fix llm_utils.py and other type errors

This commit is contained in:
Brandon Hancock
2025-01-03 16:25:59 -05:00
parent 4a794622c7
commit b97c4cf2c6
3 changed files with 90 additions and 33 deletions

View File

@@ -502,8 +502,11 @@ class Task(BaseModel):
)
print("crew_chat_messages:", inputs["crew_chat_messages"])
# Ensure that inputs["crew_chat_messages"] is a string
crew_chat_messages_json = str(inputs["crew_chat_messages"])
try:
crew_chat_messages = json.loads(inputs["crew_chat_messages"])
crew_chat_messages = json.loads(crew_chat_messages_json)
except json.JSONDecodeError as e:
print("An error occurred while parsing crew chat messages:", e)
raise

View File

@@ -1,5 +1,5 @@
import os
from typing import Any, Dict, Optional, Union
from typing import Any, Dict, List, Optional, Union
from packaging import version
@@ -21,8 +21,6 @@ def create_llm(
- LLM: Already instantiated LLM, returned as-is.
- Any: Attempt to extract known attributes like model_name, temperature, etc.
- None: Use environment-based or fallback default model.
default_model (str): The fallback model name to use if llm_value is None
and no environment variable is set.
Returns:
An LLM instance if successful, or None if something fails.
@@ -46,30 +44,33 @@ def create_llm(
if llm_value is None:
return _llm_via_environment_or_fallback()
# 4) Otherwise, attempt to extract relevant attributes from an unknown object (like a config)
# e.g. follow the approach used in agent.py
# 4) Otherwise, attempt to extract relevant attributes from an unknown object
try:
llm_params = {
"model": (
getattr(llm_value, "model_name", None)
or getattr(llm_value, "deployment_name", None)
or str(llm_value)
),
"temperature": getattr(llm_value, "temperature", None),
"max_tokens": getattr(llm_value, "max_tokens", None),
"logprobs": getattr(llm_value, "logprobs", None),
"timeout": getattr(llm_value, "timeout", None),
"max_retries": getattr(llm_value, "max_retries", None),
"api_key": getattr(llm_value, "api_key", None),
"base_url": getattr(llm_value, "base_url", None),
"organization": getattr(llm_value, "organization", None),
}
# Remove None values
llm_params = {k: v for k, v in llm_params.items() if v is not None}
created_llm = LLM(**llm_params)
# Extract attributes with explicit types
model = (
getattr(llm_value, "model_name", None)
or getattr(llm_value, "deployment_name", None)
or str(llm_value)
)
temperature: Optional[float] = getattr(llm_value, "temperature", None)
max_tokens: Optional[int] = getattr(llm_value, "max_tokens", None)
logprobs: Optional[int] = getattr(llm_value, "logprobs", None)
timeout: Optional[float] = getattr(llm_value, "timeout", None)
api_key: Optional[str] = getattr(llm_value, "api_key", None)
base_url: Optional[str] = getattr(llm_value, "base_url", None)
created_llm = LLM(
model=model,
temperature=temperature,
max_tokens=max_tokens,
logprobs=logprobs,
timeout=timeout,
api_key=api_key,
base_url=base_url,
)
print(
"LLM created with extracted parameters; "
f"model='{llm_params.get('model', 'UNKNOWN')}'"
f"model='{model}'"
)
return created_llm
except Exception as e:
@@ -77,7 +78,7 @@ def create_llm(
return None
def create_chat_llm(default_model: str = "gpt-4") -> Optional[LLM]:
def create_chat_llm() -> Optional[LLM]:
"""
Creates a Chat LLM with additional checks, such as verifying crewAI version
or reading from pyproject.toml. Then calls `create_llm(None, default_model)`.
@@ -115,12 +116,55 @@ def _llm_via_environment_or_fallback() -> Optional[LLM]:
or os.environ.get("MODEL")
or DEFAULT_LLM_MODEL
)
llm_params = {"model": model_name}
# Initialize parameters with correct types
model: str = model_name
temperature: Optional[float] = None
max_tokens: Optional[int] = None
max_completion_tokens: Optional[int] = None
logprobs: Optional[int] = None
timeout: Optional[float] = None
api_key: Optional[str] = None
base_url: Optional[str] = None
api_version: Optional[str] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
top_p: Optional[float] = None
n: Optional[int] = None
stop: Optional[Union[str, List[str]]] = None
logit_bias: Optional[Dict[int, float]] = None
response_format: Optional[Dict[str, Any]] = None
seed: Optional[int] = None
top_logprobs: Optional[int] = None
callbacks: List[Any] = []
# Optional base URL from env
api_base = os.environ.get("OPENAI_API_BASE") or os.environ.get("OPENAI_BASE_URL")
if api_base:
llm_params["base_url"] = api_base
base_url = api_base
# Initialize llm_params dictionary
llm_params: Dict[str, Any] = {
"model": model,
"temperature": temperature,
"max_tokens": max_tokens,
"max_completion_tokens": max_completion_tokens,
"logprobs": logprobs,
"timeout": timeout,
"api_key": api_key,
"base_url": base_url,
"api_version": api_version,
"presence_penalty": presence_penalty,
"frequency_penalty": frequency_penalty,
"top_p": top_p,
"n": n,
"stop": stop,
"logit_bias": logit_bias,
"response_format": response_format,
"seed": seed,
"top_logprobs": top_logprobs,
"callbacks": callbacks,
}
UNACCEPTED_ATTRIBUTES = [
"AWS_ACCESS_KEY_ID",
@@ -135,14 +179,17 @@ def _llm_via_environment_or_fallback() -> Optional[LLM]:
if key_name and key_name not in UNACCEPTED_ATTRIBUTES:
env_value = os.environ.get(key_name)
if env_value:
# Map environment variable names to recognized LITELLM_PARAMS if any
# Map environment variable names to recognized parameters
param_key = _normalize_key_name(key_name.lower())
llm_params[param_key] = env_value
elif env_var.get("default", False):
for key, value in env_var.items():
if key not in ["prompt", "key_name", "default"]:
if key in os.environ:
llm_params[key] = value
llm_params[key] = os.environ[key]
# Remove None values
llm_params = {k: v for k, v in llm_params.items() if v is not None}
# Try creating the LLM
try:
@@ -150,7 +197,7 @@ def _llm_via_environment_or_fallback() -> Optional[LLM]:
print(f"LLM created with model='{model_name}'")
return new_llm
except Exception as e:
print(f"Error instantiating LLM from environment/fallback: {e}")
print(f"Error instantiating LLM from environment/fallback: {type(e).__name__}: {e}")
return None

View File

@@ -1,4 +1,5 @@
import warnings
from typing import Any, Dict, Optional
from litellm.integrations.custom_logger import CustomLogger
from litellm.types.utils import Usage
@@ -7,10 +8,16 @@ from crewai.agents.agent_builder.utilities.base_token_process import TokenProces
class TokenCalcHandler(CustomLogger):
def __init__(self, token_cost_process: TokenProcess):
def __init__(self, token_cost_process: Optional[TokenProcess]):
self.token_cost_process = token_cost_process
def log_success_event(self, kwargs, response_obj, start_time, end_time):
def log_success_event(
self,
kwargs: Dict[str, Any],
response_obj: Dict[str, Any],
start_time: float,
end_time: float,
) -> None:
if self.token_cost_process is None:
return