more tests

This commit is contained in:
Brandon Hancock
2025-01-29 10:08:42 -05:00
parent fedb91fae3
commit a853935cc8
2 changed files with 291 additions and 28 deletions

View File

@@ -431,9 +431,7 @@ class Task(BaseModel):
content = (
json_output
if json_output
else pydantic_output.model_dump_json()
if pydantic_output
else result
else pydantic_output.model_dump_json() if pydantic_output else result
)
self._save_file(content)
@@ -528,7 +526,7 @@ class Task(BaseModel):
def interpolate_only(
self,
input_string: Optional[str],
inputs: Dict[str, Union[str, int, float, dict, list]],
inputs: Dict[str, Any],
) -> str:
"""Interpolate placeholders (e.g., {key}) in a string while leaving JSON untouched.
@@ -536,17 +534,37 @@ class Task(BaseModel):
input_string: The string containing template variables to interpolate.
Can be None or empty, in which case an empty string is returned.
inputs: Dictionary mapping template variables to their values.
Supported value types are strings, integers, floats, dicts, and lists.
If input_string is empty or has no placeholders, inputs can be empty.
Supported value types are strings, integers, floats, and dicts/lists
containing only these types and other nested dicts/lists.
Returns:
The interpolated string with all template variables replaced with their values.
Empty string if input_string is None or empty.
Raises:
ValueError: If a required template variable is missing from inputs.
KeyError: If a template variable is not found in the inputs dictionary.
ValueError: If a value contains unsupported types
"""
# Validation function for recursive type checking
def validate_type(value: Any) -> None:
if isinstance(value, (str, int, float)):
return
if isinstance(value, (dict, list)):
for item in value.values() if isinstance(value, dict) else value:
validate_type(item)
return
raise ValueError(
f"Unsupported type {type(value).__name__} in inputs. "
"Only str, int, float, dict, and list are allowed."
)
# Validate all input values
for key, value in inputs.items():
try:
validate_type(value)
except ValueError as e:
raise ValueError(f"Invalid value for key '{key}': {str(e)}") from e
if input_string is None or not input_string:
return ""
if "{" not in input_string and "}" not in input_string:
@@ -556,20 +574,6 @@ class Task(BaseModel):
"Inputs dictionary cannot be empty when interpolating variables"
)
try:
# Validate input types
for key, value in inputs.items():
if not isinstance(value, (str, int, float, dict, list)):
raise ValueError(
f"Value for key '{key}' must be a string, integer, float, dict, or list, got {type(value).__name__}"
)
if isinstance(value, (dict, list)):
try:
inputs[key] = json.dumps(value, ensure_ascii=False)
except Exception as e:
raise ValueError(
f"Failed to serialize value for key: {key} with value: {value} due to error: {str(e)}"
) from e
escaped_string = input_string.replace("{", "{{").replace("}", "}}")
for key in inputs.keys():

View File

@@ -441,9 +441,9 @@ def test_output_pydantic_to_another_task():
crew = Crew(agents=[scorer], tasks=[task1, task2], verbose=True)
result = crew.kickoff()
pydantic_result = result.pydantic
assert isinstance(pydantic_result, ScoreOutput), (
"Expected pydantic result to be of type ScoreOutput"
)
assert isinstance(
pydantic_result, ScoreOutput
), "Expected pydantic result to be of type ScoreOutput"
assert pydantic_result.score == 5
@@ -907,9 +907,9 @@ def test_key():
assert task.key == hash, "The key should be the hash of the description."
task.interpolate_inputs_and_add_conversation_history(inputs={"topic": "AI"})
assert task.key == hash, (
"The key should be the hash of the non-interpolated description."
)
assert (
task.key == hash
), "The key should be the hash of the non-interpolated description."
def test_output_file_validation():
@@ -1003,3 +1003,262 @@ def test_task_execution_times():
assert task.start_time is not None
assert task.end_time is not None
assert task.execution_duration == (task.end_time - task.start_time).total_seconds()
def test_interpolate_with_list_of_strings():
task = Task(
description="Test list interpolation",
expected_output="List: {items}",
)
# Test simple list of strings
input_str = "Available items: {items}"
inputs = {"items": ["apple", "banana", "cherry"]}
result = task.interpolate_only(input_str, inputs)
assert result == 'Available items: ["apple", "banana", "cherry"]'
# Test empty list
empty_list_input = {"items": []}
result = task.interpolate_only(input_str, empty_list_input)
assert result == "Available items: []"
def test_interpolate_with_list_of_dicts():
task = Task(
description="Test list of dicts interpolation",
expected_output="People: {people}",
)
input_data = {
"people": [
{"name": "Alice", "age": 30, "skills": ["Python", "AI"]},
{"name": "Bob", "age": 25, "skills": ["Java", "Cloud"]},
]
}
result = task.interpolate_only("{people}", input_data)
assert '"name": "Alice"' in result
assert '"age": 30' in result
assert '"skills": ["Python", "AI"]' in result
assert isinstance(json.loads(result), list)
def test_interpolate_with_nested_structures():
task = Task(
description="Test nested structures",
expected_output="Company: {company}",
)
input_data = {
"company": {
"name": "TechCorp",
"departments": [
{
"name": "Engineering",
"employees": 50,
"tools": ["Git", "Docker", "Kubernetes"],
},
{"name": "Sales", "employees": 20, "regions": {"north": 5, "south": 3}},
],
}
}
result = task.interpolate_only("{company}", input_data)
parsed = json.loads(result)
assert parsed["name"] == "TechCorp"
assert len(parsed["departments"]) == 2
assert parsed["departments"][0]["tools"] == ["Git", "Docker", "Kubernetes"]
assert parsed["departments"][1]["regions"]["north"] == 5
def test_interpolate_with_special_characters():
task = Task(
description="Test special characters in dicts",
expected_output="Data: {special_data}",
)
input_data = {
"special_data": {
"quotes": """This has "double" and 'single' quotes""",
"unicode": "文字化けテスト",
"symbols": "!@#$%^&*()",
"empty": "",
}
}
result = task.interpolate_only("{special_data}", input_data)
parsed = json.loads(result)
assert parsed["quotes"] == """This has "double" and 'single' quotes"""
assert parsed["unicode"] == "文字化けテスト"
assert parsed["symbols"] == "!@#$%^&*()"
assert parsed["empty"] == ""
def test_interpolate_mixed_types():
task = Task(
description="Test mixed type interpolation",
expected_output="Mixed: {data}",
)
input_data = {
"data": {
"name": "Test Dataset",
"samples": 1000,
"features": ["age", "income", "location"],
"metadata": {
"source": "public",
"validated": True,
"tags": ["demo", "test", "temp"],
},
"null_value": None,
}
}
result = task.interpolate_only("{data}", input_data)
parsed = json.loads(result)
assert parsed["name"] == "Test Dataset"
assert parsed["samples"] == 1000
assert parsed["metadata"]["tags"] == ["demo", "test", "temp"]
assert "null_value" in parsed
def test_interpolate_complex_combination():
task = Task(
description="Test complex combination",
expected_output="Report: {report}",
)
input_data = {
"report": [
{
"month": "January",
"metrics": {"sales": 15000, "expenses": 8000, "profit": 7000},
"top_products": ["Product A", "Product B"],
},
{
"month": "February",
"metrics": {"sales": 18000, "expenses": 8500, "profit": 9500},
"top_products": ["Product C", "Product D"],
},
]
}
result = task.interpolate_only("{report}", input_data)
parsed = json.loads(result)
assert len(parsed) == 2
assert parsed[0]["month"] == "January"
assert parsed[1]["metrics"]["profit"] == 9500
assert "Product D" in parsed[1]["top_products"]
def test_interpolate_invalid_type_validation():
task = Task(
description="Test invalid type validation",
expected_output="Should never reach here",
)
# Test with invalid top-level type
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": True})
assert "Unsupported type bool" in str(excinfo.value)
assert "key 'data'" in str(excinfo.value)
# Test with invalid nested type
invalid_nested = {
"profile": {
"name": "John",
"age": 30,
"tags": {"a", "b", "c"}, # Set is invalid
"preferences": [None, True], # None and bool are invalid
}
}
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": invalid_nested})
assert "Unsupported type set" in str(excinfo.value)
assert "key 'tags'" in str(excinfo.value)
assert "Unsupported type NoneType" in str(excinfo.value)
def test_interpolate_custom_object_validation():
task = Task(
description="Test custom object rejection",
expected_output="Should never reach here",
)
class CustomObject:
def __init__(self, value):
self.value = value
# Test with custom object
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{obj}", {"obj": CustomObject(5)})
assert "Unsupported type CustomObject" in str(excinfo.value)
# Test with nested custom object
with pytest.raises(ValueError) as excinfo:
task.interpolate_only(
"{data}", {"data": [{"valid": 1, "invalid": CustomObject(5)}]}
)
assert "Unsupported type CustomObject" in str(excinfo.value)
assert "key 'invalid'" in str(excinfo.value)
def test_interpolate_valid_complex_types():
task = Task(
description="Test valid complex types",
expected_output="Validation should pass",
)
# Valid complex structure
valid_data = {
"name": "Valid Dataset",
"stats": {
"count": 1000,
"distribution": [0.2, 0.3, 0.5],
"features": ["age", "income"],
"nested": {"deep": [1, 2, 3], "deeper": {"a": 1, "b": 2.5}},
},
}
# Should not raise any errors
result = task.interpolate_only("{data}", {"data": valid_data})
parsed = json.loads(result)
assert parsed["name"] == "Valid Dataset"
assert parsed["stats"]["nested"]["deeper"]["b"] == 2.5
def test_interpolate_edge_cases():
task = Task(
description="Test edge cases",
expected_output="Edge case handling",
)
# Test empty dict and list
assert task.interpolate_only("{}", {"data": {}}) == "{}"
assert task.interpolate_only("[]", {"data": []}) == "[]"
# Test numeric types
assert task.interpolate_only("{num}", {"num": 42}) == "42"
assert task.interpolate_only("{num}", {"num": 3.14}) == "3.14"
# Test boolean rejection
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{flag}", {"flag": True})
assert "Unsupported type bool" in str(excinfo.value)
def test_interpolate_null_handling():
task = Task(
description="Test null handling",
expected_output="Null validation",
)
# Test null rejection
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": None})
assert "Unsupported type NoneType" in str(excinfo.value)
# Test null in nested structure
with pytest.raises(ValueError) as excinfo:
task.interpolate_only("{data}", {"data": {"valid": 1, "invalid": None}})
assert "Unsupported type NoneType" in str(excinfo.value)