introduce production-ready Flows and Crews architecture
- Add HITL for Flows
- Improve EventListener and TraceCollectionListener for enhanced event handling
### Bug Fixes
- Handle missing a2a dependency as optional
- Correct error fetching for WorkOS login polling
- Fix wrong trigger name in sample documentation
### Documentation
- Update webhook-streaming documentation
- Adjust AOP to AMP documentation language
### Contributors
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide, @mplachta
</Update>
<Update label="Dec 19, 2025">
## v1.7.2
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.7.2)
## What's Changed
### Bug Fixes
- Resolve connection issues
### Documentation
- Update api-reference/status docs page
### Contributors
@greysonlalonde, @heitorado, @lorenzejay, @lucasgomide
</Update>
<Update label="Dec 16, 2025">
## v1.7.1
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.7.1)
## What's Changed
### Improvements
- Add `--no-commit` flag to bump command
- Use JSON schema for tool argument serialization
### Bug Fixes
- Fix error message display from response when tool repository login fails
- Fix graceful termination of future when executing a task asynchronously
- Fix task ordering by adding index
- Fix platform compatibility checks for Windows signals
- Fix RPM controller timer to prevent process hang
- Fix token usage recording and validate response model on stream
### Documentation
- Add translated documentation for async
- Add documentation for AOP Deploy API
- Add documentation for the agent handler connector
- Add documentation on native async
### Contributors
@Llamrei, @dragosmc, @gilfeig, @greysonlalonde, @heitorado, @lorenzejay, @mattatcha, @vinibrsl
</Update>
<Update label="Dec 09, 2025">
## v1.7.0
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.7.0)
## What's Changed
### Features
- Add async flow kickoff
- Add async crew support
- Add async task support
- Add async knowledge support
- Add async memory support
- Add async support for tools and agent executor; improve typing and docs
- Implement a2a extensions API and async agent card caching; fix task propagation & streaming
- Add native async tool support
- Add async llm support
- Create sys event types and handler
### Bug Fixes
- Fix issue to ensure nonetypes are not passed to otel
- Fix deadlock in token store file operations
- Fix to ensure otel span is closed
- Use HuggingFaceEmbeddingFunction for embeddings, update keys and add tests
- Fix to ensure supports_tools is true for all supported anthropic models
- Ensure hooks work with lite agents flows
### Contributors
@greysonlalonde, @lorenzejay
</Update>
<Update label="Nov 29, 2025">
## v1.6.1
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.6.1)
## What's Changed
### Bug Fixes
- Fix ChatCompletionsClient call to ensure proper functionality
- Ensure async methods are executable for annotations
- Fix parameters in RagTool.add, add typing, and tests
- Remove invalid parameter from SSE client
- Erase 'oauth2_extra' setting on 'crewai config reset' command
### Refactoring
- Enhance model validation and provider inference in LLM class
### Contributors
@Vidit-Ostwal, @greysonlalonde, @heitorado, @lorenzejay
</Update>
<Update label="Nov 25, 2025">
## v1.6.0
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.6.0)
## What's Changed
### Features
- Add streaming result support to flows and crews
- Add gemini-3-pro-preview
- Support CLI login with Entra ID
- Add Merge Agent Handler tool
- Enhance flow event state management
### Bug Fixes
- Ensure custom rag store persist path is set if passed
- Ensure fuzzy returns are more strict and show type warning
- Re-add openai response_format parameter and add test
- Fix rag tool embeddings configuration
- Ensure flow execution start panel is not shown on plot
### Documentation
- Update references from AMP to AOP in documentation
- Update AMP to AOP
### Contributors
@Vidit-Ostwal, @gilfeig, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @markmcd
</Update>
<Update label="Nov 22, 2025">
## v0.203.2
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/0.203.2)
## What's Changed
- Hotfix version bump from 0.203.1 to 0.203.2
</Update>
<Update label="Nov 16, 2025">
## v1.5.0
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.5.0)
## What's Changed
### Features
- Add a2a trust remote completion status flag
- Fetch and store more data about Okta authorization server
- Implement before and after LLM call hooks in CrewAgentExecutor
- Expose messages to TaskOutput and LiteAgentOutputs
- Enhance schema description of QdrantVectorSearchTool
### Bug Fixes
- Ensure tracing instrumentation flags are correctly applied
- Fix custom tool documentation links and add Mintlify broken links action
### Documentation
- Enhance task guardrail documentation with LLM-based validation support
### Contributors
@danielfsbarreto, @greysonlalonde, @heitorado, @lorenzejay, @theCyberTech
</Update>
<Update label="Nov 07, 2025">
## v1.4.1
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.4.1)
## What's Changed
### Bug Fixes
- Fix handling of agent max iterations
- Resolve routing issues for LLM model syntax to respected providers
### Contributors
@greysonlalonde
</Update>
<Update label="Nov 07, 2025">
## v1.4.0
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.4.0)
## What's Changed
### Features
- Add support for non-AST plot routes
- Implement first-class support for MCP
- Add Pydantic validation dunder to BaseInterceptor
- Add support for LLM message interceptor hooks
- Cache i18n prompts for efficient use
- Enhance QdrantVectorSearchTool
### Bug Fixes
- Fix issues with keeping stopwords updated
- Resolve unpickleable values in flow state
- Ensure lite agents course-correct on validation errors
- Fix callback argument hashing to ensure caching works
- Allow adding RAG source content from valid URLs
- Make plot node selection smoother
- Fix duplicating document IDs for knowledge
### Refactoring
- Improve MCP tool execution handling with concurrent futures
- Simplify flow handling, typing, and logging; update UI and tests
- Refactor stop word management to a property
### Documentation
- Migrate embedder to embedding_model and require vectordb across tool docs; add provider examples (en/ko/pt-BR)
### Contributors
@danielfsbarreto, @greysonlalonde, @lorenzejay, @lucasgomide, @tonykipkemboi
</Update>
<Update label="Nov 01, 2025">
## v1.3.0
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.3.0)
## What's Changed
### Features
- Refactor flow handling, typing, and logging
- Enhance QdrantVectorSearchTool
### Bug Fixes
- Fix Firecrawl tools and add tests
- Refactor use_stop_words to property and add check for stop words
### Documentation
- Migrate embedder to embedding_model and require vectordb across tool docs
- Add provider examples in English, Korean, and Portuguese
### Refactoring
- Improve flow handling and UI updates
### Contributors
@danielfsbarreto, @greysonlalonde, @lorenzejay, @lucasgomide, @tonykipkemboi
</Update>
<Update label="Oct 27, 2025">
## v1.2.1
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.2.1)
## What's Changed
### Features
- Add support for Datadog integration
- Support apps and mcps in liteagent
### Documentation
- Describe mandatory environment variable for calling Platform tools for each integration
- Add Datadog integration documentation
### Contributors
@barieom, @lorenzejay, @lucasgomide, @sabrenner
</Update>
<Update label="Oct 24, 2025">
## v1.2.0
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.2.0)
## What's Changed
### Bug Fixes
- Update default LLM model and improve error logging in LLM utilities
- Change flow visualization directory and method inspection
### Dropping Unused
- Remove aisuite
### Contributors
@greysonlalonde, @lorenzejay
</Update>
<Update label="Oct 21, 2025">
## v1.1.0
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.1.0)
## What's Changed
### Features
- Enhance InternalInstructor to support multiple LLM providers
- Implement mypy plugin base
- Improve QdrantVectorSearchTool
### Bug Fixes
- Correct broken integration documentation links
- Fix double trace call and add types
- Pin template versions to latest
### Documentation
- Update LLM integration details and examples
### Refactoring
- Improve CrewBase typing
### Contributors
@cwarre33, @danielfsbarreto, @greysonlalonde, @lorenzejay
</Update>
<Update label="Oct 20, 2025">
## v1.0.0
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0)
## What's Changed
### Features
- Bump versions to 1.0.0
- Enhance knowledge and guardrail event handling in Agent class
- Inject tool repository credentials in crewai run command
### Bug Fixes
- Preserve nested condition structure in Flow decorators
- Add standard print parameters to Printer.print method
- Fix errors when there is no input() available
- Add a leeway of 10s when decoding JWT
- Revert bad cron schedule
- Correct cron schedule to run every 5 days at specific dates
- Use system PATH for Docker binary instead of hardcoded path
- Add CodeQL configuration to properly exclude template directories
### Documentation
- Update security policy for vulnerability reporting
- Add guide for capturing telemetry logs in CrewAI AMP
- Add missing /resume files
- Clarify webhook URL parameter in HITL workflows
### Contributors
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide, @mplachta, @theCyberTech
</Update>
<Update label="Oct 18, 2025">
## v1.0.0b3 (Pre-release)
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0b3)
## What's Changed
### Features
- Enhance task guardrail functionality and validation
- Improve support for importing native SDK
- Add Azure native tests
- Enhance BedrockCompletion class with advanced features
- Enhance GeminiCompletion class with client parameter support
- Enhance AnthropicCompletion class with additional client parameters
### Bug Fixes
- Preserve nested condition structure in Flow decorators
- Add standard print parameters to Printer.print method
- Remove stdout prints and improve test determinism
### Refactoring
- Convert project module to metaclass with full typing
### Contributors
@greysonlalonde, @lorenzejay
</Update>
<Update label="Oct 16, 2025">
## v1.0.0b2 (Pre-release)
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0b2)
## What's Changed
### Features
- Enhance OpenAICompletion class with additional client parameters
- Improve event bus thread safety and async support
- Inject tool repository credentials in crewai run command
### Bug Fixes
- Fix issue where it errors out if there is no input() available
- Add a leeway of 10s when decoding JWT
- Fix copying and adding NOT_SPECIFIED check in task.py
### Documentation
- Ensure CREWAI_PLATFORM_INTEGRATION_TOKEN is mentioned in documentation
- Update triggers documentation
### Contributors
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide
</Update>
<Update label="Oct 14, 2025">
## v1.0.0b1 (Pre-release)
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0b1)
## What's Changed
### Features
- Enhance OpenAICompletion class with additional client parameters
- Improve event bus thread safety and async support
- Implement Bedrock LLM integration
### Bug Fixes
- Fix issue with missing input() availability
- Resolve JWT decoding error by adding a leeway of 10 seconds
- Inject tool repository credentials in crewai run command
- Fix copy and add NOT_SPECIFIED check in task.py
### Documentation
- Ensure CREWAI_PLATFORM_INTEGRATION_TOKEN is mentioned in documentation
- Update triggers documentation
### Contributors
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide
</Update>
<Update label="Oct 13, 2025">
## v0.203.1
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/0.203.1)
## What's Changed
### Core Improvements & Fixes
- Fixed injection of tool repository credentials into the `crewai run` command
- Added a 10-second leeway when decoding JWTs to reduce token validation errors
- Corrected (then reverted) cron schedule fix intended to run jobs every 5 days at specific dates
### Documentation & Guides
- Updated security policy to clarify the process for vulnerability reporting
</Update>
<Update label="Oct 09, 2025">
## v1.0.0a4 (Pre-release)
[View release on GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0a4)
## What's Changed
### Features
- Enhance knowledge and guardrail event handling in Agent class
- Introduce trigger listing and execution commands for local development
- Update documentation with new approach to consume Platform Actions
- Add guide for capturing telemetry logs in CrewAI AMP
### Bug Fixes
- Revert bad cron schedule
- Correct cron schedule to run every 5 days at specific dates
- Remove duplicate line and add explicit environment variable
- Resolve linting errors across the codebase
- Replace print statements with logger in agent and memory handling
- Use system PATH for Docker binary instead of hardcoded path
- Allow failed PyPI publish
- Match tag and release title, ignore devtools build for PyPI
### Documentation
- Update security policy for vulnerability reporting
- Add missing /resume files
- Clarify webhook URL parameter in HITL workflows
### Contributors
@Vidit-Ostwal, @greysonlalonde, @lorenzejay, @lucasgomide, @theCyberTech
</Update>
<Update label="Sep 30, 2025">
## v1.0.0a1

View File

@@ -574,6 +574,10 @@ When you run this Flow, the output will change based on the random boolean value
### Human in the Loop (human feedback)
<Note>
The `@human_feedback` decorator requires **CrewAI version 1.8.0 or higher**.
</Note>
The `@human_feedback` decorator enables human-in-the-loop workflows by pausing flow execution to collect feedback from a human. This is useful for approval gates, quality review, and decision points that require human judgment.
```python Code

View File

@@ -0,0 +1,342 @@
---
title: PII Redaction for Traces
description: "Automatically redact sensitive data from crew and flow execution traces"
icon: "lock"
mode: "wide"
---
## Overview
PII Redaction is a CrewAI AMP feature that automatically detects and masks Personally Identifiable Information (PII) in your crew and flow execution traces. This ensures sensitive data like credit card numbers, social security numbers, email addresses, and names are not exposed in your CrewAI AMP traces. You can also create custom recognizers to protect organization-specific data.
<Info>
PII Redaction is available on the Enterprise plan.
Deployment must be version 1.8.0 or higher.
</Info>
<Frame>
![PII Redaction Overview](/images/enterprise/pii_mask_recognizer_trace_example.png)
</Frame>
## Why PII Redaction Matters
When running AI agents in production, sensitive information often flows through your crews:
- Customer data from CRM integrations
- Financial information from payment processors
- Personal details from form submissions
- Internal employee data
Without proper redaction, this data appears in traces, making compliance with regulations like GDPR, HIPAA, and PCI-DSS challenging. PII Redaction solves this by automatically masking sensitive data before it's stored in traces.
## How It Works
1. **Detect** - Scan trace event data for known PII patterns
2. **Classify** - Identify the type of sensitive data (credit card, SSN, email, etc.)
3. **Mask/Redact** - Replace the sensitive data with masked values based on your configuration
```
Original: "Contact john.doe@company.com or call 555-123-4567"
Redacted: "Contact <EMAIL_ADDRESS> or call <PHONE_NUMBER>"
```
## Enabling PII Redaction
<Info>
You must be on the Enterprise plan and your deployment must be version 1.8.0 or higher to use this feature.
</Info>
<Steps>
<Step title="Navigate to Crew Settings">
In the CrewAI AMP dashboard, select your deployed crew and go to one of your deployments/automations, then navigate to **Settings** → **PII Protection**.
</Step>
<Step title="Enable PII Protection">
Toggle on **PII Redaction for Traces**. This will enable automatic scanning and redaction of trace data.
<Info>
You need to manually enable PII Redaction for each deployment.
</Info>
<Frame>
![Enable PII Redaction](/images/enterprise/pii_mask_recognizer_enable.png)
</Frame>
</Step>
<Step title="Configure Entity Types">
Select which types of PII to detect and redact. Each entity can be individually enabled or disabled.
<Frame>
![Configure Entities](/images/enterprise/pii_mask_recognizer_supported_entities.png)
</Frame>
</Step>
<Step title="Save">
Save your configuration. PII redaction will be active on all subsequent crew executions, no redeployment is needed.
</Step>
</Steps>
## Supported Entity Types
CrewAI supports the following PII entity types, organized by category.
### Global Entities
| Entity | Description | Example |
|--------|-------------|---------|
| `CREDIT_CARD` | Credit/debit card numbers | "4111-1111-1111-1111" |
| `CRYPTO` | Cryptocurrency wallet addresses | "bc1qxy2kgd..." |
| `DATE_TIME` | Dates and times | "January 15, 2024" |
| `EMAIL_ADDRESS` | Email addresses | "john@example.com" |
| `IBAN_CODE` | International bank account numbers | "DE89 3704 0044 0532 0130 00" |
| `IP_ADDRESS` | IPv4 and IPv6 addresses | "192.168.1.1" |
| `LOCATION` | Geographic locations | "New York City" |
| `MEDICAL_LICENSE` | Medical license numbers | "MD12345" |
| `NRP` | Nationalities, religious, or political groups | - |
| `PERSON` | Personal names | "John Doe" |
| `PHONE_NUMBER` | Phone numbers in various formats | "+1 (555) 123-4567" |
| `URL` | Web URLs | "https://example.com" |
### US-Specific Entities
| Entity | Description | Example |
|--------|-------------|---------|
| `US_BANK_NUMBER` | US Bank account numbers | "1234567890" |
| `US_DRIVER_LICENSE` | US Driver's license numbers | "D1234567" |
| `US_ITIN` | Individual Taxpayer ID | "900-70-0000" |
| `US_PASSPORT` | US Passport numbers | "123456789" |
| `US_SSN` | Social Security Numbers | "123-45-6789" |
## Redaction Actions
For each enabled entity, you can configure how the data is redacted:
| Action | Description | Example Output |
|--------|-------------|----------------|
| `mask` | Replace with the entity type label | `<CREDIT_CARD>` |
| `redact` | Completely remove the text | *(empty)* |
## Custom Recognizers
In addition to built-in entities, you can create **custom recognizers** to detect organization-specific PII patterns.
<Frame>
![Custom Recognizers](/images/enterprise/pii_mask_recognizer.png)
</Frame>
### Recognizer Types
You have two options for custom recognizers:
| Type | Best For | Example Use Case |
|------|----------|------------------|
| **Pattern-based (Regex)** | Structured data with predictable formats | Salary amounts, employee IDs, project codes |
| **Deny-list** | Exact string matches | Company names, internal codenames, specific terms |
### Creating a Custom Recognizer
<Steps>
<Step title="Navigate to Custom Recognizers">
Go to your Organization **Settings** → **Organization** → **Add Recognizer**.
</Step>
<Step title="Configure the Recognizer">
<Frame>
![Configure Recognizer](/images/enterprise/pii_mask_recognizer_create.png)
</Frame>
Configure the following fields:
- **Name**: A descriptive name for the recognizer
- **Entity Type**: The entity label that will appear in redacted output (e.g., `EMPLOYEE_ID`, `SALARY`)
- **Type**: Choose between Regex Pattern or Deny List
- **Pattern/Values**: Regex pattern or list of strings to match
- **Confidence Threshold**: Minimum score (0.0-1.0) required for a match to trigger redaction. Higher values (e.g., 0.8) reduce false positives but may miss some matches. Lower values (e.g., 0.5) catch more matches but may over-redact. Default is 0.8.
- **Context Words** (optional): Words that increase detection confidence when found nearby
</Step>
<Step title="Save">
Save the recognizer. It will be available to enable on your deployments.
</Step>
</Steps>
### Understanding Entity Types
The **Entity Type** determines how matched content appears in redacted traces:
```
Entity Type: SALARY
Pattern: salary:\s*\$\s*\d+
Input: "Employee salary: $50,000"
Output: "Employee <SALARY>"
```
### Using Context Words
Context words improve accuracy by increasing confidence when specific terms appear near the matched pattern:
```
Context Words: "project", "code", "internal"
Entity Type: PROJECT_CODE
Pattern: PRJ-\d{4}
```
When "project" or "code" appears near "PRJ-1234", the recognizer has higher confidence it's a true match, reducing false positives.
## Viewing Redacted Traces
Once PII redaction is enabled, your traces will show redacted values in place of sensitive data:
```
Task Output: "Customer <PERSON> placed order #12345.
Contact email: <EMAIL_ADDRESS>, phone: <PHONE_NUMBER>.
Payment processed for card ending in <CREDIT_CARD>."
```
Redacted values are clearly marked with angle brackets and the entity type label (e.g., `<EMAIL_ADDRESS>`), making it easy to understand what data was protected while still allowing you to debug and monitor crew behavior.
## Best Practices
### Performance Considerations
<Steps>
<Step title="Enable Only Needed Entities">
Each enabled entity adds processing overhead. Only enable entities relevant to your data.
</Step>
<Step title="Use Specific Patterns">
For custom recognizers, use specific patterns to reduce false positives and improve performance. Regex patterns are best when identifying specific patterns in the traces such as salary, employee id, project code, etc. Deny-list recognizers are best when identifying exact strings in the traces such as company names, internal codenames, etc.
</Step>
<Step title="Leverage Context Words">
Context words improve accuracy by only triggering detection when surrounding text matches.
</Step>
</Steps>
## Troubleshooting
<Accordion title="PII Not Being Redacted">
**Possible Causes:**
- Entity type not enabled in configuration
- Pattern doesn't match the data format
- Custom recognizer has syntax errors
**Solutions:**
- Verify entity is enabled in Settings → Security
- Test regex patterns with sample data
- Check logs for configuration errors
</Accordion>
<Accordion title="Too Much Data Being Redacted">
**Possible Causes:**
- Overly broad entity types enabled (e.g., `DATE_TIME` catches dates everywhere)
- Custom recognizer patterns are too general
**Solutions:**
- Disable entities that cause false positives
- Make custom patterns more specific
- Add context words to improve accuracy
</Accordion>
<Accordion title="Performance Issues">
**Possible Causes:**
- Too many entities enabled
- NLP-based entities (`PERSON`, `LOCATION`, `NRP`) are computationally expensive as they use machine learning models
**Solutions:**
- Only enable entities you actually need
- Consider using pattern-based alternatives where possible
- Monitor trace processing times in the dashboard
</Accordion>
---
## Practical Example: Salary Pattern Matching
This example demonstrates how to create a custom recognizer to detect and mask salary information in your traces.
### Use Case
Your crew processes employee or financial data that includes salary information in formats like:
- `salary: $50,000`
- `salary: $125,000.00`
- `salary:$1,500.50`
You want to automatically mask these values to protect sensitive compensation data.
### Configuration
<Frame>
![Salary Recognizer Configuration](/images/enterprise/pii_mask_custom_recognizer_salary.png)
</Frame>
| Field | Value |
|-------|-------|
| **Name** | `SALARY` |
| **Entity Type** | `SALARY` |
| **Type** | Regex Pattern |
| **Regex Pattern** | `salary:\s*\$\s*\d{1,3}(,\d{3})*(\.\d{2})?` |
| **Action** | Mask |
| **Confidence Threshold** | `0.8` |
| **Context Words** | `salary, compensation, pay, wage, income` |
### Regex Pattern Breakdown
| Pattern Component | Meaning |
|-------------------|---------|
| `salary:` | Matches the literal text "salary:" |
| `\s*` | Matches zero or more whitespace characters |
| `\$` | Matches the dollar sign (escaped) |
| `\s*` | Matches zero or more whitespace characters after $ |
| `\d{1,3}` | Matches 1-3 digits (e.g., "1", "50", "125") |
| `(,\d{3})*` | Matches comma-separated thousands (e.g., ",000", ",500,000") |
| `(\.\d{2})?` | Optionally matches cents (e.g., ".00", ".50") |
### Example Results
```
Original: "Employee record shows salary: $125,000.00 annually"
Redacted: "Employee record shows <SALARY> annually"
Original: "Base salary:$50,000 with bonus potential"
Redacted: "Base <SALARY> with bonus potential"
```
<Tip>
Adding context words like "salary", "compensation", "pay", "wage", and "income" helps increase detection confidence when these terms appear near the matched pattern, reducing false positives.
</Tip>
### Enable the Recognizer for Your Deployments
<Warning>
Creating a custom recognizer at the organization level does not automatically enable it for your deployments. You must manually enable each recognizer for every deployment where you want it applied.
</Warning>
After creating your custom recognizer, enable it for each deployment:
<Steps>
<Step title="Navigate to Your Deployment">
Go to your deployment/automation and open **Settings** → **PII Protection**.
</Step>
<Step title="Select Custom Recognizers">
Under **Mask Recognizers**, you'll see your organization-defined recognizers. Check the box next to the recognizers you want to enable.
<Frame>
![Enable Custom Recognizer](/images/enterprise/pii_mask_recognizers_options.png)
</Frame>
</Step>
<Step title="Save Configuration">
Save your changes. The recognizer will be active on all subsequent executions for this deployment.
</Step>
</Steps>
<Info>
Repeat this process for each deployment where you need the custom recognizer. This gives you granular control over which recognizers are active in different environments (e.g., development vs. production).
</Info>

View File

@@ -91,6 +91,10 @@ The `A2AConfig` class accepts the following parameters:
Update mechanism for receiving task status. Options: `StreamingConfig`, `PollingConfig`, or `PushNotificationConfig`.
</ParamField>
<ParamField path="transport_protocol" type="Literal['JSONRPC', 'GRPC', 'HTTP+JSON']" default="JSONRPC">
Transport protocol for A2A communication. Options: `JSONRPC` (default), `GRPC`, or `HTTP+JSON`.
</ParamField>
## Authentication
For A2A agents that require authentication, use one of the provided auth schemes:

View File

@@ -7,6 +7,10 @@ mode: "wide"
## Overview
<Note>
The `@human_feedback` decorator requires **CrewAI version 1.8.0 or higher**. Make sure to update your installation before using this feature.
</Note>
The `@human_feedback` decorator enables human-in-the-loop (HITL) workflows directly within CrewAI Flows. It allows you to pause flow execution, present output to a human for review, collect their feedback, and optionally route to different listeners based on the feedback outcome.
This is particularly valuable for:

View File

@@ -11,10 +11,10 @@ Human-in-the-Loop (HITL) is a powerful approach that combines artificial intelli
CrewAI offers two main approaches for implementing human-in-the-loop workflows:
| Approach | Best For | Integration |
|----------|----------|-------------|
| **Flow-based** (`@human_feedback` decorator) | Local development, console-based review, synchronous workflows | [Human Feedback in Flows](/en/learn/human-feedback-in-flows) |
| **Webhook-based** (Enterprise) | Production deployments, async workflows, external integrations (Slack, Teams, etc.) | This guide |
| Approach | Best For | Integration | Version |
|----------|----------|-------------|---------|
| **Flow-based** (`@human_feedback` decorator) | Local development, console-based review, synchronous workflows | [Human Feedback in Flows](/en/learn/human-feedback-in-flows) | **1.8.0+** |
| **Webhook-based** (Enterprise) | Production deployments, async workflows, external integrations (Slack, Teams, etc.) | This guide | - |
<Tip>
If you're building flows and want to add human review steps with routing based on feedback, check out the [Human Feedback in Flows](/en/learn/human-feedback-in-flows) guide for the `@human_feedback` decorator.

Binary file not shown.

After

Width:  |  Height:  |  Size: 906 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 200 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 865 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1021 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

View File

@@ -4,6 +4,545 @@ description: "CrewAI의 제품 업데이트, 개선 사항 및 버그 수정"
icon: "clock"
mode: "wide"
---
<Update label="2026년 1월 8일">
## v1.8.0
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.8.0)
## 변경 사항
### 기능
- a2a를 위한 네이티브 비동기 체인 추가
- 핸들러 및 설정과 함께 a2a 업데이트 메커니즘(poll/stream/push) 추가
- 휴먼 인 더 루프 피드백을 위한 전역 흐름 설정 도입
- 스트리밍 도구 호출 이벤트 추가 및 프로바이더 ID 추적 수정
- 프로덕션 준비된 Flows 및 Crews 아키텍처 도입
- Flows를 위한 HITL 추가
- 향상된 이벤트 처리를 위한 EventListener 및 TraceCollectionListener 개선
### 버그 수정
- 누락된 a2a 종속성을 선택적으로 처리
- WorkOS 로그인 폴링을 위한 오류 가져오기 수정
- 샘플 문서의 잘못된 트리거 이름 수정
### 문서
- 웹훅 스트리밍 문서 업데이트
- AOP에서 AMP로 문서 언어 조정
### 기여자
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide, @mplachta
</Update>
<Update label="2025년 12월 19일">
## v1.7.2
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.7.2)
## 변경 사항
### 버그 수정
- 연결 문제 해결
### 문서
- api-reference/status 문서 페이지 업데이트
### 기여자
@greysonlalonde, @heitorado, @lorenzejay, @lucasgomide
</Update>
<Update label="2025년 12월 16일">
## v1.7.1
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.7.1)
## 변경 사항
### 개선 사항
- bump 명령에 `--no-commit` 플래그 추가
- 도구 인수 직렬화에 JSON 스키마 사용
### 버그 수정
- 도구 저장소 로그인 실패 시 응답에서 오류 메시지 표시 수정
- 비동기 작업 실행 시 future의 정상적인 종료 수정
- 인덱스를 추가하여 작업 순서 수정
- Windows 신호에 대한 플랫폼 호환성 검사 수정
- 프로세스 중단을 방지하기 위한 RPM 컨트롤러 타이머 수정
- 토큰 사용량 기록 수정 및 스트림에서 응답 모델 검증
### 문서
- 비동기에 대한 번역된 문서 추가
- AOP Deploy API 문서 추가
- 에이전트 핸들러 커넥터 문서 추가
- 네이티브 비동기 문서 추가
### 기여자
@Llamrei, @dragosmc, @gilfeig, @greysonlalonde, @heitorado, @lorenzejay, @mattatcha, @vinibrsl
</Update>
<Update label="2025년 12월 9일">
## v1.7.0
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.7.0)
## 변경 사항
### 기능
- 비동기 흐름 킥오프 추가
- 비동기 크루 지원 추가
- 비동기 작업 지원 추가
- 비동기 지식 지원 추가
- 비동기 메모리 지원 추가
- 도구 및 에이전트 실행기에 대한 비동기 지원 추가; 타입 및 문서 개선
- a2a 확장 API 및 비동기 에이전트 카드 캐싱 구현; 작업 전파 및 스트리밍 수정
- 네이티브 비동기 도구 지원 추가
- 비동기 llm 지원 추가
- sys 이벤트 유형 및 핸들러 생성
### 버그 수정
- nonetypes가 otel에 전달되지 않도록 보장하는 문제 수정
- 토큰 저장소 파일 작업의 교착 상태 수정
- otel span이 닫히도록 보장하는 수정
- 임베딩에 HuggingFaceEmbeddingFunction 사용, 키 업데이트 및 테스트 추가
- 모든 지원되는 anthropic 모델에 대해 supports_tools가 true인지 확인
- 라이트 에이전트 흐름에서 훅이 작동하도록 보장
### 기여자
@greysonlalonde, @lorenzejay
</Update>
<Update label="2025년 11월 29일">
## v1.6.1
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.6.1)
## 변경 사항
### 버그 수정
- ChatCompletionsClient 호출이 제대로 작동하도록 수정
- 어노테이션에 대해 비동기 메서드가 실행 가능하도록 보장
- RagTool.add의 매개변수 수정, 타입 및 테스트 추가
- SSE 클라이언트에서 잘못된 매개변수 제거
- 'crewai config reset' 명령에서 'oauth2_extra' 설정 삭제
### 리팩토링
- LLM 클래스에서 모델 검증 및 프로바이더 추론 향상
### 기여자
@Vidit-Ostwal, @greysonlalonde, @heitorado, @lorenzejay
</Update>
<Update label="2025년 11월 25일">
## v1.6.0
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.6.0)
## 변경 사항
### 기능
- 흐름 및 크루에 스트리밍 결과 지원 추가
- gemini-3-pro-preview 추가
- Entra ID를 사용한 CLI 로그인 지원
- Merge Agent Handler 도구 추가
- 흐름 이벤트 상태 관리 향상
### 버그 수정
- 사용자 지정 rag 저장소 지속 경로가 전달된 경우 설정되도록 보장
- 퍼지 반환이 더 엄격하고 타입 경고를 표시하도록 보장
- openai response_format 매개변수 다시 추가 및 테스트 추가
- rag 도구 임베딩 설정 수정
- 플롯에서 흐름 실행 시작 패널이 표시되지 않도록 보장
### 문서
- 문서에서 AMP에서 AOP로 참조 업데이트
- AMP에서 AOP로 업데이트
### 기여자
@Vidit-Ostwal, @gilfeig, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @markmcd
</Update>
<Update label="2025년 11월 22일">
## v0.203.2
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/0.203.2)
## 변경 사항
- 0.203.1에서 0.203.2로 핫픽스 버전 범프
</Update>
<Update label="2025년 11월 16일">
## v1.5.0
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.5.0)
## 변경 사항
### 기능
- a2a 신뢰 원격 완료 상태 플래그 추가
- Okta 인증 서버에 대한 더 많은 데이터 가져오기 및 저장
- CrewAgentExecutor에서 LLM 호출 전후 훅 구현
- TaskOutput 및 LiteAgentOutputs에 메시지 노출
- QdrantVectorSearchTool의 스키마 설명 향상
### 버그 수정
- 추적 인스트루멘테이션 플래그가 올바르게 적용되도록 보장
- 사용자 정의 도구 문서 링크 수정 및 Mintlify 깨진 링크 작업 추가
### 문서
- LLM 기반 검증 지원으로 작업 가드레일 문서 향상
### 기여자
@danielfsbarreto, @greysonlalonde, @heitorado, @lorenzejay, @theCyberTech
</Update>
<Update label="2025년 11월 7일">
## v1.4.1
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.4.1)
## 변경 사항
### 버그 수정
- 에이전트 최대 반복 처리 수정
- LLM 모델 구문에 대한 라우팅 문제를 해당 프로바이더로 해결
### 기여자
@greysonlalonde
</Update>
<Update label="2025년 11월 7일">
## v1.4.0
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.4.0)
## 변경 사항
### 기능
- 비AST 플롯 경로 지원 추가
- MCP에 대한 일급 지원 구현
- BaseInterceptor에 Pydantic 검증 던더 추가
- LLM 메시지 인터셉터 훅 지원 추가
- 효율적인 사용을 위한 i18n 프롬프트 캐싱
- QdrantVectorSearchTool 향상
### 버그 수정
- stopwords 업데이트 유지 관련 문제 수정
- 흐름 상태에서 피클할 수 없는 값 해결
- 라이트 에이전트가 검증 오류 시 수정되도록 보장
- 캐싱이 작동하도록 콜백 인수 해싱 수정
- 유효한 URL에서 RAG 소스 콘텐츠 추가 허용
- 플롯 노드 선택을 더 부드럽게 만듦
- 지식에 대한 중복 문서 ID 수정
### 리팩토링
- concurrent futures로 MCP 도구 실행 처리 개선
- 흐름 처리, 타입 및 로깅 단순화; UI 및 테스트 업데이트
- 중지 단어 관리를 속성으로 리팩토링
### 문서
- embedder를 embedding_model로 마이그레이션하고 도구 문서 전체에 vectordb 필요; 프로바이더 예제 추가 (en/ko/pt-BR)
### 기여자
@danielfsbarreto, @greysonlalonde, @lorenzejay, @lucasgomide, @tonykipkemboi
</Update>
<Update label="2025년 11월 1일">
## v1.3.0
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.3.0)
## 변경 사항
### 기능
- 흐름 처리, 타입 및 로깅 리팩토링
- QdrantVectorSearchTool 향상
### 버그 수정
- Firecrawl 도구 수정 및 테스트 추가
- use_stop_words를 속성으로 리팩토링하고 중지 단어 확인 추가
### 문서
- embedder를 embedding_model로 마이그레이션하고 도구 문서 전체에 vectordb 필요
- 영어, 한국어 및 포르투갈어로 프로바이더 예제 추가
### 리팩토링
- 흐름 처리 및 UI 업데이트 개선
### 기여자
@danielfsbarreto, @greysonlalonde, @lorenzejay, @lucasgomide, @tonykipkemboi
</Update>
<Update label="2025년 10월 27일">
## v1.2.1
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.2.1)
## 변경 사항
### 기능
- Datadog 통합 지원 추가
- liteagent에서 apps 및 mcps 지원
### 문서
- 각 통합에 대해 Platform 도구를 호출하기 위한 필수 환경 변수 설명
- Datadog 통합 문서 추가
### 기여자
@barieom, @lorenzejay, @lucasgomide, @sabrenner
</Update>
<Update label="2025년 10월 24일">
## v1.2.0
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.2.0)
## 변경 사항
### 버그 수정
- 기본 LLM 모델 업데이트 및 LLM 유틸리티의 오류 로깅 개선
- 흐름 시각화 디렉토리 및 메서드 검사 변경
### 사용되지 않는 항목 삭제
- aisuite 제거
### 기여자
@greysonlalonde, @lorenzejay
</Update>
<Update label="2025년 10월 21일">
## v1.1.0
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.1.0)
## 변경 사항
### 기능
- InternalInstructor를 향상하여 여러 LLM 프로바이더 지원
- mypy 플러그인 기반 구현
- QdrantVectorSearchTool 개선
### 버그 수정
- 깨진 통합 문서 링크 수정
- 이중 추적 호출 수정 및 타입 추가
- 템플릿 버전을 최신으로 고정
### 문서
- LLM 통합 세부 정보 및 예제 업데이트
### 리팩토링
- CrewBase 타이핑 개선
### 기여자
@cwarre33, @danielfsbarreto, @greysonlalonde, @lorenzejay
</Update>
<Update label="2025년 10월 20일">
## v1.0.0
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0)
## 변경 사항
### 기능
- 버전을 1.0.0으로 범프
- Agent 클래스에서 지식 및 가드레일 이벤트 처리 향상
- crewai run 명령에 도구 저장소 자격 증명 주입
### 버그 수정
- Flow 데코레이터에서 중첩된 조건 구조 유지
- Printer.print 메서드에 표준 인쇄 매개변수 추가
- input()을 사용할 수 없을 때 오류 수정
- JWT 디코딩 시 10초 여유 추가
- 잘못된 cron 일정 되돌리기
- 특정 날짜에 5일마다 실행되도록 cron 일정 수정
- 하드코딩된 경로 대신 Docker 바이너리에 시스템 PATH 사용
- 템플릿 디렉토리를 올바르게 제외하기 위한 CodeQL 구성 추가
### 문서
- 취약점 보고를 위한 보안 정책 업데이트
- CrewAI AMP에서 텔레메트리 로그 캡처 가이드 추가
- 누락된 /resume 파일 추가
- HITL 워크플로에서 웹훅 URL 매개변수 명확화
### 기여자
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide, @mplachta, @theCyberTech
</Update>
<Update label="2025년 10월 18일">
## v1.0.0b3 (프리릴리스)
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0b3)
## 변경 사항
### 기능
- 작업 가드레일 기능 및 검증 향상
- 네이티브 SDK 가져오기 지원 개선
- Azure 네이티브 테스트 추가
- 고급 기능으로 BedrockCompletion 클래스 향상
- 클라이언트 매개변수 지원으로 GeminiCompletion 클래스 향상
- 추가 클라이언트 매개변수로 AnthropicCompletion 클래스 향상
### 버그 수정
- Flow 데코레이터에서 중첩된 조건 구조 유지
- Printer.print 메서드에 표준 인쇄 매개변수 추가
- stdout 인쇄 제거 및 테스트 결정론 개선
### 리팩토링
- 전체 타이핑을 포함한 메타클래스로 프로젝트 모듈 변환
### 기여자
@greysonlalonde, @lorenzejay
</Update>
<Update label="2025년 10월 16일">
## v1.0.0b2 (프리릴리스)
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0b2)
## 변경 사항
### 기능
- 추가 클라이언트 매개변수로 OpenAICompletion 클래스 향상
- 이벤트 버스 스레드 안전성 및 비동기 지원 개선
- crewai run 명령에 도구 저장소 자격 증명 주입
### 버그 수정
- input()을 사용할 수 없을 때 오류가 발생하는 문제 수정
- JWT 디코딩 시 10초 여유 추가
- task.py에서 복사 및 NOT_SPECIFIED 확인 수정
### 문서
- 문서에서 CREWAI_PLATFORM_INTEGRATION_TOKEN이 언급되도록 보장
- 트리거 문서 업데이트
### 기여자
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide
</Update>
<Update label="2025년 10월 14일">
## v1.0.0b1 (프리릴리스)
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0b1)
## 변경 사항
### 기능
- 추가 클라이언트 매개변수로 OpenAICompletion 클래스 향상
- 이벤트 버스 스레드 안전성 및 비동기 지원 개선
- Bedrock LLM 통합 구현
### 버그 수정
- 누락된 input() 가용성 문제 수정
- 10초 여유를 추가하여 JWT 디코딩 오류 해결
- crewai run 명령에 도구 저장소 자격 증명 주입
- task.py에서 복사 및 NOT_SPECIFIED 확인 수정
### 문서
- 문서에서 CREWAI_PLATFORM_INTEGRATION_TOKEN이 언급되도록 보장
- 트리거 문서 업데이트
### 기여자
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide
</Update>
<Update label="2025년 10월 13일">
## v0.203.1
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/0.203.1)
## 변경 사항
### 핵심 개선 및 수정
- `crewai run` 명령에 도구 저장소 자격 증명 주입 수정
- 토큰 검증 오류를 줄이기 위해 JWT 디코딩 시 10초 여유 추가
- 특정 날짜에 5일마다 작업을 실행하도록 의도된 cron 일정 수정(이후 되돌림)
### 문서 및 가이드
- 취약점 보고 프로세스를 명확히 하기 위해 보안 정책 업데이트
</Update>
<Update label="2025년 10월 9일">
## v1.0.0a4 (프리릴리스)
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0a4)
## 변경 사항
### 기능
- Agent 클래스에서 지식 및 가드레일 이벤트 처리 향상
- 로컬 개발을 위한 트리거 목록 및 실행 명령 도입
- Platform Actions을 소비하는 새로운 접근 방식으로 문서 업데이트
- CrewAI AMP에서 텔레메트리 로그 캡처 가이드 추가
### 버그 수정
- 잘못된 cron 일정 되돌리기
- 특정 날짜에 5일마다 실행되도록 cron 일정 수정
- 중복 행 제거 및 명시적 환경 변수 추가
### 기여자
@greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide, @mplachta, @theCyberTech
</Update>
<Update label="2025년 10월 7일">
## v1.0.0a3 (프리릴리스)
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0a3)
## 변경 사항
### 기능
- 플랫폼 작업에 대한 에이전트 지원 추가
- 코드 실행기 도구에 인터프리터 인수 추가
- 플랫폼 앱 실행에 대한 직접 지원
### 문서
- 플랫폼 작업 문서 추가
- MCP 문서에 stdio 및 sse 전송 유형 추가
- AWS 모델 목록 업데이트
### 기여자
@greysonlalonde, @heitorado, @lorenzejay, @lucasgomide
</Update>
<Update label="2025년 10월 3일">
## v1.0.0a2 (프리릴리스)
[GitHub 릴리스 보기](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0a2)
## 변경 사항
### 핵심 개선 및 수정
- 모노레포를 위한 CI 업데이트
- 기본 Anthropic 모델을 claude-sonnet-4-20250514로 업데이트
- 모델 업데이트에 대한 테스트 수정
### 기여자
@greysonlalonde, @lorenzejay
</Update>
<Update label="2025년 9월 30일">
## v1.0.0a1

View File

@@ -567,6 +567,10 @@ Fourth method running
### Human in the Loop (인간 피드백)
<Note>
`@human_feedback` 데코레이터는 **CrewAI 버전 1.8.0 이상**이 필요합니다.
</Note>
`@human_feedback` 데코레이터는 인간의 피드백을 수집하기 위해 플로우 실행을 일시 중지하는 human-in-the-loop 워크플로우를 가능하게 합니다. 이는 승인 게이트, 품질 검토, 인간의 판단이 필요한 결정 지점에 유용합니다.
```python Code

View File

@@ -0,0 +1,342 @@
---
title: 트레이스용 PII 삭제
description: "크루 및 플로우 실행 트레이스에서 민감한 데이터를 자동으로 삭제합니다"
icon: "lock"
mode: "wide"
---
## 개요
PII 삭제는 크루 및 플로우 실행 트레이스에서 개인 식별 정보(PII)를 자동으로 감지하고 마스킹하는 CrewAI AMP 기능입니다. 이를 통해 신용카드 번호, 주민등록번호, 이메일 주소, 이름과 같은 민감한 데이터가 CrewAI AMP 트레이스에 노출되지 않도록 보장합니다. 또한 조직별 데이터를 보호하기 위해 커스텀 인식기를 생성할 수 있습니다.
<Info>
PII 삭제는 Enterprise 플랜에서 사용 가능합니다.
배포 버전은 1.8.0 이상이어야 합니다.
</Info>
<Frame>
![PII 삭제 개요](/images/enterprise/pii_mask_recognizer_trace_example.png)
</Frame>
## PII 삭제가 중요한 이유
프로덕션 환경에서 AI 에이전트를 실행할 때, 민감한 정보가 종종 크루를 통해 흐릅니다:
- CRM 통합의 고객 데이터
- 결제 처리업체의 금융 정보
- 양식 제출의 개인 정보
- 내부 직원 데이터
적절한 삭제 없이는 이 데이터가 트레이스에 나타나, GDPR, HIPAA, PCI-DSS와 같은 규정 준수가 어려워집니다. PII 삭제는 트레이스에 저장되기 전에 민감한 데이터를 자동으로 마스킹하여 이 문제를 해결합니다.
## 작동 방식
1. **감지** - 알려진 PII 패턴에 대해 트레이스 이벤트 데이터를 스캔
2. **분류** - 민감한 데이터 유형 식별 (신용카드, SSN, 이메일 등)
3. **마스킹/삭제** - 구성에 따라 민감한 데이터를 마스킹된 값으로 대체
```
원본: "john.doe@company.com으로 연락하거나 555-123-4567로 전화하세요"
삭제됨: "<EMAIL_ADDRESS>로 연락하거나 <PHONE_NUMBER>로 전화하세요"
```
## PII 삭제 활성화
<Info>
이 기능을 사용하려면 Enterprise 플랜이어야 하며 배포 버전이 1.8.0 이상이어야 합니다.
</Info>
<Steps>
<Step title="크루 설정으로 이동">
CrewAI AMP 대시보드에서 배포된 크루를 선택하고 배포/자동화 중 하나로 이동한 다음 **Settings** → **PII Protection**으로 이동합니다.
</Step>
<Step title="PII 보호 활성화">
**PII Redaction for Traces**를 토글하여 활성화합니다. 이렇게 하면 트레이스 데이터의 자동 스캔 및 삭제가 활성화됩니다.
<Info>
각 배포에 대해 PII 삭제를 수동으로 활성화해야 합니다.
</Info>
<Frame>
![PII 삭제 활성화](/images/enterprise/pii_mask_recognizer_enable.png)
</Frame>
</Step>
<Step title="엔티티 유형 구성">
감지하고 삭제할 PII 유형을 선택합니다. 각 엔티티는 개별적으로 활성화하거나 비활성화할 수 있습니다.
<Frame>
![엔티티 구성](/images/enterprise/pii_mask_recognizer_supported_entities.png)
</Frame>
</Step>
<Step title="저장">
구성을 저장합니다. PII 삭제는 이후 모든 크루 실행에서 활성화되며, 재배포가 필요하지 않습니다.
</Step>
</Steps>
## 지원되는 엔티티 유형
CrewAI는 카테고리별로 구성된 다음 PII 엔티티 유형을 지원합니다.
### 글로벌 엔티티
| 엔티티 | 설명 | 예시 |
|--------|------|------|
| `CREDIT_CARD` | 신용/직불 카드 번호 | "4111-1111-1111-1111" |
| `CRYPTO` | 암호화폐 지갑 주소 | "bc1qxy2kgd..." |
| `DATE_TIME` | 날짜 및 시간 | "2024년 1월 15일" |
| `EMAIL_ADDRESS` | 이메일 주소 | "john@example.com" |
| `IBAN_CODE` | 국제 은행 계좌 번호 | "DE89 3704 0044 0532 0130 00" |
| `IP_ADDRESS` | IPv4 및 IPv6 주소 | "192.168.1.1" |
| `LOCATION` | 지리적 위치 | "뉴욕시" |
| `MEDICAL_LICENSE` | 의료 면허 번호 | "MD12345" |
| `NRP` | 국적, 종교 또는 정치 그룹 | - |
| `PERSON` | 개인 이름 | "홍길동" |
| `PHONE_NUMBER` | 다양한 형식의 전화번호 | "+82 (10) 1234-5678" |
| `URL` | 웹 URL | "https://example.com" |
### 미국 특정 엔티티
| 엔티티 | 설명 | 예시 |
|--------|------|------|
| `US_BANK_NUMBER` | 미국 은행 계좌 번호 | "1234567890" |
| `US_DRIVER_LICENSE` | 미국 운전면허 번호 | "D1234567" |
| `US_ITIN` | 개인 납세자 번호 | "900-70-0000" |
| `US_PASSPORT` | 미국 여권 번호 | "123456789" |
| `US_SSN` | 사회보장번호 | "123-45-6789" |
## 삭제 작업
활성화된 각 엔티티에 대해 데이터가 삭제되는 방식을 구성할 수 있습니다:
| 작업 | 설명 | 출력 예시 |
|------|------|----------|
| `mask` | 엔티티 유형 레이블로 대체 | `<CREDIT_CARD>` |
| `redact` | 텍스트를 완전히 제거 | *(비어있음)* |
## 커스텀 인식기
기본 제공 엔티티 외에도 조직별 PII 패턴을 감지하기 위한 **커스텀 인식기**를 생성할 수 있습니다.
<Frame>
![커스텀 인식기](/images/enterprise/pii_mask_recognizer.png)
</Frame>
### 인식기 유형
커스텀 인식기에는 두 가지 옵션이 있습니다:
| 유형 | 적합한 용도 | 사용 사례 예시 |
|------|------------|---------------|
| **패턴 기반 (Regex)** | 예측 가능한 형식의 구조화된 데이터 | 급여 금액, 직원 ID, 프로젝트 코드 |
| **거부 목록** | 정확한 문자열 매칭 | 회사명, 내부 코드명, 특정 용어 |
### 커스텀 인식기 생성
<Steps>
<Step title="커스텀 인식기로 이동">
조직 **Settings** → **Organization** → **Add Recognizer**로 이동합니다.
</Step>
<Step title="인식기 구성">
<Frame>
![인식기 구성](/images/enterprise/pii_mask_recognizer_create.png)
</Frame>
다음 필드를 구성합니다:
- **Name**: 인식기의 설명적 이름
- **Entity Type**: 삭제된 출력에 나타날 엔티티 레이블 (예: `EMPLOYEE_ID`, `SALARY`)
- **Type**: Regex 패턴 또는 거부 목록 중 선택
- **Pattern/Values**: 매칭할 Regex 패턴 또는 문자열 목록
- **Confidence Threshold**: 삭제를 트리거하는 데 필요한 최소 점수 (0.0-1.0). 높은 값 (예: 0.8)은 거짓 양성을 줄이지만 일부 매치를 놓칠 수 있습니다. 낮은 값 (예: 0.5)은 더 많은 매치를 잡지만 과도하게 삭제할 수 있습니다. 기본값은 0.8입니다.
- **Context Words** (선택사항): 근처에서 발견될 때 감지 신뢰도를 높이는 단어
</Step>
<Step title="저장">
인식기를 저장합니다. 배포에서 활성화할 수 있게 됩니다.
</Step>
</Steps>
### 엔티티 유형 이해하기
**Entity Type**은 매칭된 콘텐츠가 삭제된 트레이스에 어떻게 나타나는지 결정합니다:
```
Entity Type: SALARY
Pattern: salary:\s*\$\s*\d+
입력: "직원 급여: $50,000"
출력: "직원 <SALARY>"
```
### 컨텍스트 단어 사용
컨텍스트 단어는 매칭된 패턴 근처에 특정 용어가 나타날 때 신뢰도를 높여 정확도를 향상시킵니다:
```
Context Words: "project", "code", "internal"
Entity Type: PROJECT_CODE
Pattern: PRJ-\d{4}
```
"project" 또는 "code"가 "PRJ-1234" 근처에 나타나면, 인식기는 그것이 진정한 매치라는 확신이 높아져 거짓 양성을 줄입니다.
## 삭제된 트레이스 보기
PII 삭제가 활성화되면, 트레이스에서 민감한 데이터 대신 삭제된 값이 표시됩니다:
```
Task Output: "고객 <PERSON>이 주문 #12345를 했습니다.
연락처 이메일: <EMAIL_ADDRESS>, 전화: <PHONE_NUMBER>.
<CREDIT_CARD>로 끝나는 카드로 결제가 처리되었습니다."
```
삭제된 값은 꺾쇠 괄호와 엔티티 유형 레이블 (예: `<EMAIL_ADDRESS>`)로 명확하게 표시되어, 어떤 데이터가 보호되었는지 쉽게 이해할 수 있으면서도 크루 동작을 디버그하고 모니터링할 수 있습니다.
## 모범 사례
### 성능 고려사항
<Steps>
<Step title="필요한 엔티티만 활성화">
활성화된 각 엔티티는 처리 오버헤드를 추가합니다. 데이터와 관련된 엔티티만 활성화하세요.
</Step>
<Step title="구체적인 패턴 사용">
커스텀 인식기의 경우 거짓 양성을 줄이고 성능을 향상시키기 위해 구체적인 패턴을 사용하세요. Regex 패턴은 급여, 직원 ID, 프로젝트 코드 등 특정 패턴을 식별할 때 가장 적합합니다. 거부 목록 인식기는 회사명, 내부 코드명 등 정확한 문자열을 식별할 때 가장 적합합니다.
</Step>
<Step title="컨텍스트 단어 활용">
컨텍스트 단어는 주변 텍스트가 매칭될 때만 감지를 트리거하여 정확도를 향상시킵니다.
</Step>
</Steps>
## 문제 해결
<Accordion title="PII가 삭제되지 않음">
**가능한 원인:**
- 구성에서 엔티티 유형이 활성화되지 않음
- 패턴이 데이터 형식과 매치되지 않음
- 커스텀 인식기에 구문 오류가 있음
**해결책:**
- Settings → Security에서 엔티티가 활성화되어 있는지 확인
- 샘플 데이터로 regex 패턴 테스트
- 구성 오류에 대한 로그 확인
</Accordion>
<Accordion title="너무 많은 데이터가 삭제됨">
**가능한 원인:**
- 너무 광범위한 엔티티 유형이 활성화됨 (예: `DATE_TIME`이 모든 곳의 날짜를 잡음)
- 커스텀 인식기 패턴이 너무 일반적임
**해결책:**
- 거짓 양성을 유발하는 엔티티 비활성화
- 커스텀 패턴을 더 구체적으로 만들기
- 정확도 향상을 위해 컨텍스트 단어 추가
</Accordion>
<Accordion title="성능 문제">
**가능한 원인:**
- 너무 많은 엔티티가 활성화됨
- NLP 기반 엔티티 (`PERSON`, `LOCATION`, `NRP`)는 머신러닝 모델을 사용하므로 계산 비용이 높음
**해결책:**
- 실제로 필요한 엔티티만 활성화
- 가능한 경우 패턴 기반 대안 고려
- 대시보드에서 트레이스 처리 시간 모니터링
</Accordion>
---
## 실제 예시: 급여 패턴 매칭
이 예시는 트레이스에서 급여 정보를 감지하고 마스킹하는 커스텀 인식기를 생성하는 방법을 보여줍니다.
### 사용 사례
크루가 다음과 같은 형식의 급여 정보가 포함된 직원 또는 재무 데이터를 처리합니다:
- `salary: $50,000`
- `salary: $125,000.00`
- `salary:$1,500.50`
민감한 보상 데이터를 보호하기 위해 이러한 값을 자동으로 마스킹하려고 합니다.
### 구성
<Frame>
![급여 인식기 구성](/images/enterprise/pii_mask_custom_recognizer_salary.png)
</Frame>
| 필드 | 값 |
|------|-----|
| **Name** | `SALARY` |
| **Entity Type** | `SALARY` |
| **Type** | Regex Pattern |
| **Regex Pattern** | `salary:\s*\$\s*\d{1,3}(,\d{3})*(\.\d{2})?` |
| **Action** | Mask |
| **Confidence Threshold** | `0.8` |
| **Context Words** | `salary, compensation, pay, wage, income` |
### Regex 패턴 분석
| 패턴 구성요소 | 의미 |
|--------------|------|
| `salary:` | 리터럴 텍스트 "salary:" 매치 |
| `\s*` | 0개 이상의 공백 문자 매치 |
| `\$` | 달러 기호 매치 (이스케이프) |
| `\s*` | $ 뒤의 0개 이상의 공백 문자 매치 |
| `\d{1,3}` | 1-3자리 숫자 매치 (예: "1", "50", "125") |
| `(,\d{3})*` | 쉼표로 구분된 천 단위 매치 (예: ",000", ",500,000") |
| `(\.\d{2})?` | 선택적으로 센트 매치 (예: ".00", ".50") |
### 결과 예시
```
원본: "직원 기록에 salary: $125,000.00 연봉이 표시됩니다"
삭제됨: "직원 기록에 <SALARY> 연봉이 표시됩니다"
원본: "기본 salary:$50,000에 보너스 가능성"
삭제됨: "기본 <SALARY>에 보너스 가능성"
```
<Tip>
"salary", "compensation", "pay", "wage", "income"과 같은 컨텍스트 단어를 추가하면 이러한 용어가 매칭된 패턴 근처에 나타날 때 감지 신뢰도가 높아져 거짓 양성을 줄입니다.
</Tip>
### 배포에서 인식기 활성화
<Warning>
조직 수준에서 커스텀 인식기를 생성해도 배포에 자동으로 활성화되지 않습니다. 적용하려는 모든 배포에 대해 각 인식기를 수동으로 활성화해야 합니다.
</Warning>
커스텀 인식기를 생성한 후, 각 배포에서 활성화합니다:
<Steps>
<Step title="배포로 이동">
배포/자동화로 이동하여 **Settings** → **PII Protection**을 엽니다.
</Step>
<Step title="커스텀 인식기 선택">
**Mask Recognizers** 아래에서 조직에서 정의한 인식기를 볼 수 있습니다. 활성화하려는 인식기 옆의 체크박스를 선택합니다.
<Frame>
![커스텀 인식기 활성화](/images/enterprise/pii_mask_recognizers_options.png)
</Frame>
</Step>
<Step title="구성 저장">
변경 사항을 저장합니다. 인식기는 이 배포의 모든 후속 실행에서 활성화됩니다.
</Step>
</Steps>
<Info>
커스텀 인식기가 필요한 각 배포에서 이 프로세스를 반복합니다. 이를 통해 다양한 환경 (예: 개발 vs. 프로덕션)에서 어떤 인식기가 활성화되는지 세밀하게 제어할 수 있습니다.
</Info>

View File

@@ -7,6 +7,10 @@ mode: "wide"
## 개요
<Note>
`@human_feedback` 데코레이터는 **CrewAI 버전 1.8.0 이상**이 필요합니다. 이 기능을 사용하기 전에 설치를 업데이트하세요.
</Note>
`@human_feedback` 데코레이터는 CrewAI Flow 내에서 직접 human-in-the-loop(HITL) 워크플로우를 가능하게 합니다. Flow 실행을 일시 중지하고, 인간에게 검토를 위해 출력을 제시하고, 피드백을 수집하고, 선택적으로 피드백 결과에 따라 다른 리스너로 라우팅할 수 있습니다.
이는 특히 다음과 같은 경우에 유용합니다:

View File

@@ -5,9 +5,22 @@ icon: "user-check"
mode: "wide"
---
휴먼 인 더 루프(HITL, Human-in-the-Loop)는 인공지능과 인간의 전문 지식을 결합하여 의사결정을 강화하고 작업 결과를 향상시키는 강력한 접근 방식입니다. 이 가이드에서는 CrewAI 내에서 HITL을 구현하는 방법을 안내합니다.
휴먼 인 더 루프(HITL, Human-in-the-Loop)는 인공지능과 인간의 전문 지식을 결합하여 의사결정을 강화하고 작업 결과를 향상시키는 강력한 접근 방식입니다. CrewAI는 필요에 따라 HITL을 구현하는 여러 가지 방법을 제공합니다.
## HITL 워크플로우 설정
## HITL 접근 방식 선택
CrewAI는 human-in-the-loop 워크플로우를 구현하기 위한 두 가지 주요 접근 방식을 제공합니다:
| 접근 방식 | 적합한 용도 | 통합 | 버전 |
|----------|----------|-------------|---------|
| **Flow 기반** (`@human_feedback` 데코레이터) | 로컬 개발, 콘솔 기반 검토, 동기식 워크플로우 | [Flow에서 인간 피드백](/ko/learn/human-feedback-in-flows) | **1.8.0+** |
| **Webhook 기반** (Enterprise) | 프로덕션 배포, 비동기 워크플로우, 외부 통합 (Slack, Teams 등) | 이 가이드 | - |
<Tip>
Flow를 구축하면서 피드백을 기반으로 라우팅하는 인간 검토 단계를 추가하려면 `@human_feedback` 데코레이터에 대한 [Flow에서 인간 피드백](/ko/learn/human-feedback-in-flows) 가이드를 참조하세요.
</Tip>
## Webhook 기반 HITL 워크플로우 설정
<Steps>
<Step title="작업 구성">

View File

@@ -4,6 +4,545 @@ description: "Atualizações de produto, melhorias e correções do CrewAI"
icon: "clock"
mode: "wide"
---
<Update label="08 jan 2026">
## v1.8.0
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.8.0)
## O que Mudou
### Funcionalidades
- Adicionar cadeia async nativa para a2a
- Adicionar mecanismos de atualização a2a (poll/stream/push) com handlers e config
- Introduzir configuração global de fluxo para feedback human-in-the-loop
- Adicionar eventos de chamada de ferramenta em streaming e corrigir rastreamento de ID do provedor
- Introduzir arquitetura de Flows e Crews pronta para produção
- Adicionar HITL para Flows
- Melhorar EventListener e TraceCollectionListener para melhor tratamento de eventos
### Correções de Bugs
- Tratar dependência a2a ausente como opcional
- Corrigir busca de erro para polling de login WorkOS
- Corrigir nome de trigger errado na documentação de exemplo
### Documentação
- Atualizar documentação de webhook-streaming
- Ajustar linguagem da documentação de AOP para AMP
### Contribuidores
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide, @mplachta
</Update>
<Update label="19 dez 2025">
## v1.7.2
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.7.2)
## O que Mudou
### Correções de Bugs
- Resolver problemas de conexão
### Documentação
- Atualizar página de documentação api-reference/status
### Contribuidores
@greysonlalonde, @heitorado, @lorenzejay, @lucasgomide
</Update>
<Update label="16 dez 2025">
## v1.7.1
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.7.1)
## O que Mudou
### Melhorias
- Adicionar flag `--no-commit` ao comando bump
- Usar schema JSON para serialização de argumentos de ferramenta
### Correções de Bugs
- Corrigir exibição de mensagem de erro da resposta quando login do repositório de ferramentas falha
- Corrigir terminação graciosa de future ao executar tarefa assincronamente
- Corrigir ordenação de tarefas adicionando índice
- Corrigir verificações de compatibilidade de plataforma para sinais Windows
- Corrigir timer do controlador RPM para evitar travamento do processo
- Corrigir registro de uso de tokens e validar modelo de resposta em stream
### Documentação
- Adicionar documentação traduzida para async
- Adicionar documentação para API Deploy AOP
- Adicionar documentação para o conector agent handler
- Adicionar documentação sobre async nativo
### Contribuidores
@Llamrei, @dragosmc, @gilfeig, @greysonlalonde, @heitorado, @lorenzejay, @mattatcha, @vinibrsl
</Update>
<Update label="09 dez 2025">
## v1.7.0
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.7.0)
## O que Mudou
### Funcionalidades
- Adicionar kickoff de fluxo async
- Adicionar suporte a crew async
- Adicionar suporte a tarefa async
- Adicionar suporte a conhecimento async
- Adicionar suporte a memória async
- Adicionar suporte async para ferramentas e executor de agente; melhorar tipagem e docs
- Implementar API de extensões a2a e cache de cartão de agente async; corrigir propagação de tarefas e streaming
- Adicionar suporte a ferramenta async nativa
- Adicionar suporte a llm async
- Criar tipos de eventos sys e handler
### Correções de Bugs
- Corrigir problema para garantir que nonetypes não sejam passados para otel
- Corrigir deadlock em operações de arquivo do armazenamento de tokens
- Corrigir para garantir que span otel seja fechado
- Usar HuggingFaceEmbeddingFunction para embeddings, atualizar chaves e adicionar testes
- Corrigir para garantir que supports_tools seja true para todos os modelos anthropic suportados
- Garantir que hooks funcionem com fluxos de lite agents
### Contribuidores
@greysonlalonde, @lorenzejay
</Update>
<Update label="29 nov 2025">
## v1.6.1
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.6.1)
## O que Mudou
### Correções de Bugs
- Corrigir chamada ChatCompletionsClient para garantir funcionamento adequado
- Garantir que métodos async sejam executáveis para anotações
- Corrigir parâmetros em RagTool.add, adicionar tipagem e testes
- Remover parâmetro inválido do cliente SSE
- Apagar configuração 'oauth2_extra' no comando 'crewai config reset'
### Refatoração
- Aprimorar validação de modelo e inferência de provedor na classe LLM
### Contribuidores
@Vidit-Ostwal, @greysonlalonde, @heitorado, @lorenzejay
</Update>
<Update label="25 nov 2025">
## v1.6.0
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.6.0)
## O que Mudou
### Funcionalidades
- Adicionar suporte a resultado de streaming para fluxos e crews
- Adicionar gemini-3-pro-preview
- Suportar login CLI com Entra ID
- Adicionar ferramenta Merge Agent Handler
- Aprimorar gerenciamento de estado de eventos de fluxo
### Correções de Bugs
- Garantir que caminho de persistência de armazenamento rag personalizado seja definido se passado
- Garantir que retornos fuzzy sejam mais estritos e mostrem aviso de tipo
- Re-adicionar parâmetro response_format do openai e adicionar teste
- Corrigir configuração de embeddings da ferramenta rag
- Garantir que painel de início de execução de fluxo não seja mostrado no plot
### Documentação
- Atualizar referências de AMP para AOP na documentação
- Atualizar AMP para AOP
### Contribuidores
@Vidit-Ostwal, @gilfeig, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @markmcd
</Update>
<Update label="22 nov 2025">
## v0.203.2
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/0.203.2)
## O que Mudou
- Bump de versão hotfix de 0.203.1 para 0.203.2
</Update>
<Update label="16 nov 2025">
## v1.5.0
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.5.0)
## O que Mudou
### Funcionalidades
- Adicionar flag de status de conclusão remota de confiança a2a
- Buscar e armazenar mais dados sobre servidor de autorização Okta
- Implementar hooks antes e depois de chamadas LLM no CrewAgentExecutor
- Expor mensagens para TaskOutput e LiteAgentOutputs
- Aprimorar descrição de schema do QdrantVectorSearchTool
### Correções de Bugs
- Garantir que flags de instrumentação de rastreamento sejam aplicadas corretamente
- Corrigir links de documentação de ferramentas personalizadas e adicionar ação de links quebrados do Mintlify
### Documentação
- Aprimorar documentação de guardrail de tarefa com suporte a validação baseada em LLM
### Contribuidores
@danielfsbarreto, @greysonlalonde, @heitorado, @lorenzejay, @theCyberTech
</Update>
<Update label="07 nov 2025">
## v1.4.1
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.4.1)
## O que Mudou
### Correções de Bugs
- Corrigir tratamento de iterações máximas do agente
- Resolver problemas de roteamento para sintaxe de modelo LLM para provedores respeitados
### Contribuidores
@greysonlalonde
</Update>
<Update label="07 nov 2025">
## v1.4.0
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.4.0)
## O que Mudou
### Funcionalidades
- Adicionar suporte para rotas de plot não-AST
- Implementar suporte de primeira classe para MCP
- Adicionar dunder de validação Pydantic ao BaseInterceptor
- Adicionar suporte para hooks de interceptor de mensagem LLM
- Cache de prompts i18n para uso eficiente
- Aprimorar QdrantVectorSearchTool
### Correções de Bugs
- Corrigir problemas para manter stopwords atualizadas
- Resolver valores não pickleable no estado de fluxo
- Garantir que lite agents corrijam curso em erros de validação
- Corrigir hash de argumento de callback para garantir que cache funcione
- Permitir adicionar conteúdo de fonte RAG de URLs válidas
- Tornar seleção de nó de plot mais suave
- Corrigir IDs de documento duplicados para conhecimento
### Refatoração
- Melhorar tratamento de execução de ferramenta MCP com concurrent futures
- Simplificar tratamento de fluxo, tipagem e logging; atualizar UI e testes
- Refatorar gerenciamento de stop word para propriedade
### Documentação
- Migrar embedder para embedding_model e exigir vectordb em documentação de ferramentas; adicionar exemplos de provedor (en/ko/pt-BR)
### Contribuidores
@danielfsbarreto, @greysonlalonde, @lorenzejay, @lucasgomide, @tonykipkemboi
</Update>
<Update label="01 nov 2025">
## v1.3.0
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.3.0)
## O que Mudou
### Funcionalidades
- Refatorar tratamento de fluxo, tipagem e logging
- Aprimorar QdrantVectorSearchTool
### Correções de Bugs
- Corrigir ferramentas Firecrawl e adicionar testes
- Refatorar use_stop_words para propriedade e adicionar verificação para stop words
### Documentação
- Migrar embedder para embedding_model e exigir vectordb em documentação de ferramentas
- Adicionar exemplos de provedor em Inglês, Coreano e Português
### Refatoração
- Melhorar tratamento de fluxo e atualizações de UI
### Contribuidores
@danielfsbarreto, @greysonlalonde, @lorenzejay, @lucasgomide, @tonykipkemboi
</Update>
<Update label="27 out 2025">
## v1.2.1
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.2.1)
## O que Mudou
### Funcionalidades
- Adicionar suporte para integração Datadog
- Suportar apps e mcps em liteagent
### Documentação
- Descrever variável de ambiente obrigatória para chamar ferramentas Platform para cada integração
- Adicionar documentação de integração Datadog
### Contribuidores
@barieom, @lorenzejay, @lucasgomide, @sabrenner
</Update>
<Update label="24 out 2025">
## v1.2.0
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.2.0)
## O que Mudou
### Correções de Bugs
- Atualizar modelo LLM padrão e melhorar logging de erros em utilitários LLM
- Alterar diretório de visualização de fluxo e inspeção de método
### Removendo Não Utilizados
- Remover aisuite
### Contribuidores
@greysonlalonde, @lorenzejay
</Update>
<Update label="21 out 2025">
## v1.1.0
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.1.0)
## O que Mudou
### Funcionalidades
- Aprimorar InternalInstructor para suportar múltiplos provedores LLM
- Implementar base de plugin mypy
- Melhorar QdrantVectorSearchTool
### Correções de Bugs
- Corrigir links de documentação de integração quebrados
- Corrigir chamada de trace dupla e adicionar tipos
- Fixar versões de template para mais recente
### Documentação
- Atualizar detalhes e exemplos de integração LLM
### Refatoração
- Melhorar tipagem do CrewBase
### Contribuidores
@cwarre33, @danielfsbarreto, @greysonlalonde, @lorenzejay
</Update>
<Update label="20 out 2025">
## v1.0.0
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0)
## O que Mudou
### Funcionalidades
- Bump de versões para 1.0.0
- Aprimorar tratamento de eventos de conhecimento e guardrail na classe Agent
- Injetar credenciais do repositório de ferramentas no comando crewai run
### Correções de Bugs
- Preservar estrutura de condição aninhada em decoradores Flow
- Adicionar parâmetros de print padrão ao método Printer.print
- Corrigir erros quando não há input() disponível
- Adicionar margem de 10s ao decodificar JWT
- Reverter agenda cron ruim
- Corrigir agenda cron para executar a cada 5 dias em datas específicas
- Usar PATH do sistema para binário Docker em vez de caminho hardcoded
- Adicionar configuração CodeQL para excluir corretamente diretórios de template
### Documentação
- Atualizar política de segurança para relatório de vulnerabilidade
- Adicionar guia para capturar logs de telemetria no CrewAI AMP
- Adicionar arquivos /resume ausentes
- Esclarecer parâmetro de URL de webhook em workflows HITL
### Contribuidores
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide, @mplachta, @theCyberTech
</Update>
<Update label="18 out 2025">
## v1.0.0b3 (Pré-lançamento)
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0b3)
## O que Mudou
### Funcionalidades
- Aprimorar funcionalidade e validação de guardrail de tarefa
- Melhorar suporte para importar SDK nativo
- Adicionar testes nativos Azure
- Aprimorar classe BedrockCompletion com funcionalidades avançadas
- Aprimorar classe GeminiCompletion com suporte a parâmetro de cliente
- Aprimorar classe AnthropicCompletion com parâmetros de cliente adicionais
### Correções de Bugs
- Preservar estrutura de condição aninhada em decoradores Flow
- Adicionar parâmetros de print padrão ao método Printer.print
- Remover prints stdout e melhorar determinismo de teste
### Refatoração
- Converter módulo de projeto para metaclasse com tipagem completa
### Contribuidores
@greysonlalonde, @lorenzejay
</Update>
<Update label="16 out 2025">
## v1.0.0b2 (Pré-lançamento)
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0b2)
## O que Mudou
### Funcionalidades
- Aprimorar classe OpenAICompletion com parâmetros de cliente adicionais
- Melhorar segurança de thread do event bus e suporte async
- Injetar credenciais do repositório de ferramentas no comando crewai run
### Correções de Bugs
- Corrigir problema onde ocorre erro se não houver input() disponível
- Adicionar margem de 10s ao decodificar JWT
- Corrigir cópia e adicionar verificação NOT_SPECIFIED em task.py
### Documentação
- Garantir que CREWAI_PLATFORM_INTEGRATION_TOKEN seja mencionado na documentação
- Atualizar documentação de triggers
### Contribuidores
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide
</Update>
<Update label="14 out 2025">
## v1.0.0b1 (Pré-lançamento)
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0b1)
## O que Mudou
### Funcionalidades
- Aprimorar classe OpenAICompletion com parâmetros de cliente adicionais
- Melhorar segurança de thread do event bus e suporte async
- Implementar integração Bedrock LLM
### Correções de Bugs
- Corrigir problema com disponibilidade de input() ausente
- Resolver erro de decodificação JWT adicionando margem de 10 segundos
- Injetar credenciais do repositório de ferramentas no comando crewai run
- Corrigir cópia e adicionar verificação NOT_SPECIFIED em task.py
### Documentação
- Garantir que CREWAI_PLATFORM_INTEGRATION_TOKEN seja mencionado na documentação
- Atualizar documentação de triggers
### Contribuidores
@Vidit-Ostwal, @greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide
</Update>
<Update label="13 out 2025">
## v0.203.1
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/0.203.1)
## O que Mudou
### Melhorias e Correções do Núcleo
- Corrigida injeção de credenciais do repositório de ferramentas no comando `crewai run`
- Adicionada margem de 10 segundos ao decodificar JWTs para reduzir erros de validação de token
- Corrigida (depois revertida) correção de agenda cron destinada a executar jobs a cada 5 dias em datas específicas
### Documentação e Guias
- Atualizada política de segurança para esclarecer o processo de relatório de vulnerabilidade
</Update>
<Update label="09 out 2025">
## v1.0.0a4 (Pré-lançamento)
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0a4)
## O que Mudou
### Funcionalidades
- Aprimorar tratamento de eventos de conhecimento e guardrail na classe Agent
- Introduzir comandos de listagem e execução de trigger para desenvolvimento local
- Atualizar documentação com nova abordagem para consumir Platform Actions
- Adicionar guia para capturar logs de telemetria no CrewAI AMP
### Correções de Bugs
- Reverter agenda cron ruim
- Corrigir agenda cron para executar a cada 5 dias em datas específicas
- Remover linha duplicada e adicionar variável de ambiente explícita
### Contribuidores
@greysonlalonde, @heitorado, @joaomdmoura, @lorenzejay, @lucasgomide, @mplachta, @theCyberTech
</Update>
<Update label="07 out 2025">
## v1.0.0a3 (Pré-lançamento)
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0a3)
## O que Mudou
### Funcionalidades
- Adicionar suporte a agente para ações de plataforma
- Adicionar argumento de interpretador para ferramenta de execução de código
- Suporte direto para execução de apps de plataforma
### Documentação
- Adicionar documentação de ações de plataforma
- Adicionar tipos de transporte stdio e sse à documentação MCP
- Atualizar lista de modelos AWS
### Contribuidores
@greysonlalonde, @heitorado, @lorenzejay, @lucasgomide
</Update>
<Update label="03 out 2025">
## v1.0.0a2 (Pré-lançamento)
[Ver release no GitHub](https://github.com/crewAIInc/crewAI/releases/tag/1.0.0a2)
## O que Mudou
### Melhorias e Correções do Núcleo
- Atualizações de CI para monorepo
- Atualizar modelo Anthropic padrão para claude-sonnet-4-20250514
- Corrigir testes para atualização de modelo
### Contribuidores
@greysonlalonde, @lorenzejay
</Update>
<Update label="30 set 2025">
## v1.0.0a1

View File

@@ -309,6 +309,10 @@ Ao executar esse Flow, a saída será diferente dependendo do valor booleano ale
### Human in the Loop (feedback humano)
<Note>
O decorador `@human_feedback` requer **CrewAI versão 1.8.0 ou superior**.
</Note>
O decorador `@human_feedback` permite fluxos de trabalho human-in-the-loop, pausando a execução do flow para coletar feedback de um humano. Isso é útil para portões de aprovação, revisão de qualidade e pontos de decisão que requerem julgamento humano.
```python Code

View File

@@ -0,0 +1,342 @@
---
title: Redação de PII para Traces
description: "Redija automaticamente dados sensíveis de traces de execução de crews e flows"
icon: "lock"
mode: "wide"
---
## Visão Geral
A Redação de PII é um recurso do CrewAI AMP que detecta e mascara automaticamente Informações de Identificação Pessoal (PII) nos traces de execução de crews e flows. Isso garante que dados sensíveis como números de cartão de crédito, CPF, endereços de e-mail e nomes não sejam expostos nos traces do CrewAI AMP. Você também pode criar reconhecedores personalizados para proteger dados específicos da sua organização.
<Info>
A Redação de PII está disponível no plano Enterprise.
A implantação deve ser versão 1.8.0 ou superior.
</Info>
<Frame>
![Visão Geral da Redação de PII](/images/enterprise/pii_mask_recognizer_trace_example.png)
</Frame>
## Por Que a Redação de PII é Importante
Ao executar agentes de IA em produção, informações sensíveis frequentemente fluem através das suas crews:
- Dados de clientes de integrações CRM
- Informações financeiras de processadores de pagamento
- Detalhes pessoais de envios de formulários
- Dados internos de funcionários
Sem a redação adequada, esses dados aparecem nos traces, tornando a conformidade com regulamentações como LGPD, HIPAA e PCI-DSS desafiadora. A Redação de PII resolve isso mascarando automaticamente dados sensíveis antes de serem armazenados nos traces.
## Como Funciona
1. **Detectar** - Escanear dados de eventos de trace para padrões de PII conhecidos
2. **Classificar** - Identificar o tipo de dado sensível (cartão de crédito, CPF, e-mail, etc.)
3. **Mascarar/Redigir** - Substituir os dados sensíveis por valores mascarados com base na sua configuração
```
Original: "Entre em contato com john.doe@company.com ou ligue para 555-123-4567"
Redigido: "Entre em contato com <EMAIL_ADDRESS> ou ligue para <PHONE_NUMBER>"
```
## Habilitando a Redação de PII
<Info>
Você deve estar no plano Enterprise e sua implantação deve ser versão 1.8.0 ou superior para usar este recurso.
</Info>
<Steps>
<Step title="Navegue até Configurações da Crew">
No painel do CrewAI AMP, selecione sua crew implantada e vá para uma de suas implantações/automações, depois navegue até **Settings** → **PII Protection**.
</Step>
<Step title="Habilitar Proteção PII">
Ative **PII Redaction for Traces**. Isso habilitará a varredura automática e redação de dados de trace.
<Info>
Você precisa habilitar manualmente a Redação de PII para cada implantação.
</Info>
<Frame>
![Habilitar Redação de PII](/images/enterprise/pii_mask_recognizer_enable.png)
</Frame>
</Step>
<Step title="Configurar Tipos de Entidade">
Selecione quais tipos de PII detectar e redigir. Cada entidade pode ser habilitada ou desabilitada individualmente.
<Frame>
![Configurar Entidades](/images/enterprise/pii_mask_recognizer_supported_entities.png)
</Frame>
</Step>
<Step title="Salvar">
Salve sua configuração. A redação de PII estará ativa em todas as execuções subsequentes da crew, sem necessidade de reimplantação.
</Step>
</Steps>
## Tipos de Entidade Suportados
O CrewAI suporta os seguintes tipos de entidade PII, organizados por categoria.
### Entidades Globais
| Entidade | Descrição | Exemplo |
|----------|-----------|---------|
| `CREDIT_CARD` | Números de cartão de crédito/débito | "4111-1111-1111-1111" |
| `CRYPTO` | Endereços de carteira de criptomoedas | "bc1qxy2kgd..." |
| `DATE_TIME` | Datas e horários | "15 de janeiro de 2024" |
| `EMAIL_ADDRESS` | Endereços de e-mail | "john@example.com" |
| `IBAN_CODE` | Números de conta bancária internacional | "DE89 3704 0044 0532 0130 00" |
| `IP_ADDRESS` | Endereços IPv4 e IPv6 | "192.168.1.1" |
| `LOCATION` | Localizações geográficas | "São Paulo" |
| `MEDICAL_LICENSE` | Números de licença médica | "CRM12345" |
| `NRP` | Nacionalidades, grupos religiosos ou políticos | - |
| `PERSON` | Nomes pessoais | "João Silva" |
| `PHONE_NUMBER` | Números de telefone em vários formatos | "+55 (11) 98765-4321" |
| `URL` | URLs da web | "https://example.com" |
### Entidades Específicas dos EUA
| Entidade | Descrição | Exemplo |
|----------|-----------|---------|
| `US_BANK_NUMBER` | Números de conta bancária dos EUA | "1234567890" |
| `US_DRIVER_LICENSE` | Números de carteira de motorista dos EUA | "D1234567" |
| `US_ITIN` | Número de Identificação de Contribuinte Individual | "900-70-0000" |
| `US_PASSPORT` | Números de passaporte dos EUA | "123456789" |
| `US_SSN` | Números de Seguro Social | "123-45-6789" |
## Ações de Redação
Para cada entidade habilitada, você pode configurar como os dados são redigidos:
| Ação | Descrição | Exemplo de Saída |
|------|-----------|------------------|
| `mask` | Substituir pelo rótulo do tipo de entidade | `<CREDIT_CARD>` |
| `redact` | Remover completamente o texto | *(vazio)* |
## Reconhecedores Personalizados
Além das entidades integradas, você pode criar **reconhecedores personalizados** para detectar padrões de PII específicos da sua organização.
<Frame>
![Reconhecedores Personalizados](/images/enterprise/pii_mask_recognizer.png)
</Frame>
### Tipos de Reconhecedores
Você tem duas opções para reconhecedores personalizados:
| Tipo | Melhor Para | Exemplo de Caso de Uso |
|------|-------------|------------------------|
| **Baseado em Padrão (Regex)** | Dados estruturados com formatos previsíveis | Valores de salário, IDs de funcionários, códigos de projeto |
| **Lista de Negação** | Correspondências exatas de strings | Nomes de empresas, codinomes internos, termos específicos |
### Criando um Reconhecedor Personalizado
<Steps>
<Step title="Navegue até Reconhecedores Personalizados">
Vá para **Settings** da Organização → **Organization** → **Add Recognizer**.
</Step>
<Step title="Configure o Reconhecedor">
<Frame>
![Configurar Reconhecedor](/images/enterprise/pii_mask_recognizer_create.png)
</Frame>
Configure os seguintes campos:
- **Name**: Um nome descritivo para o reconhecedor
- **Entity Type**: O rótulo da entidade que aparecerá na saída redigida (ex.: `EMPLOYEE_ID`, `SALARY`)
- **Type**: Escolha entre Padrão Regex ou Lista de Negação
- **Pattern/Values**: Padrão regex ou lista de strings para corresponder
- **Confidence Threshold**: Pontuação mínima (0.0-1.0) necessária para uma correspondência acionar a redação. Valores mais altos (ex.: 0.8) reduzem falsos positivos, mas podem perder algumas correspondências. Valores mais baixos (ex.: 0.5) capturam mais correspondências, mas podem redigir em excesso. O padrão é 0.8.
- **Context Words** (opcional): Palavras que aumentam a confiança de detecção quando encontradas próximas
</Step>
<Step title="Salvar">
Salve o reconhecedor. Ele estará disponível para habilitar em suas implantações.
</Step>
</Steps>
### Entendendo os Tipos de Entidade
O **Entity Type** determina como o conteúdo correspondido aparece nos traces redigidos:
```
Entity Type: SALARY
Pattern: salary:\s*\$\s*\d+
Entrada: "Salário do funcionário: $50,000"
Saída: "Salário do funcionário <SALARY>"
```
### Usando Palavras de Contexto
Palavras de contexto melhoram a precisão aumentando a confiança quando termos específicos aparecem próximos ao padrão correspondido:
```
Context Words: "project", "code", "internal"
Entity Type: PROJECT_CODE
Pattern: PRJ-\d{4}
```
Quando "project" ou "code" aparece próximo a "PRJ-1234", o reconhecedor tem maior confiança de que é uma correspondência verdadeira, reduzindo falsos positivos.
## Visualizando Traces Redigidos
Uma vez que a redação de PII está habilitada, seus traces mostrarão valores redigidos no lugar de dados sensíveis:
```
Task Output: "Cliente <PERSON> fez o pedido #12345.
E-mail de contato: <EMAIL_ADDRESS>, telefone: <PHONE_NUMBER>.
Pagamento processado para cartão terminando em <CREDIT_CARD>."
```
Os valores redigidos são claramente marcados com colchetes angulares e o rótulo do tipo de entidade (ex.: `<EMAIL_ADDRESS>`), facilitando entender quais dados foram protegidos enquanto ainda permite depurar e monitorar o comportamento da crew.
## Melhores Práticas
### Considerações de Desempenho
<Steps>
<Step title="Habilite Apenas Entidades Necessárias">
Cada entidade habilitada adiciona sobrecarga de processamento. Habilite apenas entidades relevantes para seus dados.
</Step>
<Step title="Use Padrões Específicos">
Para reconhecedores personalizados, use padrões específicos para reduzir falsos positivos e melhorar o desempenho. Padrões regex são melhores para identificar padrões específicos nos traces como salário, ID de funcionário, código de projeto, etc. Reconhecedores de lista de negação são melhores para identificar strings exatas nos traces como nomes de empresas, codinomes internos, etc.
</Step>
<Step title="Aproveite Palavras de Contexto">
Palavras de contexto melhoram a precisão acionando a detecção apenas quando o texto circundante corresponde.
</Step>
</Steps>
## Solução de Problemas
<Accordion title="PII Não Está Sendo Redigido">
**Possíveis Causas:**
- Tipo de entidade não habilitado na configuração
- Padrão não corresponde ao formato dos dados
- Reconhecedor personalizado tem erros de sintaxe
**Soluções:**
- Verifique se a entidade está habilitada em Settings → Security
- Teste padrões regex com dados de amostra
- Verifique logs para erros de configuração
</Accordion>
<Accordion title="Muitos Dados Estão Sendo Redigidos">
**Possíveis Causas:**
- Tipos de entidade muito amplos habilitados (ex.: `DATE_TIME` captura datas em todos os lugares)
- Padrões de reconhecedor personalizado são muito gerais
**Soluções:**
- Desabilite entidades que causam falsos positivos
- Torne padrões personalizados mais específicos
- Adicione palavras de contexto para melhorar a precisão
</Accordion>
<Accordion title="Problemas de Desempenho">
**Possíveis Causas:**
- Muitas entidades habilitadas
- Entidades baseadas em NLP (`PERSON`, `LOCATION`, `NRP`) são computacionalmente caras pois usam modelos de machine learning
**Soluções:**
- Habilite apenas entidades que você realmente precisa
- Considere usar alternativas baseadas em padrão quando possível
- Monitore tempos de processamento de trace no painel
</Accordion>
---
## Exemplo Prático: Correspondência de Padrão de Salário
Este exemplo demonstra como criar um reconhecedor personalizado para detectar e mascarar informações de salário em seus traces.
### Caso de Uso
Sua crew processa dados de funcionários ou financeiros que incluem informações de salário em formatos como:
- `salary: $50,000`
- `salary: $125,000.00`
- `salary:$1,500.50`
Você deseja mascarar automaticamente esses valores para proteger dados sensíveis de remuneração.
### Configuração
<Frame>
![Configuração do Reconhecedor de Salário](/images/enterprise/pii_mask_custom_recognizer_salary.png)
</Frame>
| Campo | Valor |
|-------|-------|
| **Name** | `SALARY` |
| **Entity Type** | `SALARY` |
| **Type** | Regex Pattern |
| **Regex Pattern** | `salary:\s*\$\s*\d{1,3}(,\d{3})*(\.\d{2})?` |
| **Action** | Mask |
| **Confidence Threshold** | `0.8` |
| **Context Words** | `salary, compensation, pay, wage, income` |
### Análise do Padrão Regex
| Componente do Padrão | Significado |
|----------------------|-------------|
| `salary:` | Corresponde ao texto literal "salary:" |
| `\s*` | Corresponde a zero ou mais caracteres de espaço em branco |
| `\$` | Corresponde ao sinal de dólar (escapado) |
| `\s*` | Corresponde a zero ou mais caracteres de espaço em branco após $ |
| `\d{1,3}` | Corresponde a 1-3 dígitos (ex.: "1", "50", "125") |
| `(,\d{3})*` | Corresponde a milhares separados por vírgula (ex.: ",000", ",500,000") |
| `(\.\d{2})?` | Opcionalmente corresponde a centavos (ex.: ".00", ".50") |
### Resultados de Exemplo
```
Original: "Registro do funcionário mostra salary: $125,000.00 anualmente"
Redigido: "Registro do funcionário mostra <SALARY> anualmente"
Original: "Salário base salary:$50,000 com potencial de bônus"
Redigido: "Salário base <SALARY> com potencial de bônus"
```
<Tip>
Adicionar palavras de contexto como "salary", "compensation", "pay", "wage" e "income" ajuda a aumentar a confiança de detecção quando esses termos aparecem próximos ao padrão correspondido, reduzindo falsos positivos.
</Tip>
### Habilite o Reconhecedor para Suas Implantações
<Warning>
Criar um reconhecedor personalizado no nível da organização não o habilita automaticamente para suas implantações. Você deve habilitar manualmente cada reconhecedor para cada implantação onde deseja aplicá-lo.
</Warning>
Após criar seu reconhecedor personalizado, habilite-o para cada implantação:
<Steps>
<Step title="Navegue até Sua Implantação">
Vá para sua implantação/automação e abra **Settings** → **PII Protection**.
</Step>
<Step title="Selecione Reconhecedores Personalizados">
Em **Mask Recognizers**, você verá os reconhecedores definidos pela sua organização. Marque a caixa ao lado dos reconhecedores que deseja habilitar.
<Frame>
![Habilitar Reconhecedor Personalizado](/images/enterprise/pii_mask_recognizers_options.png)
</Frame>
</Step>
<Step title="Salvar Configuração">
Salve suas alterações. O reconhecedor estará ativo em todas as execuções subsequentes para esta implantação.
</Step>
</Steps>
<Info>
Repita este processo para cada implantação onde você precisa do reconhecedor personalizado. Isso oferece controle granular sobre quais reconhecedores estão ativos em diferentes ambientes (ex.: desenvolvimento vs. produção).
</Info>

View File

@@ -7,6 +7,10 @@ mode: "wide"
## Visão Geral
<Note>
O decorador `@human_feedback` requer **CrewAI versão 1.8.0 ou superior**. Certifique-se de atualizar sua instalação antes de usar este recurso.
</Note>
O decorador `@human_feedback` permite fluxos de trabalho human-in-the-loop (HITL) diretamente nos CrewAI Flows. Ele permite pausar a execução do flow, apresentar a saída para um humano revisar, coletar seu feedback e, opcionalmente, rotear para diferentes listeners com base no resultado do feedback.
Isso é particularmente valioso para:

View File

@@ -5,9 +5,22 @@ icon: "user-check"
mode: "wide"
---
Human-in-the-Loop (HITL) é uma abordagem poderosa que combina a inteligência artificial com a experiência humana para aprimorar a tomada de decisões e melhorar os resultados das tarefas. Este guia mostra como implementar HITL dentro da CrewAI.
Human-in-the-Loop (HITL) é uma abordagem poderosa que combina a inteligência artificial com a experiência humana para aprimorar a tomada de decisões e melhorar os resultados das tarefas. CrewAI oferece várias maneiras de implementar HITL dependendo das suas necessidades.
## Configurando Workflows HITL
## Escolhendo Sua Abordagem HITL
CrewAI oferece duas abordagens principais para implementar workflows human-in-the-loop:
| Abordagem | Melhor Para | Integração | Versão |
|----------|----------|-------------|---------|
| **Baseada em Flow** (decorador `@human_feedback`) | Desenvolvimento local, revisão via console, workflows síncronos | [Feedback Humano em Flows](/pt-BR/learn/human-feedback-in-flows) | **1.8.0+** |
| **Baseada em Webhook** (Enterprise) | Deployments em produção, workflows assíncronos, integrações externas (Slack, Teams, etc.) | Este guia | - |
<Tip>
Se você está construindo flows e deseja adicionar etapas de revisão humana com roteamento baseado em feedback, confira o guia [Feedback Humano em Flows](/pt-BR/learn/human-feedback-in-flows) para o decorador `@human_feedback`.
</Tip>
## Configurando Workflows HITL Baseados em Webhook
<Steps>
<Step title="Configure sua Tarefa">

View File

@@ -5,7 +5,7 @@ This module is separate from experimental.a2a to avoid circular imports.
from __future__ import annotations
from typing import Annotated, Any, ClassVar
from typing import Annotated, Any, ClassVar, Literal
from pydantic import (
BaseModel,
@@ -53,6 +53,7 @@ class A2AConfig(BaseModel):
fail_fast: If True, raise error when agent unreachable; if False, skip and continue.
trust_remote_completion_status: If True, return A2A agent's result directly when completed.
updates: Update mechanism config.
transport_protocol: A2A transport protocol (grpc, jsonrpc, http+json).
"""
model_config: ClassVar[ConfigDict] = ConfigDict(extra="forbid")
@@ -82,3 +83,7 @@ class A2AConfig(BaseModel):
default_factory=_get_default_update_config,
description="Update mechanism config",
)
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"] = Field(
default="JSONRPC",
description="Specified mode of A2A transport protocol",
)

View File

@@ -7,7 +7,7 @@ from collections.abc import AsyncIterator, MutableMapping
from contextlib import asynccontextmanager
from functools import lru_cache
import time
from typing import TYPE_CHECKING, Any
from typing import TYPE_CHECKING, Any, Literal
import uuid
from a2a.client import A2AClientHTTPError, Client, ClientConfig, ClientFactory
@@ -18,7 +18,6 @@ from a2a.types import (
PushNotificationConfig as A2APushNotificationConfig,
Role,
TextPart,
TransportProtocol,
)
from aiocache import cached # type: ignore[import-untyped]
from aiocache.serializers import PickleSerializer # type: ignore[import-untyped]
@@ -259,6 +258,7 @@ async def _afetch_agent_card_impl(
def execute_a2a_delegation(
endpoint: str,
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"],
auth: AuthScheme | None,
timeout: int,
task_description: str,
@@ -282,6 +282,23 @@ def execute_a2a_delegation(
use aexecute_a2a_delegation directly.
Args:
endpoint: A2A agent endpoint URL (AgentCard URL)
transport_protocol: Optional A2A transport protocol (grpc, jsonrpc, http+json)
auth: Optional AuthScheme for authentication (Bearer, OAuth2, API Key, HTTP Basic/Digest)
timeout: Request timeout in seconds
task_description: The task to delegate
context: Optional context information
context_id: Context ID for correlating messages/tasks
task_id: Specific task identifier
reference_task_ids: List of related task IDs
metadata: Additional metadata (external_id, request_id, etc.)
extensions: Protocol extensions for custom fields
conversation_history: Previous Message objects from conversation
agent_id: Agent identifier for logging
agent_role: Role of the CrewAI agent delegating the task
agent_branch: Optional agent tree branch for logging
response_model: Optional Pydantic model for structured outputs
turn_number: Optional turn number for multi-turn conversations
endpoint: A2A agent endpoint URL.
auth: Optional AuthScheme for authentication.
timeout: Request timeout in seconds.
@@ -323,6 +340,7 @@ def execute_a2a_delegation(
agent_role=agent_role,
agent_branch=agent_branch,
response_model=response_model,
transport_protocol=transport_protocol,
turn_number=turn_number,
updates=updates,
)
@@ -333,6 +351,7 @@ def execute_a2a_delegation(
async def aexecute_a2a_delegation(
endpoint: str,
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"],
auth: AuthScheme | None,
timeout: int,
task_description: str,
@@ -356,6 +375,23 @@ async def aexecute_a2a_delegation(
in an async context (e.g., with Crew.akickoff() or agent.aexecute_task()).
Args:
endpoint: A2A agent endpoint URL
transport_protocol: Optional A2A transport protocol (grpc, jsonrpc, http+json)
auth: Optional AuthScheme for authentication
timeout: Request timeout in seconds
task_description: Task to delegate
context: Optional context
context_id: Context ID for correlation
task_id: Specific task identifier
reference_task_ids: Related task IDs
metadata: Additional metadata
extensions: Protocol extensions
conversation_history: Previous Message objects
turn_number: Current turn number
agent_branch: Agent tree branch for logging
agent_id: Agent identifier for logging
agent_role: Agent role for logging
response_model: Optional Pydantic model for structured outputs
endpoint: A2A agent endpoint URL.
auth: Optional AuthScheme for authentication.
timeout: Request timeout in seconds.
@@ -414,6 +450,7 @@ async def aexecute_a2a_delegation(
agent_role=agent_role,
response_model=response_model,
updates=updates,
transport_protocol=transport_protocol,
)
crewai_event_bus.emit(
@@ -431,6 +468,7 @@ async def aexecute_a2a_delegation(
async def _aexecute_a2a_delegation_impl(
endpoint: str,
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"],
auth: AuthScheme | None,
timeout: int,
task_description: str,
@@ -524,7 +562,6 @@ async def _aexecute_a2a_delegation_impl(
extensions=extensions,
)
transport_protocol = TransportProtocol("JSONRPC")
new_messages: list[Message] = [*conversation_history, message]
crewai_event_bus.emit(
None,
@@ -596,7 +633,7 @@ async def _aexecute_a2a_delegation_impl(
@asynccontextmanager
async def _create_a2a_client(
agent_card: AgentCard,
transport_protocol: TransportProtocol,
transport_protocol: Literal["JSONRPC", "GRPC", "HTTP+JSON"],
timeout: int,
headers: MutableMapping[str, str],
streaming: bool,
@@ -640,7 +677,7 @@ async def _create_a2a_client(
config = ClientConfig(
httpx_client=httpx_client,
supported_transports=[str(transport_protocol.value)],
supported_transports=[transport_protocol],
streaming=streaming and not use_polling,
polling=use_polling,
accepted_output_modes=["application/json"],

View File

@@ -771,6 +771,7 @@ def _delegate_to_a2a(
response_model=agent_config.response_model,
turn_number=turn_num + 1,
updates=agent_config.updates,
transport_protocol=agent_config.transport_protocol,
)
conversation_history = a2a_result.get("history", [])
@@ -1085,6 +1086,7 @@ async def _adelegate_to_a2a(
agent_branch=agent_branch,
response_model=agent_config.response_model,
turn_number=turn_num + 1,
transport_protocol=agent_config.transport_protocol,
updates=agent_config.updates,
)

View File

@@ -209,10 +209,9 @@ class EventListener(BaseEventListener):
@crewai_event_bus.on(TaskCompletedEvent)
def on_task_completed(source: Any, event: TaskCompletedEvent) -> None:
# Handle telemetry
span = self.execution_spans.get(source)
span = self.execution_spans.pop(source, None)
if span:
self._telemetry.task_ended(span, source, source.agent.crew)
self.execution_spans[source] = None
# Pass task name if it exists
task_name = get_task_name(source)
@@ -222,11 +221,10 @@ class EventListener(BaseEventListener):
@crewai_event_bus.on(TaskFailedEvent)
def on_task_failed(source: Any, event: TaskFailedEvent) -> None:
span = self.execution_spans.get(source)
span = self.execution_spans.pop(source, None)
if span:
if source.agent and source.agent.crew:
self._telemetry.task_ended(span, source, source.agent.crew)
self.execution_spans[source] = None
# Pass task name if it exists
task_name = get_task_name(source)