mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
Merge branch 'main' into main
This commit is contained in:
@@ -43,4 +43,6 @@ from .tools import (
|
||||
YoutubeChannelSearchTool,
|
||||
YoutubeVideoSearchTool,
|
||||
WeaviateVectorSearchTool,
|
||||
SerpApiGoogleSearchTool,
|
||||
SerpApiGoogleShoppingTool,
|
||||
)
|
||||
|
||||
@@ -53,3 +53,5 @@ from .youtube_channel_search_tool.youtube_channel_search_tool import (
|
||||
)
|
||||
from .youtube_video_search_tool.youtube_video_search_tool import YoutubeVideoSearchTool
|
||||
from .weaviate_tool.vector_search import WeaviateVectorSearchTool
|
||||
from .serpapi_tool.serpapi_google_search_tool import SerpApiGoogleSearchTool
|
||||
from .serpapi_tool.serpapi_google_shopping_tool import SerpApiGoogleShoppingTool
|
||||
@@ -38,3 +38,16 @@ Agent(
|
||||
tools=[CodeInterpreterTool(user_dockerfile_path="<Dockerfile_path>")],
|
||||
)
|
||||
```
|
||||
|
||||
If it is difficult to connect to docker daemon automatically (especially for macOS users), you can do this to setup docker host manually
|
||||
|
||||
```python
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
Agent(
|
||||
...
|
||||
tools=[CodeInterpreterTool(user_docker_base_url="<Docker Host Base Url>",
|
||||
user_dockerfile_path="<Dockerfile_path>")],
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
@@ -2,7 +2,9 @@ import importlib.util
|
||||
import os
|
||||
from typing import List, Optional, Type
|
||||
|
||||
import docker
|
||||
from docker import from_env as docker_from_env
|
||||
from docker.models.containers import Container
|
||||
from docker.errors import ImageNotFound, NotFound
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
@@ -28,6 +30,7 @@ class CodeInterpreterTool(BaseTool):
|
||||
default_image_tag: str = "code-interpreter:latest"
|
||||
code: Optional[str] = None
|
||||
user_dockerfile_path: Optional[str] = None
|
||||
user_docker_base_url: Optional[str] = None
|
||||
unsafe_mode: bool = False
|
||||
|
||||
@staticmethod
|
||||
@@ -39,12 +42,13 @@ class CodeInterpreterTool(BaseTool):
|
||||
"""
|
||||
Verify if the Docker image is available. Optionally use a user-provided Dockerfile.
|
||||
"""
|
||||
client = docker.from_env()
|
||||
|
||||
client = docker_from_env() if self.user_docker_base_url == None else docker.DockerClient(base_url=self.user_docker_base_url)
|
||||
|
||||
try:
|
||||
client.images.get(self.default_image_tag)
|
||||
|
||||
except docker.errors.ImageNotFound:
|
||||
except ImageNotFound:
|
||||
if self.user_dockerfile_path and os.path.exists(self.user_dockerfile_path):
|
||||
dockerfile_path = self.user_dockerfile_path
|
||||
else:
|
||||
@@ -73,17 +77,17 @@ class CodeInterpreterTool(BaseTool):
|
||||
return self.run_code_in_docker(code, libraries_used)
|
||||
|
||||
def _install_libraries(
|
||||
self, container: docker.models.containers.Container, libraries: List[str]
|
||||
self, container: Container, libraries: List[str]
|
||||
) -> None:
|
||||
"""
|
||||
Install missing libraries in the Docker container
|
||||
"""
|
||||
for library in libraries:
|
||||
container.exec_run(f"pip install {library}")
|
||||
container.exec_run(["pip", "install", library])
|
||||
|
||||
def _init_docker_container(self) -> docker.models.containers.Container:
|
||||
def _init_docker_container(self) -> Container:
|
||||
container_name = "code-interpreter"
|
||||
client = docker.from_env()
|
||||
client = docker_from_env()
|
||||
current_path = os.getcwd()
|
||||
|
||||
# Check if the container is already running
|
||||
@@ -91,7 +95,7 @@ class CodeInterpreterTool(BaseTool):
|
||||
existing_container = client.containers.get(container_name)
|
||||
existing_container.stop()
|
||||
existing_container.remove()
|
||||
except docker.errors.NotFound:
|
||||
except NotFound:
|
||||
pass # Container does not exist, no need to remove
|
||||
|
||||
return client.containers.run(
|
||||
@@ -108,8 +112,7 @@ class CodeInterpreterTool(BaseTool):
|
||||
container = self._init_docker_container()
|
||||
self._install_libraries(container, libraries_used)
|
||||
|
||||
cmd_to_run = f'python3 -c "{code}"'
|
||||
exec_result = container.exec_run(cmd_to_run)
|
||||
exec_result = container.exec_run(["python3", "-c", code])
|
||||
|
||||
container.stop()
|
||||
container.remove()
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Type
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
# Type checking import
|
||||
if TYPE_CHECKING:
|
||||
from firecrawl import FirecrawlApp
|
||||
@@ -10,13 +12,6 @@ if TYPE_CHECKING:
|
||||
|
||||
class FirecrawlCrawlWebsiteToolSchema(BaseModel):
|
||||
url: str = Field(description="Website URL")
|
||||
crawler_options: Optional[Dict[str, Any]] = Field(
|
||||
default=None, description="Options for crawling"
|
||||
)
|
||||
page_options: Optional[Dict[str, Any]] = Field(
|
||||
default=None, description="Options for page"
|
||||
)
|
||||
|
||||
|
||||
class FirecrawlCrawlWebsiteTool(BaseTool):
|
||||
model_config = ConfigDict(
|
||||
@@ -25,10 +20,25 @@ class FirecrawlCrawlWebsiteTool(BaseTool):
|
||||
name: str = "Firecrawl web crawl tool"
|
||||
description: str = "Crawl webpages using Firecrawl and return the contents"
|
||||
args_schema: Type[BaseModel] = FirecrawlCrawlWebsiteToolSchema
|
||||
firecrawl_app: Optional["FirecrawlApp"] = None
|
||||
api_key: Optional[str] = None
|
||||
firecrawl: Optional["FirecrawlApp"] = None
|
||||
url: Optional[str] = None
|
||||
params: Optional[Dict[str, Any]] = None
|
||||
poll_interval: Optional[int] = 2
|
||||
idempotency_key: Optional[str] = None
|
||||
|
||||
def __init__(self, api_key: Optional[str] = None, **kwargs):
|
||||
"""Initialize FirecrawlCrawlWebsiteTool.
|
||||
|
||||
Args:
|
||||
api_key (Optional[str]): Firecrawl API key. If not provided, will check FIRECRAWL_API_KEY env var.
|
||||
url (Optional[str]): Base URL to crawl. Can be overridden by the _run method.
|
||||
firecrawl_app (Optional[FirecrawlApp]): Previously created FirecrawlApp instance.
|
||||
params (Optional[Dict[str, Any]]): Additional parameters to pass to the FirecrawlApp.
|
||||
poll_interval (Optional[int]): Poll interval for the FirecrawlApp.
|
||||
idempotency_key (Optional[str]): Idempotency key for the FirecrawlApp.
|
||||
**kwargs: Additional arguments passed to BaseTool.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
try:
|
||||
from firecrawl import FirecrawlApp # type: ignore
|
||||
@@ -37,21 +47,28 @@ class FirecrawlCrawlWebsiteTool(BaseTool):
|
||||
"`firecrawl` package not found, please run `pip install firecrawl-py`"
|
||||
)
|
||||
|
||||
self.firecrawl = FirecrawlApp(api_key=api_key)
|
||||
# Allows passing a previously created FirecrawlApp instance
|
||||
# or builds a new one with the provided API key
|
||||
if not self.firecrawl_app:
|
||||
client_api_key = api_key or os.getenv("FIRECRAWL_API_KEY")
|
||||
if not client_api_key:
|
||||
raise ValueError(
|
||||
"FIRECRAWL_API_KEY is not set. Please provide it either via the constructor "
|
||||
"with the `api_key` argument or by setting the FIRECRAWL_API_KEY environment variable."
|
||||
)
|
||||
self.firecrawl_app = FirecrawlApp(api_key=client_api_key)
|
||||
|
||||
def _run(
|
||||
self,
|
||||
url: str,
|
||||
crawler_options: Optional[Dict[str, Any]] = None,
|
||||
page_options: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
if crawler_options is None:
|
||||
crawler_options = {}
|
||||
if page_options is None:
|
||||
page_options = {}
|
||||
def _run(self, url: str):
|
||||
# Unless url has been previously set via constructor by the user,
|
||||
# use the url argument provided by the agent at runtime.
|
||||
base_url = self.url or url
|
||||
|
||||
options = {"crawlerOptions": crawler_options, "pageOptions": page_options}
|
||||
return self.firecrawl.crawl_url(url, options)
|
||||
return self.firecrawl_app.crawl_url(
|
||||
base_url,
|
||||
params=self.params,
|
||||
poll_interval=self.poll_interval,
|
||||
idempotency_key=self.idempotency_key
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
|
||||
@@ -18,6 +18,10 @@ class LlamaIndexTool(BaseTool):
|
||||
from llama_index.core.tools import BaseTool as LlamaBaseTool
|
||||
|
||||
tool = cast(LlamaBaseTool, self.llama_index_tool)
|
||||
|
||||
if self.result_as_answer:
|
||||
return tool(*args, **kwargs).content
|
||||
|
||||
return tool(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -24,6 +24,16 @@ tool = SeleniumScrapingTool(website_url='https://example.com', css_element='.mai
|
||||
|
||||
# Example 4: Scrape using optional parameters for customized scraping
|
||||
tool = SeleniumScrapingTool(website_url='https://example.com', css_element='.main-content', cookie={'name': 'user', 'value': 'John Doe'})
|
||||
|
||||
# Example 5: Scrape content in HTML format
|
||||
tool = SeleniumScrapingTool(website_url='https://example.com', return_html=True)
|
||||
result = tool._run()
|
||||
# Returns HTML content like: ['<div class="content">Hello World</div>', '<div class="footer">Copyright 2024</div>']
|
||||
|
||||
# Example 6: Scrape content in text format (default)
|
||||
tool = SeleniumScrapingTool(website_url='https://example.com', return_html=False)
|
||||
result = tool._run()
|
||||
# Returns text content like: ['Hello World', 'Copyright 2024']
|
||||
```
|
||||
|
||||
## Arguments
|
||||
@@ -31,3 +41,4 @@ tool = SeleniumScrapingTool(website_url='https://example.com', css_element='.mai
|
||||
- `css_element`: Mandatory. The CSS selector for a specific element to scrape from the website.
|
||||
- `cookie`: Optional. A dictionary containing cookie information. This parameter allows the tool to simulate a session with cookie information, providing access to content that may be restricted to logged-in users.
|
||||
- `wait_time`: Optional. The number of seconds the tool waits after loading the website and after setting a cookie, before scraping the content. This allows for dynamic content to load properly.
|
||||
- `return_html`: Optional. If True, the tool returns HTML content. If False, the tool returns text content.
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
import re
|
||||
import time
|
||||
from typing import Any, Optional, Type
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, validator
|
||||
from selenium import webdriver
|
||||
from selenium.webdriver.chrome.options import Options
|
||||
from selenium.webdriver.common.by import By
|
||||
@@ -11,18 +13,39 @@ from selenium.webdriver.common.by import By
|
||||
class FixedSeleniumScrapingToolSchema(BaseModel):
|
||||
"""Input for SeleniumScrapingTool."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class SeleniumScrapingToolSchema(FixedSeleniumScrapingToolSchema):
|
||||
"""Input for SeleniumScrapingTool."""
|
||||
|
||||
website_url: str = Field(..., description="Mandatory website url to read the file")
|
||||
website_url: str = Field(..., description="Mandatory website url to read the file. Must start with http:// or https://")
|
||||
css_element: str = Field(
|
||||
...,
|
||||
description="Mandatory css reference for element to scrape from the website",
|
||||
)
|
||||
|
||||
@validator('website_url')
|
||||
def validate_website_url(cls, v):
|
||||
if not v:
|
||||
raise ValueError("Website URL cannot be empty")
|
||||
|
||||
if len(v) > 2048: # Common maximum URL length
|
||||
raise ValueError("URL is too long (max 2048 characters)")
|
||||
|
||||
if not re.match(r'^https?://', v):
|
||||
raise ValueError("URL must start with http:// or https://")
|
||||
|
||||
try:
|
||||
result = urlparse(v)
|
||||
if not all([result.scheme, result.netloc]):
|
||||
raise ValueError("Invalid URL format")
|
||||
except Exception as e:
|
||||
raise ValueError(f"Invalid URL: {str(e)}")
|
||||
|
||||
if re.search(r'\s', v):
|
||||
raise ValueError("URL cannot contain whitespace")
|
||||
|
||||
return v
|
||||
|
||||
|
||||
class SeleniumScrapingTool(BaseTool):
|
||||
name: str = "Read a website content"
|
||||
@@ -33,6 +56,7 @@ class SeleniumScrapingTool(BaseTool):
|
||||
cookie: Optional[dict] = None
|
||||
wait_time: Optional[int] = 3
|
||||
css_element: Optional[str] = None
|
||||
return_html: Optional[bool] = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -63,19 +87,54 @@ class SeleniumScrapingTool(BaseTool):
|
||||
) -> Any:
|
||||
website_url = kwargs.get("website_url", self.website_url)
|
||||
css_element = kwargs.get("css_element", self.css_element)
|
||||
return_html = kwargs.get("return_html", self.return_html)
|
||||
driver = self._create_driver(website_url, self.cookie, self.wait_time)
|
||||
|
||||
content = []
|
||||
if css_element is None or css_element.strip() == "":
|
||||
body_text = driver.find_element(By.TAG_NAME, "body").text
|
||||
content.append(body_text)
|
||||
else:
|
||||
for element in driver.find_elements(By.CSS_SELECTOR, css_element):
|
||||
content.append(element.text)
|
||||
content = self._get_content(driver, css_element, return_html)
|
||||
driver.close()
|
||||
|
||||
return "\n".join(content)
|
||||
|
||||
def _get_content(self, driver, css_element, return_html):
|
||||
content = []
|
||||
|
||||
if self._is_css_element_empty(css_element):
|
||||
content.append(self._get_body_content(driver, return_html))
|
||||
else:
|
||||
content.extend(self._get_elements_content(driver, css_element, return_html))
|
||||
|
||||
return content
|
||||
|
||||
def _is_css_element_empty(self, css_element):
|
||||
return css_element is None or css_element.strip() == ""
|
||||
|
||||
def _get_body_content(self, driver, return_html):
|
||||
body_element = driver.find_element(By.TAG_NAME, "body")
|
||||
|
||||
return (
|
||||
body_element.get_attribute("outerHTML")
|
||||
if return_html
|
||||
else body_element.text
|
||||
)
|
||||
|
||||
def _get_elements_content(self, driver, css_element, return_html):
|
||||
elements_content = []
|
||||
|
||||
for element in driver.find_elements(By.CSS_SELECTOR, css_element):
|
||||
elements_content.append(
|
||||
element.get_attribute("outerHTML") if return_html else element.text
|
||||
)
|
||||
|
||||
return elements_content
|
||||
|
||||
def _create_driver(self, url, cookie, wait_time):
|
||||
if not url:
|
||||
raise ValueError("URL cannot be empty")
|
||||
|
||||
# Validate URL format
|
||||
if not re.match(r'^https?://', url):
|
||||
raise ValueError("URL must start with http:// or https://")
|
||||
|
||||
options = Options()
|
||||
options.add_argument("--headless")
|
||||
driver = self.driver(options=options)
|
||||
|
||||
32
src/crewai_tools/tools/serpapi_tool/README.md
Normal file
32
src/crewai_tools/tools/serpapi_tool/README.md
Normal file
@@ -0,0 +1,32 @@
|
||||
# SerpApi Tools
|
||||
|
||||
## Description
|
||||
[SerpApi](https://serpapi.com/) tools are built for searching information in the internet. It currently supports:
|
||||
- Google Search
|
||||
- Google Shopping
|
||||
|
||||
To successfully make use of SerpApi tools, you have to have `SERPAPI_API_KEY` set in the environment. To get the API key, register a free account at [SerpApi](https://serpapi.com/).
|
||||
|
||||
## Installation
|
||||
To start using the SerpApi Tools, you must first install the `crewai_tools` package. This can be easily done with the following command:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Examples
|
||||
The following example demonstrates how to initialize the tool
|
||||
|
||||
### Google Search
|
||||
```python
|
||||
from crewai_tools import SerpApiGoogleSearchTool
|
||||
|
||||
tool = SerpApiGoogleSearchTool()
|
||||
```
|
||||
|
||||
### Google Shopping
|
||||
```python
|
||||
from crewai_tools import SerpApiGoogleShoppingTool
|
||||
|
||||
tool = SerpApiGoogleShoppingTool()
|
||||
```
|
||||
38
src/crewai_tools/tools/serpapi_tool/serpapi_base_tool.py
Normal file
38
src/crewai_tools/tools/serpapi_tool/serpapi_base_tool.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import os
|
||||
import re
|
||||
from typing import Optional, Any, Union
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
class SerpApiBaseTool(BaseTool):
|
||||
"""Base class for SerpApi functionality with shared capabilities."""
|
||||
|
||||
client: Optional[Any] = None
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
try:
|
||||
from serpapi import Client
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`serpapi` package not found, please install with `pip install serpapi`"
|
||||
)
|
||||
api_key = os.getenv("SERPAPI_API_KEY")
|
||||
if not api_key:
|
||||
raise ValueError(
|
||||
"Missing API key, you can get the key from https://serpapi.com/manage-api-key"
|
||||
)
|
||||
self.client = Client(api_key=api_key)
|
||||
|
||||
def _omit_fields(self, data: Union[dict, list], omit_patterns: list[str]) -> None:
|
||||
if isinstance(data, dict):
|
||||
for field in list(data.keys()):
|
||||
if any(re.compile(p).match(field) for p in omit_patterns):
|
||||
data.pop(field, None)
|
||||
else:
|
||||
if isinstance(data[field], (dict, list)):
|
||||
self._omit_fields(data[field], omit_patterns)
|
||||
elif isinstance(data, list):
|
||||
for item in data:
|
||||
self._omit_fields(item, omit_patterns)
|
||||
@@ -0,0 +1,40 @@
|
||||
from typing import Any, Type, Optional
|
||||
|
||||
import re
|
||||
from pydantic import BaseModel, Field
|
||||
from .serpapi_base_tool import SerpApiBaseTool
|
||||
from serpapi import HTTPError
|
||||
|
||||
class SerpApiGoogleSearchToolSchema(BaseModel):
|
||||
"""Input for Google Search."""
|
||||
search_query: str = Field(..., description="Mandatory search query you want to use to Google search.")
|
||||
location: Optional[str] = Field(None, description="Location you want the search to be performed in.")
|
||||
|
||||
class SerpApiGoogleSearchTool(SerpApiBaseTool):
|
||||
name: str = "Google Search"
|
||||
description: str = (
|
||||
"A tool to perform to perform a Google search with a search_query."
|
||||
)
|
||||
args_schema: Type[BaseModel] = SerpApiGoogleSearchToolSchema
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
try:
|
||||
results = self.client.search({
|
||||
"q": kwargs.get("search_query"),
|
||||
"location": kwargs.get("location"),
|
||||
}).as_dict()
|
||||
|
||||
self._omit_fields(
|
||||
results,
|
||||
[r"search_metadata", r"search_parameters", r"serpapi_.+", r".+_token", r"displayed_link", r"pagination"]
|
||||
)
|
||||
|
||||
return results
|
||||
except HTTPError as e:
|
||||
return f"An error occurred: {str(e)}. Some parameters may be invalid."
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,42 @@
|
||||
from typing import Any, Type, Optional
|
||||
|
||||
import re
|
||||
from pydantic import BaseModel, Field
|
||||
from .serpapi_base_tool import SerpApiBaseTool
|
||||
from serpapi import HTTPError
|
||||
|
||||
class SerpApiGoogleShoppingToolSchema(BaseModel):
|
||||
"""Input for Google Shopping."""
|
||||
search_query: str = Field(..., description="Mandatory search query you want to use to Google shopping.")
|
||||
location: Optional[str] = Field(None, description="Location you want the search to be performed in.")
|
||||
|
||||
|
||||
class SerpApiGoogleShoppingTool(SerpApiBaseTool):
|
||||
name: str = "Google Shopping"
|
||||
description: str = (
|
||||
"A tool to perform search on Google shopping with a search_query."
|
||||
)
|
||||
args_schema: Type[BaseModel] = SerpApiGoogleShoppingToolSchema
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
try:
|
||||
results = self.client.search({
|
||||
"engine": "google_shopping",
|
||||
"q": kwargs.get("search_query"),
|
||||
"location": kwargs.get("location")
|
||||
}).as_dict()
|
||||
|
||||
self._omit_fields(
|
||||
results,
|
||||
[r"search_metadata", r"search_parameters", r"serpapi_.+", r"filters", r"pagination"]
|
||||
)
|
||||
|
||||
return results
|
||||
except HTTPError as e:
|
||||
return f"An error occurred: {str(e)}. Some parameters may be invalid."
|
||||
|
||||
|
||||
|
||||
@@ -1,30 +1,49 @@
|
||||
# SerperDevTool Documentation
|
||||
|
||||
## Description
|
||||
This tool is designed to perform a semantic search for a specified query from a text's content across the internet. It utilizes the `serper.dev` API to fetch and display the most relevant search results based on the query provided by the user.
|
||||
The SerperDevTool is a powerful search tool that interfaces with the `serper.dev` API to perform internet searches. It supports multiple search types including general search and news search, with features like knowledge graph integration, organic results, "People Also Ask" questions, and related searches.
|
||||
|
||||
## Features
|
||||
- Multiple search types: 'search' (default) and 'news'
|
||||
- Knowledge graph integration for enhanced search context
|
||||
- Organic search results with sitelinks
|
||||
- "People Also Ask" questions and answers
|
||||
- Related searches suggestions
|
||||
- News search with date, source, and image information
|
||||
- Configurable number of results
|
||||
- Optional result saving to file
|
||||
|
||||
## Installation
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
The following example demonstrates how to initialize the tool and execute a search with a given query:
|
||||
|
||||
## Usage
|
||||
```python
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
# Initialize the tool for internet searching capabilities
|
||||
tool = SerperDevTool()
|
||||
# Initialize the tool
|
||||
tool = SerperDevTool(
|
||||
n_results=10, # Optional: Number of results to return (default: 10)
|
||||
save_file=False, # Optional: Save results to file (default: False)
|
||||
search_type="search" # Optional: Type of search - "search" or "news" (default: "search")
|
||||
)
|
||||
|
||||
# Execute a search
|
||||
results = tool._run(search_query="your search query")
|
||||
```
|
||||
|
||||
## Steps to Get Started
|
||||
To effectively use the `SerperDevTool`, follow these steps:
|
||||
## Configuration
|
||||
1. **API Key Setup**:
|
||||
- Sign up for an account at `serper.dev`
|
||||
- Obtain your API key
|
||||
- Set the environment variable: `SERPER_API_KEY`
|
||||
|
||||
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for a free account at `serper.dev`.
|
||||
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
|
||||
|
||||
## Conclusion
|
||||
By integrating the `SerperDevTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.
|
||||
## Response Format
|
||||
The tool returns structured data including:
|
||||
- Search parameters
|
||||
- Knowledge graph data (for general search)
|
||||
- Organic search results
|
||||
- "People Also Ask" questions
|
||||
- Related searches
|
||||
- News results (for news search type)
|
||||
|
||||
@@ -1,19 +1,29 @@
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
from typing import Any, Optional, Type
|
||||
import logging
|
||||
from typing import Any, Type
|
||||
|
||||
import requests
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def _save_results_to_file(content: str) -> None:
|
||||
"""Saves the search results to a file."""
|
||||
filename = f"search_results_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
|
||||
with open(filename, "w") as file:
|
||||
file.write(content)
|
||||
print(f"Results saved to {filename}")
|
||||
try:
|
||||
filename = f"search_results_{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
|
||||
with open(filename, "w") as file:
|
||||
file.write(content)
|
||||
logger.info(f"Results saved to {filename}")
|
||||
except IOError as e:
|
||||
logger.error(f"Failed to save results to file: {e}")
|
||||
raise
|
||||
|
||||
|
||||
class SerperDevToolSchema(BaseModel):
|
||||
@@ -27,67 +37,199 @@ class SerperDevToolSchema(BaseModel):
|
||||
class SerperDevTool(BaseTool):
|
||||
name: str = "Search the internet"
|
||||
description: str = (
|
||||
"A tool that can be used to search the internet with a search_query."
|
||||
"A tool that can be used to search the internet with a search_query. "
|
||||
"Supports different search types: 'search' (default), 'news'"
|
||||
)
|
||||
args_schema: Type[BaseModel] = SerperDevToolSchema
|
||||
search_url: str = "https://google.serper.dev/search"
|
||||
country: Optional[str] = ""
|
||||
location: Optional[str] = ""
|
||||
locale: Optional[str] = ""
|
||||
base_url: str = "https://google.serper.dev"
|
||||
n_results: int = 10
|
||||
save_file: bool = False
|
||||
search_type: str = "search"
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
def _get_search_url(self, search_type: str) -> str:
|
||||
"""Get the appropriate endpoint URL based on search type."""
|
||||
search_type = search_type.lower()
|
||||
allowed_search_types = ["search", "news"]
|
||||
if search_type not in allowed_search_types:
|
||||
raise ValueError(
|
||||
f"Invalid search type: {search_type}. Must be one of: {', '.join(allowed_search_types)}"
|
||||
)
|
||||
return f"{self.base_url}/{search_type}"
|
||||
|
||||
search_query = kwargs.get("search_query") or kwargs.get("query")
|
||||
save_file = kwargs.get("save_file", self.save_file)
|
||||
n_results = kwargs.get("n_results", self.n_results)
|
||||
def _process_knowledge_graph(self, kg: dict) -> dict:
|
||||
"""Process knowledge graph data from search results."""
|
||||
return {
|
||||
"title": kg.get("title", ""),
|
||||
"type": kg.get("type", ""),
|
||||
"website": kg.get("website", ""),
|
||||
"imageUrl": kg.get("imageUrl", ""),
|
||||
"description": kg.get("description", ""),
|
||||
"descriptionSource": kg.get("descriptionSource", ""),
|
||||
"descriptionLink": kg.get("descriptionLink", ""),
|
||||
"attributes": kg.get("attributes", {}),
|
||||
}
|
||||
|
||||
payload = {"q": search_query, "num": n_results}
|
||||
def _process_organic_results(self, organic_results: list) -> list:
|
||||
"""Process organic search results."""
|
||||
processed_results = []
|
||||
for result in organic_results[: self.n_results]:
|
||||
try:
|
||||
result_data = {
|
||||
"title": result["title"],
|
||||
"link": result["link"],
|
||||
"snippet": result.get("snippet", ""),
|
||||
"position": result.get("position"),
|
||||
}
|
||||
|
||||
if self.country != "":
|
||||
payload["gl"] = self.country
|
||||
if self.location != "":
|
||||
payload["location"] = self.location
|
||||
if self.locale != "":
|
||||
payload["hl"] = self.locale
|
||||
if "sitelinks" in result:
|
||||
result_data["sitelinks"] = [
|
||||
{
|
||||
"title": sitelink.get("title", ""),
|
||||
"link": sitelink.get("link", ""),
|
||||
}
|
||||
for sitelink in result["sitelinks"]
|
||||
]
|
||||
|
||||
payload = json.dumps(payload)
|
||||
processed_results.append(result_data)
|
||||
except KeyError:
|
||||
logger.warning(f"Skipping malformed organic result: {result}")
|
||||
continue
|
||||
return processed_results
|
||||
|
||||
def _process_people_also_ask(self, paa_results: list) -> list:
|
||||
"""Process 'People Also Ask' results."""
|
||||
processed_results = []
|
||||
for result in paa_results[: self.n_results]:
|
||||
try:
|
||||
result_data = {
|
||||
"question": result["question"],
|
||||
"snippet": result.get("snippet", ""),
|
||||
"title": result.get("title", ""),
|
||||
"link": result.get("link", ""),
|
||||
}
|
||||
processed_results.append(result_data)
|
||||
except KeyError:
|
||||
logger.warning(f"Skipping malformed PAA result: {result}")
|
||||
continue
|
||||
return processed_results
|
||||
|
||||
def _process_related_searches(self, related_results: list) -> list:
|
||||
"""Process related search results."""
|
||||
processed_results = []
|
||||
for result in related_results[: self.n_results]:
|
||||
try:
|
||||
processed_results.append({"query": result["query"]})
|
||||
except KeyError:
|
||||
logger.warning(f"Skipping malformed related search result: {result}")
|
||||
continue
|
||||
return processed_results
|
||||
|
||||
def _process_news_results(self, news_results: list) -> list:
|
||||
"""Process news search results."""
|
||||
processed_results = []
|
||||
for result in news_results[: self.n_results]:
|
||||
try:
|
||||
result_data = {
|
||||
"title": result["title"],
|
||||
"link": result["link"],
|
||||
"snippet": result.get("snippet", ""),
|
||||
"date": result.get("date", ""),
|
||||
"source": result.get("source", ""),
|
||||
"imageUrl": result.get("imageUrl", ""),
|
||||
}
|
||||
processed_results.append(result_data)
|
||||
except KeyError:
|
||||
logger.warning(f"Skipping malformed news result: {result}")
|
||||
continue
|
||||
return processed_results
|
||||
|
||||
def _make_api_request(self, search_query: str, search_type: str) -> dict:
|
||||
"""Make API request to Serper."""
|
||||
search_url = self._get_search_url(search_type)
|
||||
payload = json.dumps({"q": search_query, "num": self.n_results})
|
||||
headers = {
|
||||
"X-API-KEY": os.environ["SERPER_API_KEY"],
|
||||
"content-type": "application/json",
|
||||
}
|
||||
|
||||
response = requests.request(
|
||||
"POST", self.search_url, headers=headers, data=payload
|
||||
)
|
||||
results = response.json()
|
||||
|
||||
if "organic" in results:
|
||||
results = results["organic"][: self.n_results]
|
||||
string = []
|
||||
for result in results:
|
||||
try:
|
||||
string.append(
|
||||
"\n".join(
|
||||
[
|
||||
f"Title: {result['title']}",
|
||||
f"Link: {result['link']}",
|
||||
f"Snippet: {result['snippet']}",
|
||||
"---",
|
||||
]
|
||||
)
|
||||
)
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
content = "\n".join(string)
|
||||
if save_file:
|
||||
_save_results_to_file(content)
|
||||
return f"\nSearch results: {content}\n"
|
||||
else:
|
||||
response = None
|
||||
try:
|
||||
response = requests.post(
|
||||
search_url, headers=headers, json=json.loads(payload), timeout=10
|
||||
)
|
||||
response.raise_for_status()
|
||||
results = response.json()
|
||||
if not results:
|
||||
logger.error("Empty response from Serper API")
|
||||
raise ValueError("Empty response from Serper API")
|
||||
return results
|
||||
except requests.exceptions.RequestException as e:
|
||||
error_msg = f"Error making request to Serper API: {e}"
|
||||
if response is not None and hasattr(response, "content"):
|
||||
error_msg += f"\nResponse content: {response.content}"
|
||||
logger.error(error_msg)
|
||||
raise
|
||||
except json.JSONDecodeError as e:
|
||||
if response is not None and hasattr(response, "content"):
|
||||
logger.error(f"Error decoding JSON response: {e}")
|
||||
logger.error(f"Response content: {response.content}")
|
||||
else:
|
||||
logger.error(
|
||||
f"Error decoding JSON response: {e} (No response content available)"
|
||||
)
|
||||
raise
|
||||
|
||||
def _process_search_results(self, results: dict, search_type: str) -> dict:
|
||||
"""Process search results based on search type."""
|
||||
formatted_results = {}
|
||||
|
||||
if search_type == "search":
|
||||
if "knowledgeGraph" in results:
|
||||
formatted_results["knowledgeGraph"] = self._process_knowledge_graph(
|
||||
results["knowledgeGraph"]
|
||||
)
|
||||
|
||||
if "organic" in results:
|
||||
formatted_results["organic"] = self._process_organic_results(
|
||||
results["organic"]
|
||||
)
|
||||
|
||||
if "peopleAlsoAsk" in results:
|
||||
formatted_results["peopleAlsoAsk"] = self._process_people_also_ask(
|
||||
results["peopleAlsoAsk"]
|
||||
)
|
||||
|
||||
if "relatedSearches" in results:
|
||||
formatted_results["relatedSearches"] = self._process_related_searches(
|
||||
results["relatedSearches"]
|
||||
)
|
||||
|
||||
elif search_type == "news":
|
||||
if "news" in results:
|
||||
formatted_results["news"] = self._process_news_results(results["news"])
|
||||
|
||||
return formatted_results
|
||||
|
||||
def _run(self, **kwargs: Any) -> Any:
|
||||
"""Execute the search operation."""
|
||||
search_query = kwargs.get("search_query") or kwargs.get("query")
|
||||
search_type = kwargs.get("search_type", self.search_type)
|
||||
save_file = kwargs.get("save_file", self.save_file)
|
||||
|
||||
results = self._make_api_request(search_query, search_type)
|
||||
|
||||
formatted_results = {
|
||||
"searchParameters": {
|
||||
"q": search_query,
|
||||
"type": search_type,
|
||||
**results.get("searchParameters", {}),
|
||||
}
|
||||
}
|
||||
|
||||
formatted_results.update(self._process_search_results(results, search_type))
|
||||
formatted_results["credits"] = results.get("credits", 1)
|
||||
|
||||
if save_file:
|
||||
_save_results_to_file(json.dumps(formatted_results, indent=2))
|
||||
|
||||
return formatted_results
|
||||
|
||||
@@ -1,81 +1,87 @@
|
||||
# SpiderTool
|
||||
|
||||
## Description
|
||||
|
||||
[Spider](https://spider.cloud/?ref=crewai) is the [fastest](https://github.com/spider-rs/spider/blob/main/benches/BENCHMARKS.md#benchmark-results) open source scraper and crawler that returns LLM-ready data. It converts any website into pure HTML, markdown, metadata or text while enabling you to crawl with custom actions using AI.
|
||||
[Spider](https://spider.cloud/?ref=crewai) is a high-performance web scraping and crawling tool that delivers optimized markdown for LLMs and AI agents. It intelligently switches between HTTP requests and JavaScript rendering based on page requirements. Perfect for both single-page scraping and website crawling—making it ideal for content extraction and data collection.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the Spider API you need to download the [Spider SDK](https://pypi.org/project/spider-client/) and the crewai[tools] SDK too:
|
||||
To use the Spider API you need to download the [Spider SDK](https://pypi.org/project/spider-client/) and the crewai[tools] SDK, too:
|
||||
|
||||
```python
|
||||
pip install spider-client 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
This example shows you how you can use the Spider tool to enable your agent to scrape and crawl websites. The data returned from the Spider API is already LLM-ready, so no need to do any cleaning there.
|
||||
This example shows you how you can use the Spider tool to enable your agent to scrape and crawl websites. The data returned from the Spider API is LLM-ready.
|
||||
|
||||
```python
|
||||
from crewai_tools import SpiderTool
|
||||
|
||||
def main():
|
||||
spider_tool = SpiderTool()
|
||||
|
||||
searcher = Agent(
|
||||
role="Web Research Expert",
|
||||
goal="Find related information from specific URL's",
|
||||
backstory="An expert web researcher that uses the web extremely well",
|
||||
tools=[spider_tool],
|
||||
verbose=True,
|
||||
)
|
||||
# To enable scraping any website it finds during its execution
|
||||
spider_tool = SpiderTool(api_key='YOUR_API_KEY')
|
||||
|
||||
return_metadata = Task(
|
||||
description="Scrape https://spider.cloud with a limit of 1 and enable metadata",
|
||||
expected_output="Metadata and 10 word summary of spider.cloud",
|
||||
agent=searcher
|
||||
)
|
||||
# Initialize the tool with the website URL, so the agent can only scrape the content of the specified website
|
||||
spider_tool = SpiderTool(website_url='https://spider.cloud')
|
||||
|
||||
crew = Crew(
|
||||
agents=[searcher],
|
||||
tasks=[
|
||||
return_metadata,
|
||||
],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
crew.kickoff()
|
||||
# Pass in custom parameters, see below for more details
|
||||
spider_tool = SpiderTool(
|
||||
website_url='https://spider.cloud',
|
||||
custom_params={"depth": 2, "anti_bot": True, "proxy_enabled": True}
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
# Advanced usage using css query selector to extract content
|
||||
css_extraction_map = {
|
||||
"/": [ # pass in path (main index in this case)
|
||||
{
|
||||
"name": "headers", # give it a name for this element
|
||||
"selectors": [
|
||||
"h1"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
spider_tool = SpiderTool(
|
||||
website_url='https://spider.cloud',
|
||||
custom_params={"anti_bot": True, "proxy_enabled": True, "metadata": True, "css_extraction_map": css_extraction_map}
|
||||
)
|
||||
|
||||
### Response (extracted text will be in the metadata)
|
||||
"css_extracted": {
|
||||
"headers": [
|
||||
"The Web Crawler for AI Agents and LLMs!"
|
||||
]
|
||||
}
|
||||
```
|
||||
## Agent setup
|
||||
```yaml
|
||||
researcher:
|
||||
role: >
|
||||
You're a researcher that is tasked with researching a website and it's content (use crawl mode). The website is to crawl is: {website_url}.
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
- `api_key` (string, optional): Specifies Spider API key. If not specified, it looks for `SPIDER_API_KEY` in environment variables.
|
||||
- `params` (object, optional): Optional parameters for the request. Defaults to `{"return_format": "markdown"}` to return the website's content in a format that fits LLMs better.
|
||||
- `website_url` (string): The website URL. Will be used as a fallback if passed when the tool is initialized.
|
||||
- `log_failures` (bool): Log scrape failures or fail silently. Defaults to `true`.
|
||||
- `custom_params` (object, optional): Optional parameters for the request.
|
||||
- `return_format` (string): The return format of the website's content. Defaults to `markdown`.
|
||||
- `request` (string): The request type to perform. Possible values are `http`, `chrome`, and `smart`. Use `smart` to perform an HTTP request by default until JavaScript rendering is needed for the HTML.
|
||||
- `limit` (int): The maximum number of pages allowed to crawl per website. Remove the value or set it to `0` to crawl all pages.
|
||||
- `depth` (int): The crawl limit for maximum depth. If `0`, no limit will be applied.
|
||||
- `cache` (bool): Use HTTP caching for the crawl to speed up repeated runs. Default is `true`.
|
||||
- `budget` (object): Object that has paths with a counter for limiting the amount of pages example `{"*":1}` for only crawling the root page.
|
||||
- `locale` (string): The locale to use for request, example `en-US`.
|
||||
- `cookies` (string): Add HTTP cookies to use for request.
|
||||
- `stealth` (bool): Use stealth mode for headless chrome request to help prevent being blocked. The default is `true` on chrome.
|
||||
- `headers` (object): Forward HTTP headers to use for all request. The object is expected to be a map of key value pairs.
|
||||
- `metadata` (bool): Boolean to store metadata about the pages and content found. This could help improve AI interopt. Defaults to `false` unless you have the website already stored with the configuration enabled.
|
||||
- `viewport` (object): Configure the viewport for chrome. Defaults to `800x600`.
|
||||
- `encoding` (string): The type of encoding to use like `UTF-8`, `SHIFT_JIS`, or etc.
|
||||
- `metadata` (bool): Boolean to store metadata about the pages and content found. Defaults to `false`.
|
||||
- `subdomains` (bool): Allow subdomains to be included. Default is `false`.
|
||||
- `user_agent` (string): Add a custom HTTP user agent to the request. By default this is set to a random agent.
|
||||
- `store_data` (bool): Boolean to determine if storage should be used. If set this takes precedence over `storageless`. Defaults to `false`.
|
||||
- `gpt_config` (object): Use AI to generate actions to perform during the crawl. You can pass an array for the `"prompt"` to chain steps.
|
||||
- `fingerprint` (bool): Use advanced fingerprint for chrome.
|
||||
- `storageless` (bool): Boolean to prevent storing any type of data for the request including storage and AI vectors embedding. Defaults to `false` unless you have the website already stored.
|
||||
- `readability` (bool): Use [readability](https://github.com/mozilla/readability) to pre-process the content for reading. This may drastically improve the content for LLM usage.
|
||||
`return_format` (string): The format to return the data in. Possible values are `markdown`, `raw`, `text`, and `html2text`. Use `raw` to return the default format of the page like HTML etc.
|
||||
- `proxy_enabled` (bool): Enable high performance premium proxies for the request to prevent being blocked at the network level.
|
||||
- `query_selector` (string): The CSS query selector to use when extracting content from the markup.
|
||||
- `full_resources` (bool): Crawl and download all the resources for a website.
|
||||
- `css_extraction_map` (object): Use CSS or XPath selectors to scrape contents from the web page. Set the paths and the extraction object map to perform extractions per path or page.
|
||||
- `request_timeout` (int): The timeout to use for request. Timeouts can be from `5-60`. The default is `30` seconds.
|
||||
- `run_in_background` (bool): Run the request in the background. Useful if storing data and wanting to trigger crawls to the dashboard. This has no effect if storageless is set.
|
||||
- `return_headers` (bool): Return the HTTP response headers with the results. Defaults to `false`.
|
||||
- `filter_output_main_only` (bool): Filter the nav, aside, and footer from the output.
|
||||
- `headers` (object): Forward HTTP headers to use for all request. The object is expected to be a map of key value pairs.
|
||||
|
||||
Learn other parameters that can be used: [https://spider.cloud/docs/api](https://spider.cloud/docs/api)
|
||||
|
||||
|
||||
@@ -1,60 +1,202 @@
|
||||
import logging
|
||||
from typing import Any, Dict, Literal, Optional, Type
|
||||
from urllib.parse import unquote, urlparse
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
logger = logging.getLogger(__file__)
|
||||
|
||||
|
||||
class SpiderToolSchema(BaseModel):
|
||||
url: str = Field(description="Website URL")
|
||||
params: Optional[Dict[str, Any]] = Field(
|
||||
description="Set additional params. Options include:\n"
|
||||
"- `limit`: Optional[int] - The maximum number of pages allowed to crawl per website. Remove the value or set it to `0` to crawl all pages.\n"
|
||||
"- `depth`: Optional[int] - The crawl limit for maximum depth. If `0`, no limit will be applied.\n"
|
||||
"- `metadata`: Optional[bool] - Boolean to include metadata or not. Defaults to `False` unless set to `True`. If the user wants metadata, include params.metadata = True.\n"
|
||||
"- `query_selector`: Optional[str] - The CSS query selector to use when extracting content from the markup.\n"
|
||||
"""Input schema for SpiderTool."""
|
||||
|
||||
website_url: str = Field(
|
||||
..., description="Mandatory website URL to scrape or crawl"
|
||||
)
|
||||
mode: Literal["scrape", "crawl"] = Field(
|
||||
default="scrape",
|
||||
description="Mode, the only two allowed modes are `scrape` or `crawl`. Use `scrape` to scrape a single page and `crawl` to crawl the entire website following subpages. These modes are the only allowed values even when ANY params is set.",
|
||||
description="The mode of the SpiderTool. The only two allowed modes are `scrape` or `crawl`. Crawl mode will follow up to 5 links and return their content in markdown format.",
|
||||
)
|
||||
|
||||
|
||||
class SpiderTool(BaseTool):
|
||||
name: str = "Spider scrape & crawl tool"
|
||||
description: str = "Scrape & Crawl any url and return LLM-ready data."
|
||||
args_schema: Type[BaseModel] = SpiderToolSchema
|
||||
api_key: Optional[str] = None
|
||||
spider: Optional[Any] = None
|
||||
class SpiderToolConfig(BaseModel):
|
||||
"""Configuration settings for SpiderTool.
|
||||
|
||||
Contains all default values and constants used by SpiderTool.
|
||||
Centralizes configuration management for easier maintenance.
|
||||
"""
|
||||
|
||||
# Crawling settings
|
||||
DEFAULT_CRAWL_LIMIT: int = 5
|
||||
DEFAULT_RETURN_FORMAT: str = "markdown"
|
||||
|
||||
# Request parameters
|
||||
DEFAULT_REQUEST_MODE: str = "smart"
|
||||
FILTER_SVG: bool = True
|
||||
|
||||
|
||||
class SpiderTool(BaseTool):
|
||||
"""Tool for scraping and crawling websites.
|
||||
This tool provides functionality to either scrape a single webpage or crawl multiple
|
||||
pages, returning content in a format suitable for LLM processing.
|
||||
"""
|
||||
|
||||
name: str = "SpiderTool"
|
||||
description: str = (
|
||||
"A tool to scrape or crawl a website and return LLM-ready content."
|
||||
)
|
||||
args_schema: Type[BaseModel] = SpiderToolSchema
|
||||
custom_params: Optional[Dict[str, Any]] = None
|
||||
website_url: Optional[str] = None
|
||||
api_key: Optional[str] = None
|
||||
spider: Any = None
|
||||
log_failures: bool = True
|
||||
config: SpiderToolConfig = SpiderToolConfig()
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_key: Optional[str] = None,
|
||||
website_url: Optional[str] = None,
|
||||
custom_params: Optional[Dict[str, Any]] = None,
|
||||
log_failures: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
"""Initialize SpiderTool for web scraping and crawling.
|
||||
|
||||
Args:
|
||||
api_key (Optional[str]): Spider API key for authentication. Required for production use.
|
||||
website_url (Optional[str]): Default website URL to scrape/crawl. Can be overridden during execution.
|
||||
custom_params (Optional[Dict[str, Any]]): Additional parameters to pass to Spider API.
|
||||
These override any parameters set by the LLM.
|
||||
log_failures (bool): If True, logs errors. Defaults to True.
|
||||
**kwargs: Additional arguments passed to BaseTool.
|
||||
|
||||
Raises:
|
||||
ImportError: If spider-client package is not installed.
|
||||
RuntimeError: If Spider client initialization fails.
|
||||
"""
|
||||
|
||||
def __init__(self, api_key: Optional[str] = None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
if website_url is not None:
|
||||
self.website_url = website_url
|
||||
|
||||
self.log_failures = log_failures
|
||||
self.custom_params = custom_params
|
||||
|
||||
try:
|
||||
from spider import Spider # type: ignore
|
||||
|
||||
self.spider = Spider(api_key=api_key)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`spider-client` package not found, please run `pip install spider-client`"
|
||||
)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to initialize Spider client: {str(e)}")
|
||||
|
||||
self.spider = Spider(api_key=api_key)
|
||||
def _validate_url(self, url: str) -> bool:
|
||||
"""Validate URL format and security constraints.
|
||||
|
||||
Args:
|
||||
url (str): URL to validate. Must be a properly formatted HTTP(S) URL
|
||||
|
||||
Returns:
|
||||
bool: True if URL is valid and meets security requirements, False otherwise.
|
||||
"""
|
||||
try:
|
||||
url = url.strip()
|
||||
decoded_url = unquote(url)
|
||||
|
||||
result = urlparse(decoded_url)
|
||||
if not all([result.scheme, result.netloc]):
|
||||
return False
|
||||
|
||||
if result.scheme not in ["http", "https"]:
|
||||
return False
|
||||
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
def _run(
|
||||
self,
|
||||
url: str,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
mode: Optional[Literal["scrape", "crawl"]] = "scrape",
|
||||
):
|
||||
if mode not in ["scrape", "crawl"]:
|
||||
raise ValueError(
|
||||
"Unknown mode in `mode` parameter, `scrape` or `crawl` are the allowed modes"
|
||||
website_url: str,
|
||||
mode: Literal["scrape", "crawl"] = "scrape",
|
||||
) -> Optional[str]:
|
||||
"""Execute the spider tool to scrape or crawl the specified website.
|
||||
|
||||
Args:
|
||||
website_url (str): The URL to process. Must be a valid HTTP(S) URL.
|
||||
mode (Literal["scrape", "crawl"]): Operation mode.
|
||||
- "scrape": Extract content from single page
|
||||
- "crawl": Follow links and extract content from multiple pages
|
||||
|
||||
Returns:
|
||||
Optional[str]: Extracted content in markdown format, or None if extraction fails
|
||||
and log_failures is True.
|
||||
|
||||
Raises:
|
||||
ValueError: If URL is invalid or missing, or if mode is invalid.
|
||||
ImportError: If spider-client package is not properly installed.
|
||||
ConnectionError: If network connection fails while accessing the URL.
|
||||
Exception: For other runtime errors.
|
||||
"""
|
||||
|
||||
try:
|
||||
params = {}
|
||||
url = website_url or self.website_url
|
||||
|
||||
if not url:
|
||||
raise ValueError(
|
||||
"Website URL must be provided either during initialization or execution"
|
||||
)
|
||||
|
||||
if not self._validate_url(url):
|
||||
raise ValueError(f"Invalid URL format: {url}")
|
||||
|
||||
if mode not in ["scrape", "crawl"]:
|
||||
raise ValueError(
|
||||
f"Invalid mode: {mode}. Must be either 'scrape' or 'crawl'"
|
||||
)
|
||||
|
||||
params = {
|
||||
"request": self.config.DEFAULT_REQUEST_MODE,
|
||||
"filter_output_svg": self.config.FILTER_SVG,
|
||||
"return_format": self.config.DEFAULT_RETURN_FORMAT,
|
||||
}
|
||||
|
||||
if mode == "crawl":
|
||||
params["limit"] = self.config.DEFAULT_CRAWL_LIMIT
|
||||
|
||||
if self.custom_params:
|
||||
params.update(self.custom_params)
|
||||
|
||||
action = (
|
||||
self.spider.scrape_url if mode == "scrape" else self.spider.crawl_url
|
||||
)
|
||||
return action(url=url, params=params)
|
||||
|
||||
# Ensure 'return_format': 'markdown' is always included
|
||||
if params:
|
||||
params["return_format"] = "markdown"
|
||||
else:
|
||||
params = {"return_format": "markdown"}
|
||||
except ValueError as ve:
|
||||
if self.log_failures:
|
||||
logger.error(f"Validation error for URL {url}: {str(ve)}")
|
||||
return None
|
||||
raise ve
|
||||
|
||||
action = self.spider.scrape_url if mode == "scrape" else self.spider.crawl_url
|
||||
spider_docs = action(url=url, params=params)
|
||||
except ImportError as ie:
|
||||
logger.error(f"Spider client import error: {str(ie)}")
|
||||
raise ie
|
||||
|
||||
return spider_docs
|
||||
except ConnectionError as ce:
|
||||
if self.log_failures:
|
||||
logger.error(f"Connection error while accessing {url}: {str(ce)}")
|
||||
return None
|
||||
raise ce
|
||||
|
||||
except Exception as e:
|
||||
if self.log_failures:
|
||||
logger.error(
|
||||
f"Unexpected error during {mode} operation on {url}: {str(e)}"
|
||||
)
|
||||
return None
|
||||
raise e
|
||||
|
||||
93
tests/tools/selenium_scraping_tool_test.py
Normal file
93
tests/tools/selenium_scraping_tool_test.py
Normal file
@@ -0,0 +1,93 @@
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
from crewai_tools.tools.selenium_scraping_tool.selenium_scraping_tool import (
|
||||
SeleniumScrapingTool,
|
||||
)
|
||||
|
||||
|
||||
def mock_driver_with_html(html_content):
|
||||
driver = MagicMock()
|
||||
mock_element = MagicMock()
|
||||
mock_element.get_attribute.return_value = html_content
|
||||
bs = BeautifulSoup(html_content, "html.parser")
|
||||
mock_element.text = bs.get_text()
|
||||
|
||||
driver.find_elements.return_value = [mock_element]
|
||||
driver.find_element.return_value = mock_element
|
||||
|
||||
return driver
|
||||
|
||||
|
||||
def initialize_tool_with(mock_driver):
|
||||
tool = SeleniumScrapingTool()
|
||||
tool.driver = MagicMock(return_value=mock_driver)
|
||||
|
||||
return tool
|
||||
|
||||
|
||||
def test_tool_initialization():
|
||||
tool = SeleniumScrapingTool()
|
||||
|
||||
assert tool.website_url is None
|
||||
assert tool.css_element is None
|
||||
assert tool.cookie is None
|
||||
assert tool.wait_time == 3
|
||||
assert tool.return_html is False
|
||||
|
||||
|
||||
@patch("selenium.webdriver.Chrome")
|
||||
def test_scrape_without_css_selector(_mocked_chrome_driver):
|
||||
html_content = "<html><body><div>test content</div></body></html>"
|
||||
mock_driver = mock_driver_with_html(html_content)
|
||||
tool = initialize_tool_with(mock_driver)
|
||||
|
||||
result = tool._run(website_url="https://example.com")
|
||||
|
||||
assert "test content" in result
|
||||
mock_driver.get.assert_called_once_with("https://example.com")
|
||||
mock_driver.find_element.assert_called_with("tag name", "body")
|
||||
mock_driver.close.assert_called_once()
|
||||
|
||||
|
||||
@patch("selenium.webdriver.Chrome")
|
||||
def test_scrape_with_css_selector(_mocked_chrome_driver):
|
||||
html_content = "<html><body><div>test content</div><div class='test'>test content in a specific div</div></body></html>"
|
||||
mock_driver = mock_driver_with_html(html_content)
|
||||
tool = initialize_tool_with(mock_driver)
|
||||
|
||||
result = tool._run(website_url="https://example.com", css_element="div.test")
|
||||
|
||||
assert "test content in a specific div" in result
|
||||
mock_driver.get.assert_called_once_with("https://example.com")
|
||||
mock_driver.find_elements.assert_called_with("css selector", "div.test")
|
||||
mock_driver.close.assert_called_once()
|
||||
|
||||
|
||||
@patch("selenium.webdriver.Chrome")
|
||||
def test_scrape_with_return_html_true(_mocked_chrome_driver):
|
||||
html_content = "<html><body><div>HTML content</div></body></html>"
|
||||
mock_driver = mock_driver_with_html(html_content)
|
||||
tool = initialize_tool_with(mock_driver)
|
||||
|
||||
result = tool._run(website_url="https://example.com", return_html=True)
|
||||
|
||||
assert html_content in result
|
||||
mock_driver.get.assert_called_once_with("https://example.com")
|
||||
mock_driver.find_element.assert_called_with("tag name", "body")
|
||||
mock_driver.close.assert_called_once()
|
||||
|
||||
|
||||
@patch("selenium.webdriver.Chrome")
|
||||
def test_scrape_with_return_html_false(_mocked_chrome_driver):
|
||||
html_content = "<html><body><div>HTML content</div></body></html>"
|
||||
mock_driver = mock_driver_with_html(html_content)
|
||||
tool = initialize_tool_with(mock_driver)
|
||||
|
||||
result = tool._run(website_url="https://example.com", return_html=False)
|
||||
|
||||
assert "HTML content" in result
|
||||
mock_driver.get.assert_called_once_with("https://example.com")
|
||||
mock_driver.find_element.assert_called_with("tag name", "body")
|
||||
mock_driver.close.assert_called_once()
|
||||
@@ -7,32 +7,47 @@ from crewai_tools.tools.code_interpreter_tool.code_interpreter_tool import (
|
||||
|
||||
|
||||
class TestCodeInterpreterTool(unittest.TestCase):
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker")
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker_from_env")
|
||||
def test_run_code_in_docker(self, docker_mock):
|
||||
tool = CodeInterpreterTool()
|
||||
code = "print('Hello, World!')"
|
||||
libraries_used = "numpy,pandas"
|
||||
libraries_used = ["numpy", "pandas"]
|
||||
expected_output = "Hello, World!\n"
|
||||
|
||||
docker_mock.from_env().containers.run().exec_run().exit_code = 0
|
||||
docker_mock.from_env().containers.run().exec_run().output = (
|
||||
docker_mock().containers.run().exec_run().exit_code = 0
|
||||
docker_mock().containers.run().exec_run().output = (
|
||||
expected_output.encode()
|
||||
)
|
||||
result = tool.run_code_in_docker(code, libraries_used)
|
||||
|
||||
self.assertEqual(result, expected_output)
|
||||
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker")
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker_from_env")
|
||||
def test_run_code_in_docker_with_error(self, docker_mock):
|
||||
tool = CodeInterpreterTool()
|
||||
code = "print(1/0)"
|
||||
libraries_used = "numpy,pandas"
|
||||
libraries_used = ["numpy", "pandas"]
|
||||
expected_output = "Something went wrong while running the code: \nZeroDivisionError: division by zero\n"
|
||||
|
||||
docker_mock.from_env().containers.run().exec_run().exit_code = 1
|
||||
docker_mock.from_env().containers.run().exec_run().output = (
|
||||
docker_mock().containers.run().exec_run().exit_code = 1
|
||||
docker_mock().containers.run().exec_run().output = (
|
||||
b"ZeroDivisionError: division by zero\n"
|
||||
)
|
||||
result = tool.run_code_in_docker(code, libraries_used)
|
||||
|
||||
self.assertEqual(result, expected_output)
|
||||
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker_from_env")
|
||||
def test_run_code_in_docker_with_script(self, docker_mock):
|
||||
tool = CodeInterpreterTool()
|
||||
code = """print("This is line 1")
|
||||
print("This is line 2")"""
|
||||
libraries_used = [] # No additional libraries needed for this test
|
||||
expected_output = "This is line 1\nThis is line 2\n"
|
||||
|
||||
# Mock Docker responses
|
||||
docker_mock().containers.run().exec_run().exit_code = 0
|
||||
docker_mock().containers.run().exec_run().output = expected_output.encode()
|
||||
|
||||
result = tool.run_code_in_docker(code, libraries_used)
|
||||
self.assertEqual(result, expected_output)
|
||||
|
||||
Reference in New Issue
Block a user