rmeove duplciate reasonign logs

This commit is contained in:
João Moura
2025-06-07 23:57:24 -07:00
parent 814afb86cf
commit ad725f44b3
2 changed files with 85 additions and 51 deletions

View File

@@ -254,8 +254,11 @@ class Agent(BaseAgent):
reasoning_handler.handle_agent_reasoning()
)
# Add the reasoning plan to the task description
task.description += f"\n\nReasoning Plan:\n{reasoning_output.plan.plan}"
# Only add reasoning plan to task description if verbose mode is disabled
# In verbose mode, the reasoning plan is already displayed in a panel
is_verbose = self.verbose or (hasattr(self, "crew") and getattr(self.crew, "verbose", False))
if not is_verbose:
task.description += f"\n\nReasoning Plan:\n{reasoning_output.plan.plan}"
except Exception as e:
if hasattr(self, "_logger"):
self._logger.log(

View File

@@ -22,7 +22,7 @@ def mock_llm_responses():
def test_agent_with_reasoning(mock_llm_responses):
"""Test agent with reasoning."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
@@ -31,29 +31,29 @@ def test_agent_with_reasoning(mock_llm_responses):
reasoning=True,
verbose=True
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent
)
agent.llm.call = lambda messages, *args, **kwargs: (
mock_llm_responses["ready"]
if any("create a detailed plan" in msg.get("content", "") for msg in messages)
else mock_llm_responses["execution"]
)
result = agent.execute_task(task)
assert result == mock_llm_responses["execution"]
assert "Reasoning Plan:" in task.description
assert "Reasoning Plan:" not in task.description
def test_agent_with_reasoning_not_ready_initially(mock_llm_responses):
"""Test agent with reasoning that requires refinement."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
@@ -63,15 +63,15 @@ def test_agent_with_reasoning_not_ready_initially(mock_llm_responses):
max_reasoning_attempts=2,
verbose=True
)
task = Task(
description="Complex math task: What's the derivative of x²?",
expected_output="The answer should be a mathematical expression.",
agent=agent
)
call_count = [0]
def mock_llm_call(messages, *args, **kwargs):
if any("create a detailed plan" in msg.get("content", "") for msg in messages) or any("refine your plan" in msg.get("content", "") for msg in messages):
call_count[0] += 1
@@ -81,20 +81,20 @@ def test_agent_with_reasoning_not_ready_initially(mock_llm_responses):
return mock_llm_responses["ready_after_refine"]
else:
return "2x"
agent.llm.call = mock_llm_call
result = agent.execute_task(task)
assert result == "2x"
assert call_count[0] == 2 # Should have made 2 reasoning calls
assert "Reasoning Plan:" in task.description
assert "Reasoning Plan:" not in task.description
def test_agent_with_reasoning_max_attempts_reached():
"""Test agent with reasoning that reaches max attempts without being ready."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
@@ -104,35 +104,35 @@ def test_agent_with_reasoning_max_attempts_reached():
max_reasoning_attempts=2,
verbose=True
)
task = Task(
description="Complex math task: Solve the Riemann hypothesis.",
expected_output="A proof or disproof of the hypothesis.",
agent=agent
)
call_count = [0]
def mock_llm_call(messages, *args, **kwargs):
if any("create a detailed plan" in msg.get("content", "") for msg in messages) or any("refine your plan" in msg.get("content", "") for msg in messages):
call_count[0] += 1
return f"Attempt {call_count[0]}: I need more time to think.\n\nNOT READY: I need to refine my plan further."
else:
return "This is an unsolved problem in mathematics."
agent.llm.call = mock_llm_call
result = agent.execute_task(task)
assert result == "This is an unsolved problem in mathematics."
assert call_count[0] == 2 # Should have made exactly 2 reasoning calls (max_attempts)
assert "Reasoning Plan:" in task.description
assert "Reasoning Plan:" not in task.description
def test_agent_reasoning_input_validation():
"""Test input validation in AgentReasoning."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
@@ -140,10 +140,10 @@ def test_agent_reasoning_input_validation():
llm=llm,
reasoning=True
)
with pytest.raises(ValueError, match="Both task and agent must be provided"):
AgentReasoning(task=None, agent=agent)
task = Task(
description="Simple task",
expected_output="Simple output"
@@ -155,7 +155,7 @@ def test_agent_reasoning_input_validation():
def test_agent_reasoning_error_handling():
"""Test error handling during the reasoning process."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
@@ -163,25 +163,25 @@ def test_agent_reasoning_error_handling():
llm=llm,
reasoning=True
)
task = Task(
description="Task that will cause an error",
expected_output="Output that will never be generated",
agent=agent
)
call_count = [0]
def mock_llm_call_error(*args, **kwargs):
call_count[0] += 1
if call_count[0] <= 2: # First calls are for reasoning
raise Exception("LLM error during reasoning")
return "Fallback execution result" # Return a value for task execution
agent.llm.call = mock_llm_call_error
result = agent.execute_task(task)
assert result == "Fallback execution result"
assert call_count[0] > 2 # Ensure we called the mock multiple times
@@ -189,7 +189,7 @@ def test_agent_reasoning_error_handling():
def test_agent_with_function_calling():
"""Test agent with reasoning using function calling."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
@@ -198,15 +198,15 @@ def test_agent_with_function_calling():
reasoning=True,
verbose=True
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent
)
agent.llm.supports_function_calling = lambda: True
def mock_function_call(messages, *args, **kwargs):
if "tools" in kwargs:
return json.dumps({
@@ -215,20 +215,19 @@ def test_agent_with_function_calling():
})
else:
return "4"
agent.llm.call = mock_function_call
result = agent.execute_task(task)
assert result == "4"
assert "Reasoning Plan:" in task.description
assert "I'll solve this simple math problem: 2+2=4." in task.description
assert "Reasoning Plan:" not in task.description
def test_agent_with_function_calling_fallback():
"""Test agent with reasoning using function calling that falls back to text parsing."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
@@ -237,25 +236,57 @@ def test_agent_with_function_calling_fallback():
reasoning=True,
verbose=True
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent
)
agent.llm.supports_function_calling = lambda: True
def mock_function_call(messages, *args, **kwargs):
if "tools" in kwargs:
return "Invalid JSON that will trigger fallback. READY: I am ready to execute the task."
else:
return "4"
agent.llm.call = mock_function_call
result = agent.execute_task(task)
assert result == "4"
# In verbose mode, reasoning plan should NOT be added to task description
assert "Reasoning Plan:" not in task.description
def test_agent_with_reasoning_non_verbose_mode(mock_llm_responses):
"""Test agent with reasoning in non-verbose mode where reasoning plan should be added to task description."""
llm = LLM("gpt-3.5-turbo")
agent = Agent(
role="Test Agent",
goal="To test the reasoning feature",
backstory="I am a test agent created to verify the reasoning feature works correctly.",
llm=llm,
reasoning=True,
verbose=False # Non-verbose mode
)
task = Task(
description="Simple math task: What's 2+2?",
expected_output="The answer should be a number.",
agent=agent
)
agent.llm.call = lambda messages, *args, **kwargs: (
mock_llm_responses["ready"]
if any("create a detailed plan" in msg.get("content", "") for msg in messages)
else mock_llm_responses["execution"]
)
result = agent.execute_task(task)
assert result == mock_llm_responses["execution"]
assert "Reasoning Plan:" in task.description
assert "Invalid JSON that will trigger fallback" in task.description
assert "I'll solve this simple math problem" in task.description