mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 16:48:30 +00:00
Fix issue #2421: Handle missing google.genai dependency gracefully
Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
@@ -91,6 +91,7 @@ class CrewAgentExecutorMixin:
|
||||
print(f"Missing attributes for long term memory: {e}")
|
||||
pass
|
||||
except Exception as e:
|
||||
# Only log the error; don't let it affect task output
|
||||
print(f"Failed to add to long term memory: {e}")
|
||||
pass
|
||||
|
||||
|
||||
@@ -104,28 +104,40 @@ class EmbeddingConfigurator:
|
||||
|
||||
@staticmethod
|
||||
def _configure_vertexai(config, model_name):
|
||||
from chromadb.utils.embedding_functions.google_embedding_function import (
|
||||
GoogleVertexEmbeddingFunction,
|
||||
)
|
||||
|
||||
return GoogleVertexEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
project_id=config.get("project_id"),
|
||||
region=config.get("region"),
|
||||
)
|
||||
try:
|
||||
from chromadb.utils.embedding_functions.google_embedding_function import (
|
||||
GoogleVertexEmbeddingFunction,
|
||||
)
|
||||
|
||||
return GoogleVertexEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
project_id=config.get("project_id"),
|
||||
region=config.get("region"),
|
||||
)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Google Vertex AI dependencies are not installed. "
|
||||
"Please install them using 'pip install google-cloud-aiplatform'."
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _configure_google(config, model_name):
|
||||
from chromadb.utils.embedding_functions.google_embedding_function import (
|
||||
GoogleGenerativeAiEmbeddingFunction,
|
||||
)
|
||||
|
||||
return GoogleGenerativeAiEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
task_type=config.get("task_type"),
|
||||
)
|
||||
try:
|
||||
from chromadb.utils.embedding_functions.google_embedding_function import (
|
||||
GoogleGenerativeAiEmbeddingFunction,
|
||||
)
|
||||
|
||||
return GoogleGenerativeAiEmbeddingFunction(
|
||||
model_name=model_name,
|
||||
api_key=config.get("api_key"),
|
||||
task_type=config.get("task_type"),
|
||||
)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Google Generative AI dependencies are not installed. "
|
||||
"Please install them using 'pip install google-generativeai'."
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _configure_cohere(config, model_name):
|
||||
|
||||
65
tests/test_output_pydantic.py
Normal file
65
tests/test_output_pydantic.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import pytest
|
||||
from unittest.mock import patch, MagicMock
|
||||
from pydantic import BaseModel, Field
|
||||
from crewai import Agent, Task, Crew
|
||||
from crewai.utilities.converter import Converter
|
||||
|
||||
class ResponseFormat(BaseModel):
|
||||
string: str = Field(description='string needs to be maintained')
|
||||
|
||||
def test_pydantic_model_conversion():
|
||||
"""Test that pydantic model conversion works without causing import errors."""
|
||||
|
||||
# Test data
|
||||
test_string = '{"string": "test value"}'
|
||||
|
||||
# Create a pydantic model directly
|
||||
result = ResponseFormat.model_validate_json(test_string)
|
||||
|
||||
# Verify the conversion worked
|
||||
assert result is not None
|
||||
assert hasattr(result, "string")
|
||||
assert isinstance(result.string, str)
|
||||
assert result.string == "test value"
|
||||
|
||||
@patch('crewai.crew.Crew.kickoff')
|
||||
def test_output_pydantic_with_mocked_crew(mock_kickoff):
|
||||
"""Test that output_pydantic works properly without causing import errors."""
|
||||
|
||||
# Mock the crew kickoff to return a valid response
|
||||
mock_result = ResponseFormat(string="mocked result")
|
||||
mock_kickoff.return_value = mock_result
|
||||
|
||||
# Create a simple agent
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test pydantic model output",
|
||||
backstory="Testing pydantic output functionality",
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create a task with output_pydantic
|
||||
task = Task(
|
||||
description="Return a simple string",
|
||||
expected_output="A simple string",
|
||||
agent=agent,
|
||||
output_pydantic=ResponseFormat
|
||||
)
|
||||
|
||||
# Create a crew with the agent and task
|
||||
crew = Crew(
|
||||
agents=[agent],
|
||||
tasks=[task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Execute the crew (this will use our mock)
|
||||
result = crew.kickoff()
|
||||
|
||||
# Verify we got a result
|
||||
assert result is not None
|
||||
|
||||
# Verify the result has a string attribute (as defined in ResponseFormat)
|
||||
assert hasattr(result, "string")
|
||||
assert isinstance(result.string, str)
|
||||
assert result.string == "mocked result"
|
||||
Reference in New Issue
Block a user