feat: Add AWS Bedrock API key authentication support

- Add AWS_BEARER_TOKEN_BEDROCK environment variable to CLI constants
- Update English and Portuguese documentation with both IAM and API key auth methods
- Document boto3 v1.393+ requirement for API key authentication
- Add comprehensive tests for both authentication methods
- Include links to AWS console for API key generation

Addresses issue #3125

Co-Authored-By: Jo\u00E3o <joao@crewai.com>
This commit is contained in:
Devin AI
2025-07-09 12:15:57 +00:00
parent f071966951
commit a670b2b35e
4 changed files with 152 additions and 3 deletions

View File

@@ -311,20 +311,38 @@ In this section, you'll find detailed examples that help you select, configure,
</Accordion>
<Accordion title="AWS Bedrock">
Amazon Bedrock supports two authentication methods:
**Method 1: IAM Role Authentication (Recommended for Production)**
```toml Code
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
AWS_DEFAULT_REGION=<your-region>
```
**Method 2: API Key Authentication (Recommended for Development)**
```toml Code
AWS_BEARER_TOKEN_BEDROCK=<your-api-key>
AWS_DEFAULT_REGION=<your-region>
```
Example usage in your CrewAI project:
```python Code
# Using IAM role authentication
llm = LLM(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
# Using API key authentication
llm = LLM(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
```
Before using Amazon Bedrock, make sure you have boto3 installed in your environment
**Requirements:**
- Before using Amazon Bedrock, make sure you have boto3 v1.393+ installed in your environment
- For API key authentication, you can generate a 30-day API key from the [Amazon Bedrock console](https://console.aws.amazon.com/bedrock/)
- For production applications, use IAM roles or temporary credentials instead of long-term API keys
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) is a managed service that provides access to multiple foundation models from top AI companies through a unified API, enabling secure and responsible AI application development.

View File

@@ -309,20 +309,38 @@ Nesta seção, você encontrará exemplos detalhados que ajudam a selecionar, co
</Accordion>
<Accordion title="AWS Bedrock">
O Amazon Bedrock suporta dois métodos de autenticação:
**Método 1: Autenticação por Função IAM (Recomendado para Produção)**
```toml Code
AWS_ACCESS_KEY_ID=<your-access-key>
AWS_SECRET_ACCESS_KEY=<your-secret-key>
AWS_DEFAULT_REGION=<your-region>
```
**Método 2: Autenticação por Chave de API (Recomendado para Desenvolvimento)**
```toml Code
AWS_BEARER_TOKEN_BEDROCK=<your-api-key>
AWS_DEFAULT_REGION=<your-region>
```
Exemplo de uso em seu projeto CrewAI:
```python Code
# Usando autenticação por função IAM
llm = LLM(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
# Usando autenticação por chave de API
llm = LLM(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
)
```
Antes de usar o Amazon Bedrock, certifique-se de ter o boto3 instalado em seu ambiente
**Requisitos:**
- Antes de usar o Amazon Bedrock, certifique-se de ter o boto3 v1.393+ instalado em seu ambiente
- Para autenticação por chave de API, você pode gerar uma chave de 30 dias no [console do Amazon Bedrock](https://console.aws.amazon.com/bedrock/)
- Para aplicações de produção, use funções IAM ou credenciais temporárias em vez de chaves de API de longo prazo
[Amazon Bedrock](https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html) é um serviço gerenciado que fornece acesso a múltiplos modelos fundamentais dos principais provedores de IA através de uma API unificada, permitindo o desenvolvimento seguro e responsável de aplicações de IA.
@@ -881,4 +899,4 @@ Saiba como obter o máximo da configuração do seu LLM:
llm = LLM(model="openai/gpt-4o") # 128K tokens
```
</Tab>
</Tabs>
</Tabs>

View File

@@ -62,6 +62,10 @@ ENV_VARS = {
"prompt": "Enter your AWS Region Name (press Enter to skip)",
"key_name": "AWS_REGION_NAME",
},
{
"prompt": "Enter your AWS Bedrock API Key (press Enter to skip)",
"key_name": "AWS_BEARER_TOKEN_BEDROCK",
},
],
"azure": [
{

View File

@@ -0,0 +1,109 @@
import os
import pytest
from unittest.mock import patch, MagicMock
from crewai import LLM
class TestBedrockAuthentication:
"""Test AWS Bedrock authentication methods."""
@patch.dict(os.environ, {
'AWS_ACCESS_KEY_ID': 'test-key-id',
'AWS_SECRET_ACCESS_KEY': 'test-secret-key',
'AWS_DEFAULT_REGION': 'us-east-1'
})
@patch('litellm.completion')
def test_bedrock_iam_authentication(self, mock_completion):
"""Test Bedrock with IAM role authentication."""
mock_completion.return_value = MagicMock()
mock_completion.return_value.choices = [MagicMock()]
mock_completion.return_value.choices[0].message.content = "Test response"
llm = LLM(model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0")
result = llm.call("test message")
mock_completion.assert_called_once()
assert result == "Test response"
@patch.dict(os.environ, {
'AWS_BEARER_TOKEN_BEDROCK': 'test-api-key',
'AWS_DEFAULT_REGION': 'us-east-1'
})
@patch('litellm.completion')
def test_bedrock_api_key_authentication(self, mock_completion):
"""Test Bedrock with API key authentication."""
mock_completion.return_value = MagicMock()
mock_completion.return_value.choices = [MagicMock()]
mock_completion.return_value.choices[0].message.content = "Test response"
llm = LLM(model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0")
result = llm.call("test message")
mock_completion.assert_called_once()
assert result == "Test response"
def test_bedrock_missing_credentials(self):
"""Test Bedrock fails gracefully with missing credentials."""
with patch.dict(os.environ, {}, clear=True):
llm = LLM(model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0")
assert llm.model == "bedrock/anthropic.claude-3-sonnet-20240229-v1:0"
@patch.dict(os.environ, {
'AWS_BEARER_TOKEN_BEDROCK': 'test-api-key',
'AWS_DEFAULT_REGION': 'us-east-1'
})
@patch('litellm.completion')
def test_bedrock_api_key_with_streaming(self, mock_completion):
"""Test Bedrock API key authentication with streaming."""
mock_completion.return_value = iter([
MagicMock(choices=[MagicMock(delta=MagicMock(content="Test"))]),
MagicMock(choices=[MagicMock(delta=MagicMock(content=" response"))])
])
llm = LLM(model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0")
result = list(llm.stream("test message"))
mock_completion.assert_called_once()
assert len(result) == 2
@patch.dict(os.environ, {
'AWS_ACCESS_KEY_ID': 'test-key-id',
'AWS_SECRET_ACCESS_KEY': 'test-secret-key',
'AWS_DEFAULT_REGION': 'us-east-1'
})
@patch('litellm.completion')
def test_bedrock_iam_with_custom_parameters(self, mock_completion):
"""Test Bedrock IAM authentication with custom parameters."""
mock_completion.return_value = MagicMock()
mock_completion.return_value.choices = [MagicMock()]
mock_completion.return_value.choices[0].message.content = "Test response"
llm = LLM(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
temperature=0.7,
max_tokens=100
)
result = llm.call("test message")
mock_completion.assert_called_once()
call_args = mock_completion.call_args
assert call_args[1]['temperature'] == 0.7
assert call_args[1]['max_tokens'] == 100
assert result == "Test response"
@patch.dict(os.environ, {
'AWS_BEARER_TOKEN_BEDROCK': 'test-api-key',
'AWS_DEFAULT_REGION': 'us-west-2'
})
@patch('litellm.completion')
def test_bedrock_api_key_different_region(self, mock_completion):
"""Test Bedrock API key authentication with different region."""
mock_completion.return_value = MagicMock()
mock_completion.return_value.choices = [MagicMock()]
mock_completion.return_value.choices[0].message.content = "Test response"
llm = LLM(model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0")
result = llm.call("test message")
mock_completion.assert_called_once()
assert result == "Test response"