mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 16:18:30 +00:00
Add pt-BR docs translation (#3039)
* docs: add pt-br translations Powered by a CrewAI Flow https://github.com/danielfsbarreto/docs_translator * Update mcp/overview.mdx brazilian docs Its en-US counterpart was updated after I did a pass, so now it includes the new section about @CrewBase
This commit is contained in:
350
docs/en/learn/custom-llm.mdx
Normal file
350
docs/en/learn/custom-llm.mdx
Normal file
@@ -0,0 +1,350 @@
|
||||
---
|
||||
title: Custom LLM Implementation
|
||||
description: Learn how to create custom LLM implementations in CrewAI.
|
||||
icon: code
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
CrewAI supports custom LLM implementations through the `BaseLLM` abstract base class. This allows you to integrate any LLM provider that doesn't have built-in support in LiteLLM, or implement custom authentication mechanisms.
|
||||
|
||||
## Quick Start
|
||||
|
||||
Here's a minimal custom LLM implementation:
|
||||
|
||||
```python
|
||||
from crewai import BaseLLM
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
import requests
|
||||
|
||||
class CustomLLM(BaseLLM):
|
||||
def __init__(self, model: str, api_key: str, endpoint: str, temperature: Optional[float] = None):
|
||||
# IMPORTANT: Call super().__init__() with required parameters
|
||||
super().__init__(model=model, temperature=temperature)
|
||||
|
||||
self.api_key = api_key
|
||||
self.endpoint = endpoint
|
||||
|
||||
def call(
|
||||
self,
|
||||
messages: Union[str, List[Dict[str, str]]],
|
||||
tools: Optional[List[dict]] = None,
|
||||
callbacks: Optional[List[Any]] = None,
|
||||
available_functions: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[str, Any]:
|
||||
"""Call the LLM with the given messages."""
|
||||
# Convert string to message format if needed
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
# Prepare request
|
||||
payload = {
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
"temperature": self.temperature,
|
||||
}
|
||||
|
||||
# Add tools if provided and supported
|
||||
if tools and self.supports_function_calling():
|
||||
payload["tools"] = tools
|
||||
|
||||
# Make API call
|
||||
response = requests.post(
|
||||
self.endpoint,
|
||||
headers={
|
||||
"Authorization": f"Bearer {self.api_key}",
|
||||
"Content-Type": "application/json"
|
||||
},
|
||||
json=payload,
|
||||
timeout=30
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
result = response.json()
|
||||
return result["choices"][0]["message"]["content"]
|
||||
|
||||
def supports_function_calling(self) -> bool:
|
||||
"""Override if your LLM supports function calling."""
|
||||
return True # Change to False if your LLM doesn't support tools
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""Return the context window size of your LLM."""
|
||||
return 8192 # Adjust based on your model's actual context window
|
||||
```
|
||||
|
||||
## Using Your Custom LLM
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Assuming you have the CustomLLM class defined above
|
||||
# Create your custom LLM
|
||||
custom_llm = CustomLLM(
|
||||
model="my-custom-model",
|
||||
api_key="your-api-key",
|
||||
endpoint="https://api.example.com/v1/chat/completions",
|
||||
temperature=0.7
|
||||
)
|
||||
|
||||
# Use with an agent
|
||||
agent = Agent(
|
||||
role="Research Assistant",
|
||||
goal="Find and analyze information",
|
||||
backstory="You are a research assistant.",
|
||||
llm=custom_llm
|
||||
)
|
||||
|
||||
# Create and execute tasks
|
||||
task = Task(
|
||||
description="Research the latest developments in AI",
|
||||
expected_output="A comprehensive summary",
|
||||
agent=agent
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
## Required Methods
|
||||
|
||||
### Constructor: `__init__()`
|
||||
|
||||
**Critical**: You must call `super().__init__(model, temperature)` with the required parameters:
|
||||
|
||||
```python
|
||||
def __init__(self, model: str, api_key: str, temperature: Optional[float] = None):
|
||||
# REQUIRED: Call parent constructor with model and temperature
|
||||
super().__init__(model=model, temperature=temperature)
|
||||
|
||||
# Your custom initialization
|
||||
self.api_key = api_key
|
||||
```
|
||||
|
||||
### Abstract Method: `call()`
|
||||
|
||||
The `call()` method is the heart of your LLM implementation. It must:
|
||||
|
||||
- Accept messages (string or list of dicts with 'role' and 'content')
|
||||
- Return a string response
|
||||
- Handle tools and function calling if supported
|
||||
- Raise appropriate exceptions for errors
|
||||
|
||||
### Optional Methods
|
||||
|
||||
```python
|
||||
def supports_function_calling(self) -> bool:
|
||||
"""Return True if your LLM supports function calling."""
|
||||
return True # Default is True
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
"""Return True if your LLM supports stop sequences."""
|
||||
return True # Default is True
|
||||
|
||||
def get_context_window_size(self) -> int:
|
||||
"""Return the context window size."""
|
||||
return 4096 # Default is 4096
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Error Handling
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
||||
def call(self, messages, tools=None, callbacks=None, available_functions=None):
|
||||
try:
|
||||
response = requests.post(
|
||||
self.endpoint,
|
||||
headers={"Authorization": f"Bearer {self.api_key}"},
|
||||
json=payload,
|
||||
timeout=30
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json()["choices"][0]["message"]["content"]
|
||||
|
||||
except requests.Timeout:
|
||||
raise TimeoutError("LLM request timed out")
|
||||
except requests.RequestException as e:
|
||||
raise RuntimeError(f"LLM request failed: {str(e)}")
|
||||
except (KeyError, IndexError) as e:
|
||||
raise ValueError(f"Invalid response format: {str(e)}")
|
||||
```
|
||||
|
||||
### Custom Authentication
|
||||
|
||||
```python
|
||||
from crewai import BaseLLM
|
||||
from typing import Optional
|
||||
|
||||
class CustomAuthLLM(BaseLLM):
|
||||
def __init__(self, model: str, auth_token: str, endpoint: str, temperature: Optional[float] = None):
|
||||
super().__init__(model=model, temperature=temperature)
|
||||
self.auth_token = auth_token
|
||||
self.endpoint = endpoint
|
||||
|
||||
def call(self, messages, tools=None, callbacks=None, available_functions=None):
|
||||
headers = {
|
||||
"Authorization": f"Custom {self.auth_token}", # Custom auth format
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
# Rest of implementation...
|
||||
```
|
||||
|
||||
### Stop Words Support
|
||||
|
||||
CrewAI automatically adds `"\nObservation:"` as a stop word to control agent behavior. If your LLM supports stop words:
|
||||
|
||||
```python
|
||||
def call(self, messages, tools=None, callbacks=None, available_functions=None):
|
||||
payload = {
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
"stop": self.stop # Include stop words in API call
|
||||
}
|
||||
# Make API call...
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
return True # Your LLM supports stop sequences
|
||||
```
|
||||
|
||||
If your LLM doesn't support stop words natively:
|
||||
|
||||
```python
|
||||
def call(self, messages, tools=None, callbacks=None, available_functions=None):
|
||||
response = self._make_api_call(messages, tools)
|
||||
content = response["choices"][0]["message"]["content"]
|
||||
|
||||
# Manually truncate at stop words
|
||||
if self.stop:
|
||||
for stop_word in self.stop:
|
||||
if stop_word in content:
|
||||
content = content.split(stop_word)[0]
|
||||
break
|
||||
|
||||
return content
|
||||
|
||||
def supports_stop_words(self) -> bool:
|
||||
return False # Tell CrewAI we handle stop words manually
|
||||
```
|
||||
|
||||
## Function Calling
|
||||
|
||||
If your LLM supports function calling, implement the complete flow:
|
||||
|
||||
```python
|
||||
import json
|
||||
|
||||
def call(self, messages, tools=None, callbacks=None, available_functions=None):
|
||||
# Convert string to message format
|
||||
if isinstance(messages, str):
|
||||
messages = [{"role": "user", "content": messages}]
|
||||
|
||||
# Make API call
|
||||
response = self._make_api_call(messages, tools)
|
||||
message = response["choices"][0]["message"]
|
||||
|
||||
# Check for function calls
|
||||
if "tool_calls" in message and available_functions:
|
||||
return self._handle_function_calls(
|
||||
message["tool_calls"], messages, tools, available_functions
|
||||
)
|
||||
|
||||
return message["content"]
|
||||
|
||||
def _handle_function_calls(self, tool_calls, messages, tools, available_functions):
|
||||
"""Handle function calling with proper message flow."""
|
||||
for tool_call in tool_calls:
|
||||
function_name = tool_call["function"]["name"]
|
||||
|
||||
if function_name in available_functions:
|
||||
# Parse and execute function
|
||||
function_args = json.loads(tool_call["function"]["arguments"])
|
||||
function_result = available_functions[function_name](**function_args)
|
||||
|
||||
# Add function call and result to message history
|
||||
messages.append({
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": [tool_call]
|
||||
})
|
||||
messages.append({
|
||||
"role": "tool",
|
||||
"tool_call_id": tool_call["id"],
|
||||
"name": function_name,
|
||||
"content": str(function_result)
|
||||
})
|
||||
|
||||
# Call LLM again with updated context
|
||||
return self.call(messages, tools, None, available_functions)
|
||||
|
||||
return "Function call failed"
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Common Issues
|
||||
|
||||
**Constructor Errors**
|
||||
```python
|
||||
# ❌ Wrong - missing required parameters
|
||||
def __init__(self, api_key: str):
|
||||
super().__init__()
|
||||
|
||||
# ✅ Correct
|
||||
def __init__(self, model: str, api_key: str, temperature: Optional[float] = None):
|
||||
super().__init__(model=model, temperature=temperature)
|
||||
```
|
||||
|
||||
**Function Calling Not Working**
|
||||
- Ensure `supports_function_calling()` returns `True`
|
||||
- Check that you handle `tool_calls` in the response
|
||||
- Verify `available_functions` parameter is used correctly
|
||||
|
||||
**Authentication Failures**
|
||||
- Verify API key format and permissions
|
||||
- Check authentication header format
|
||||
- Ensure endpoint URLs are correct
|
||||
|
||||
**Response Parsing Errors**
|
||||
- Validate response structure before accessing nested fields
|
||||
- Handle cases where content might be None
|
||||
- Add proper error handling for malformed responses
|
||||
|
||||
## Testing Your Custom LLM
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
def test_custom_llm():
|
||||
llm = CustomLLM(
|
||||
model="test-model",
|
||||
api_key="test-key",
|
||||
endpoint="https://api.test.com"
|
||||
)
|
||||
|
||||
# Test basic call
|
||||
result = llm.call("Hello, world!")
|
||||
assert isinstance(result, str)
|
||||
assert len(result) > 0
|
||||
|
||||
# Test with CrewAI agent
|
||||
agent = Agent(
|
||||
role="Test Agent",
|
||||
goal="Test custom LLM",
|
||||
backstory="A test agent.",
|
||||
llm=llm
|
||||
)
|
||||
|
||||
task = Task(
|
||||
description="Say hello",
|
||||
expected_output="A greeting",
|
||||
agent=agent
|
||||
)
|
||||
|
||||
crew = Crew(agents=[agent], tasks=[task])
|
||||
result = crew.kickoff()
|
||||
assert "hello" in result.raw.lower()
|
||||
```
|
||||
|
||||
This guide covers the essentials of implementing custom LLMs in CrewAI.
|
||||
Reference in New Issue
Block a user