mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 16:18:30 +00:00
Merge branch 'main' into vision-tool-improvement
This commit is contained in:
10
README.md
10
README.md
@@ -13,7 +13,7 @@ In the realm of CrewAI agents, tools are pivotal for enhancing functionality. Th
|
||||
|
||||
<h3>
|
||||
|
||||
[Homepage](https://www.crewai.io/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/crewAIInc/crewAI-examples) | [Discord](https://discord.com/invite/X4JWnZnxPb)
|
||||
[Homepage](https://www.crewai.io/) | [Documentation](https://docs.crewai.com/) | [Chat with Docs](https://chatg.pt/DWjSBZn) | [Examples](https://github.com/crewAIInc/crewAI-examples) | [Discord](https://discord.com/invite/X4JWnZnxPb) | [Discourse](https://community.crewai.com/)
|
||||
|
||||
</h3>
|
||||
|
||||
@@ -51,7 +51,7 @@ There are three ways to create tools for crewAI agents:
|
||||
### Subclassing `BaseTool`
|
||||
|
||||
```python
|
||||
from crewai_tools import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
class MyCustomTool(BaseTool):
|
||||
name: str = "Name of my tool"
|
||||
@@ -70,7 +70,7 @@ Define a new class inheriting from `BaseTool`, specifying `name`, `description`,
|
||||
For a simpler approach, create a `Tool` object directly with the required attributes and a functional logic.
|
||||
|
||||
```python
|
||||
from crewai_tools import tool
|
||||
from crewai.tools import BaseTool
|
||||
@tool("Name of my tool")
|
||||
def my_tool(question: str) -> str:
|
||||
"""Clear description for what this tool is useful for, you agent will need this information to use it."""
|
||||
@@ -140,6 +140,4 @@ Thank you for your interest in enhancing the capabilities of AI agents through a
|
||||
|
||||
## Contact
|
||||
|
||||
For questions or support, please join our [Discord community](https://discord.com/invite/X4JWnZnxPb) or open an issue in this repository.
|
||||
|
||||
|
||||
For questions or support, please join our [Discord community](https://discord.com/invite/X4JWnZnxPb), [Discourse](https://community.crewai.com/) or open an issue in this repository.
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from .tools import (
|
||||
BraveSearchTool,
|
||||
BrowserbaseLoadTool,
|
||||
CodeDocsSearchTool,
|
||||
CodeInterpreterTool,
|
||||
@@ -16,14 +17,18 @@ from .tools import (
|
||||
FirecrawlSearchTool,
|
||||
GithubSearchTool,
|
||||
JSONSearchTool,
|
||||
LinkupSearchTool,
|
||||
LlamaIndexTool,
|
||||
MDXSearchTool,
|
||||
MultiOnTool,
|
||||
MySQLSearchTool,
|
||||
NL2SQLTool,
|
||||
PDFSearchTool,
|
||||
PGSearchTool,
|
||||
RagTool,
|
||||
ScrapeElementFromWebsiteTool,
|
||||
ScrapegraphScrapeTool,
|
||||
ScrapegraphScrapeToolSchema,
|
||||
ScrapeWebsiteTool,
|
||||
ScrapflyScrapeWebsiteTool,
|
||||
SeleniumScrapingTool,
|
||||
@@ -40,6 +45,7 @@ from .tools import (
|
||||
XMLSearchTool,
|
||||
YoutubeChannelSearchTool,
|
||||
YoutubeVideoSearchTool,
|
||||
MySQLSearchTool
|
||||
WeaviateVectorSearchTool,
|
||||
SerpApiGoogleSearchTool,
|
||||
SerpApiGoogleShoppingTool,
|
||||
)
|
||||
from .tools.base_tool import BaseTool, Tool, tool
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from .brave_search_tool.brave_search_tool import BraveSearchTool
|
||||
from .browserbase_load_tool.browserbase_load_tool import BrowserbaseLoadTool
|
||||
from .code_docs_search_tool.code_docs_search_tool import CodeDocsSearchTool
|
||||
from .code_interpreter_tool.code_interpreter_tool import CodeInterpreterTool
|
||||
@@ -11,27 +12,30 @@ from .exa_tools.exa_search_tool import EXASearchTool
|
||||
from .file_read_tool.file_read_tool import FileReadTool
|
||||
from .file_writer_tool.file_writer_tool import FileWriterTool
|
||||
from .firecrawl_crawl_website_tool.firecrawl_crawl_website_tool import (
|
||||
FirecrawlCrawlWebsiteTool
|
||||
FirecrawlCrawlWebsiteTool,
|
||||
)
|
||||
from .firecrawl_scrape_website_tool.firecrawl_scrape_website_tool import (
|
||||
FirecrawlScrapeWebsiteTool
|
||||
FirecrawlScrapeWebsiteTool,
|
||||
)
|
||||
from .firecrawl_search_tool.firecrawl_search_tool import FirecrawlSearchTool
|
||||
from .github_search_tool.github_search_tool import GithubSearchTool
|
||||
from .json_search_tool.json_search_tool import JSONSearchTool
|
||||
from .linkup.linkup_search_tool import LinkupSearchTool
|
||||
from .llamaindex_tool.llamaindex_tool import LlamaIndexTool
|
||||
from .mdx_seach_tool.mdx_search_tool import MDXSearchTool
|
||||
from .multion_tool.multion_tool import MultiOnTool
|
||||
from .mysql_search_tool.mysql_search_tool import MySQLSearchTool
|
||||
from .nl2sql.nl2sql_tool import NL2SQLTool
|
||||
from .pdf_search_tool.pdf_search_tool import PDFSearchTool
|
||||
from .pg_seach_tool.pg_search_tool import PGSearchTool
|
||||
from .rag.rag_tool import RagTool
|
||||
from .scrape_element_from_website.scrape_element_from_website import (
|
||||
ScrapeElementFromWebsiteTool
|
||||
ScrapeElementFromWebsiteTool,
|
||||
)
|
||||
from .scrapegraph_scrape_tool.scrapegraph_scrape_tool import ScrapegraphScrapeTool, ScrapegraphScrapeToolSchema
|
||||
from .scrape_website_tool.scrape_website_tool import ScrapeWebsiteTool
|
||||
from .scrapfly_scrape_website_tool.scrapfly_scrape_website_tool import (
|
||||
ScrapflyScrapeWebsiteTool
|
||||
ScrapflyScrapeWebsiteTool,
|
||||
)
|
||||
from .selenium_scraping_tool.selenium_scraping_tool import SeleniumScrapingTool
|
||||
from .serper_dev_tool.serper_dev_tool import SerperDevTool
|
||||
@@ -46,7 +50,9 @@ from .vision_tool.vision_tool import VisionTool
|
||||
from .website_search.website_search_tool import WebsiteSearchTool
|
||||
from .xml_search_tool.xml_search_tool import XMLSearchTool
|
||||
from .youtube_channel_search_tool.youtube_channel_search_tool import (
|
||||
YoutubeChannelSearchTool
|
||||
YoutubeChannelSearchTool,
|
||||
)
|
||||
from .youtube_video_search_tool.youtube_video_search_tool import YoutubeVideoSearchTool
|
||||
from .mysql_search_tool.mysql_search_tool import MySQLSearchTool
|
||||
from .weaviate_tool.vector_search import WeaviateVectorSearchTool
|
||||
from .serpapi_tool.serpapi_google_search_tool import SerpApiGoogleSearchTool
|
||||
from .serpapi_tool.serpapi_google_shopping_tool import SerpApiGoogleShoppingTool
|
||||
|
||||
@@ -1,59 +0,0 @@
|
||||
from typing import Any, Callable
|
||||
|
||||
from pydantic import BaseModel as PydanticBaseModel
|
||||
|
||||
from crewai.tools.base_tool import BaseTool
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
|
||||
|
||||
class Tool(BaseTool):
|
||||
func: Callable
|
||||
"""The function that will be executed when the tool is called."""
|
||||
|
||||
def _run(self, *args: Any, **kwargs: Any) -> Any:
|
||||
return self.func(*args, **kwargs)
|
||||
|
||||
|
||||
def to_langchain(
|
||||
tools: list[BaseTool | CrewStructuredTool],
|
||||
) -> list[CrewStructuredTool]:
|
||||
return [t.to_structured_tool() if isinstance(t, BaseTool) else t for t in tools]
|
||||
|
||||
|
||||
def tool(*args):
|
||||
"""
|
||||
Decorator to create a tool from a function.
|
||||
"""
|
||||
|
||||
def _make_with_name(tool_name: str) -> Callable:
|
||||
def _make_tool(f: Callable) -> BaseTool:
|
||||
if f.__doc__ is None:
|
||||
raise ValueError("Function must have a docstring")
|
||||
if f.__annotations__ is None:
|
||||
raise ValueError("Function must have type annotations")
|
||||
|
||||
class_name = "".join(tool_name.split()).title()
|
||||
args_schema = type(
|
||||
class_name,
|
||||
(PydanticBaseModel,),
|
||||
{
|
||||
"__annotations__": {
|
||||
k: v for k, v in f.__annotations__.items() if k != "return"
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
return Tool(
|
||||
name=tool_name,
|
||||
description=f.__doc__,
|
||||
func=f,
|
||||
args_schema=args_schema,
|
||||
)
|
||||
|
||||
return _make_tool
|
||||
|
||||
if len(args) == 1 and callable(args[0]):
|
||||
return _make_with_name(args[0].__name__)(args[0])
|
||||
if len(args) == 1 and isinstance(args[0], str):
|
||||
return _make_with_name(args[0])
|
||||
raise ValueError("Invalid arguments")
|
||||
30
src/crewai_tools/tools/brave_search_tool/README.md
Normal file
30
src/crewai_tools/tools/brave_search_tool/README.md
Normal file
@@ -0,0 +1,30 @@
|
||||
# BraveSearchTool Documentation
|
||||
|
||||
## Description
|
||||
This tool is designed to perform a web search for a specified query from a text's content across the internet. It utilizes the Brave Web Search API, which is a REST API to query Brave Search and get back search results from the web. The following sections describe how to curate requests, including parameters and headers, to Brave Web Search API and get a JSON response back.
|
||||
|
||||
## Installation
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
The following example demonstrates how to initialize the tool and execute a search with a given query:
|
||||
|
||||
```python
|
||||
from crewai_tools import BraveSearchTool
|
||||
|
||||
# Initialize the tool for internet searching capabilities
|
||||
tool = BraveSearchTool()
|
||||
```
|
||||
|
||||
## Steps to Get Started
|
||||
To effectively use the `BraveSearchTool`, follow these steps:
|
||||
|
||||
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||
2. **API Key Acquisition**: Acquire a API key [here](https://api.search.brave.com/app/keys).
|
||||
3. **Environment Configuration**: Store your obtained API key in an environment variable named `BRAVE_API_KEY` to facilitate its use by the tool.
|
||||
|
||||
## Conclusion
|
||||
By integrating the `BraveSearchTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.
|
||||
118
src/crewai_tools/tools/brave_search_tool/brave_search_tool.py
Normal file
118
src/crewai_tools/tools/brave_search_tool/brave_search_tool.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import datetime
|
||||
import os
|
||||
import time
|
||||
from typing import Any, ClassVar, Optional, Type
|
||||
|
||||
import requests
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
def _save_results_to_file(content: str) -> None:
|
||||
"""Saves the search results to a file."""
|
||||
filename = f"search_results_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
|
||||
with open(filename, "w") as file:
|
||||
file.write(content)
|
||||
print(f"Results saved to {filename}")
|
||||
|
||||
|
||||
class BraveSearchToolSchema(BaseModel):
|
||||
"""Input for BraveSearchTool."""
|
||||
|
||||
search_query: str = Field(
|
||||
..., description="Mandatory search query you want to use to search the internet"
|
||||
)
|
||||
|
||||
|
||||
class BraveSearchTool(BaseTool):
|
||||
"""
|
||||
BraveSearchTool - A tool for performing web searches using the Brave Search API.
|
||||
|
||||
This module provides functionality to search the internet using Brave's Search API,
|
||||
supporting customizable result counts and country-specific searches.
|
||||
|
||||
Dependencies:
|
||||
- requests
|
||||
- pydantic
|
||||
- python-dotenv (for API key management)
|
||||
"""
|
||||
|
||||
name: str = "Brave Web Search the internet"
|
||||
description: str = (
|
||||
"A tool that can be used to search the internet with a search_query."
|
||||
)
|
||||
args_schema: Type[BaseModel] = BraveSearchToolSchema
|
||||
search_url: str = "https://api.search.brave.com/res/v1/web/search"
|
||||
country: Optional[str] = ""
|
||||
n_results: int = 10
|
||||
save_file: bool = False
|
||||
_last_request_time: ClassVar[float] = 0
|
||||
_min_request_interval: ClassVar[float] = 1.0 # seconds
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
if "BRAVE_API_KEY" not in os.environ:
|
||||
raise ValueError(
|
||||
"BRAVE_API_KEY environment variable is required for BraveSearchTool"
|
||||
)
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
current_time = time.time()
|
||||
if (current_time - self._last_request_time) < self._min_request_interval:
|
||||
time.sleep(
|
||||
self._min_request_interval - (current_time - self._last_request_time)
|
||||
)
|
||||
BraveSearchTool._last_request_time = time.time()
|
||||
try:
|
||||
search_query = kwargs.get("search_query") or kwargs.get("query")
|
||||
if not search_query:
|
||||
raise ValueError("Search query is required")
|
||||
|
||||
save_file = kwargs.get("save_file", self.save_file)
|
||||
n_results = kwargs.get("n_results", self.n_results)
|
||||
|
||||
payload = {"q": search_query, "count": n_results}
|
||||
|
||||
if self.country != "":
|
||||
payload["country"] = self.country
|
||||
|
||||
headers = {
|
||||
"X-Subscription-Token": os.environ["BRAVE_API_KEY"],
|
||||
"Accept": "application/json",
|
||||
}
|
||||
|
||||
response = requests.get(self.search_url, headers=headers, params=payload)
|
||||
response.raise_for_status() # Handle non-200 responses
|
||||
results = response.json()
|
||||
|
||||
if "web" in results:
|
||||
results = results["web"]["results"]
|
||||
string = []
|
||||
for result in results:
|
||||
try:
|
||||
string.append(
|
||||
"\n".join(
|
||||
[
|
||||
f"Title: {result['title']}",
|
||||
f"Link: {result['url']}",
|
||||
f"Snippet: {result['description']}",
|
||||
"---",
|
||||
]
|
||||
)
|
||||
)
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
content = "\n".join(string)
|
||||
except requests.RequestException as e:
|
||||
return f"Error performing search: {str(e)}"
|
||||
except KeyError as e:
|
||||
return f"Error parsing search results: {str(e)}"
|
||||
if save_file:
|
||||
_save_results_to_file(content)
|
||||
return f"\nSearch results: {content}\n"
|
||||
else:
|
||||
return content
|
||||
@@ -1,8 +1,8 @@
|
||||
import os
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
|
||||
class BrowserbaseLoadToolSchema(BaseModel):
|
||||
@@ -15,8 +15,8 @@ class BrowserbaseLoadTool(BaseTool):
|
||||
"Load webpages url in a headless browser using Browserbase and return the contents"
|
||||
)
|
||||
args_schema: Type[BaseModel] = BrowserbaseLoadToolSchema
|
||||
api_key: Optional[str] = None
|
||||
project_id: Optional[str] = None
|
||||
api_key: Optional[str] = os.getenv('BROWSERBASE_API_KEY')
|
||||
project_id: Optional[str] = os.getenv('BROWSERBASE_PROJECT_ID')
|
||||
text_content: Optional[bool] = False
|
||||
session_id: Optional[str] = None
|
||||
proxy: Optional[bool] = None
|
||||
@@ -32,6 +32,8 @@ class BrowserbaseLoadTool(BaseTool):
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
if not self.api_key:
|
||||
raise EnvironmentError("BROWSERBASE_API_KEY environment variable is required for initialization")
|
||||
try:
|
||||
from browserbase import Browserbase # type: ignore
|
||||
except ImportError:
|
||||
@@ -39,7 +41,7 @@ class BrowserbaseLoadTool(BaseTool):
|
||||
"`browserbase` package not found, please run `pip install browserbase`"
|
||||
)
|
||||
|
||||
self.browserbase = Browserbase(api_key, project_id)
|
||||
self.browserbase = Browserbase(api_key=self.api_key)
|
||||
self.text_content = text_content
|
||||
self.session_id = session_id
|
||||
self.proxy = proxy
|
||||
|
||||
@@ -32,7 +32,7 @@ Note: Substitute 'https://docs.example.com/reference' with your target documenta
|
||||
By default, the tool uses OpenAI for both embeddings and summarization. To customize the model, you can use a config dictionary as follows:
|
||||
|
||||
```python
|
||||
tool = YoutubeVideoSearchTool(
|
||||
tool = CodeDocsSearchTool(
|
||||
config=dict(
|
||||
llm=dict(
|
||||
provider="ollama", # or google, openai, anthropic, llama2, ...
|
||||
|
||||
@@ -38,3 +38,16 @@ Agent(
|
||||
tools=[CodeInterpreterTool(user_dockerfile_path="<Dockerfile_path>")],
|
||||
)
|
||||
```
|
||||
|
||||
If it is difficult to connect to docker daemon automatically (especially for macOS users), you can do this to setup docker host manually
|
||||
|
||||
```python
|
||||
from crewai_tools import CodeInterpreterTool
|
||||
|
||||
Agent(
|
||||
...
|
||||
tools=[CodeInterpreterTool(user_docker_base_url="<Docker Host Base Url>",
|
||||
user_dockerfile_path="<Dockerfile_path>")],
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
@@ -2,11 +2,12 @@ import importlib.util
|
||||
import os
|
||||
from typing import List, Optional, Type
|
||||
|
||||
import docker
|
||||
from docker import from_env as docker_from_env
|
||||
from docker.models.containers import Container
|
||||
from docker.errors import ImageNotFound, NotFound
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
|
||||
class CodeInterpreterSchema(BaseModel):
|
||||
"""Input for CodeInterpreterTool."""
|
||||
@@ -29,6 +30,7 @@ class CodeInterpreterTool(BaseTool):
|
||||
default_image_tag: str = "code-interpreter:latest"
|
||||
code: Optional[str] = None
|
||||
user_dockerfile_path: Optional[str] = None
|
||||
user_docker_base_url: Optional[str] = None
|
||||
unsafe_mode: bool = False
|
||||
|
||||
@staticmethod
|
||||
@@ -40,12 +42,13 @@ class CodeInterpreterTool(BaseTool):
|
||||
"""
|
||||
Verify if the Docker image is available. Optionally use a user-provided Dockerfile.
|
||||
"""
|
||||
client = docker.from_env()
|
||||
|
||||
client = docker_from_env() if self.user_docker_base_url == None else docker.DockerClient(base_url=self.user_docker_base_url)
|
||||
|
||||
try:
|
||||
client.images.get(self.default_image_tag)
|
||||
|
||||
except docker.errors.ImageNotFound:
|
||||
except ImageNotFound:
|
||||
if self.user_dockerfile_path and os.path.exists(self.user_dockerfile_path):
|
||||
dockerfile_path = self.user_dockerfile_path
|
||||
else:
|
||||
@@ -74,17 +77,17 @@ class CodeInterpreterTool(BaseTool):
|
||||
return self.run_code_in_docker(code, libraries_used)
|
||||
|
||||
def _install_libraries(
|
||||
self, container: docker.models.containers.Container, libraries: List[str]
|
||||
self, container: Container, libraries: List[str]
|
||||
) -> None:
|
||||
"""
|
||||
Install missing libraries in the Docker container
|
||||
"""
|
||||
for library in libraries:
|
||||
container.exec_run(f"pip install {library}")
|
||||
container.exec_run(["pip", "install", library])
|
||||
|
||||
def _init_docker_container(self) -> docker.models.containers.Container:
|
||||
def _init_docker_container(self) -> Container:
|
||||
container_name = "code-interpreter"
|
||||
client = docker.from_env()
|
||||
client = docker_from_env()
|
||||
current_path = os.getcwd()
|
||||
|
||||
# Check if the container is already running
|
||||
@@ -92,7 +95,7 @@ class CodeInterpreterTool(BaseTool):
|
||||
existing_container = client.containers.get(container_name)
|
||||
existing_container.stop()
|
||||
existing_container.remove()
|
||||
except docker.errors.NotFound:
|
||||
except NotFound:
|
||||
pass # Container does not exist, no need to remove
|
||||
|
||||
return client.containers.run(
|
||||
@@ -109,8 +112,7 @@ class CodeInterpreterTool(BaseTool):
|
||||
container = self._init_docker_container()
|
||||
self._install_libraries(container, libraries_used)
|
||||
|
||||
cmd_to_run = f'python3 -c "{code}"'
|
||||
exec_result = container.exec_run(cmd_to_run)
|
||||
exec_result = container.exec_run(["python3", "-c", code])
|
||||
|
||||
container.stop()
|
||||
container.remove()
|
||||
|
||||
@@ -5,8 +5,7 @@ Composio tools wrapper.
|
||||
import typing as t
|
||||
|
||||
import typing_extensions as te
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
|
||||
class ComposioTool(BaseTool):
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
import json
|
||||
from typing import Type
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from openai import OpenAI
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
|
||||
class ImagePromptSchema(BaseModel):
|
||||
"""Input for Dall-E Tool."""
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
import os
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ..base_tool import BaseTool
|
||||
|
||||
|
||||
class FixedDirectoryReadToolSchema(BaseModel):
|
||||
"""Input for DirectoryReadTool."""
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
import os
|
||||
from typing import Type
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
|
||||
class EXABaseToolToolSchema(BaseModel):
|
||||
"""Input for EXABaseTool."""
|
||||
@@ -28,10 +26,10 @@ class EXABaseTool(BaseTool):
|
||||
}
|
||||
|
||||
def _parse_results(self, results):
|
||||
stirng = []
|
||||
string = []
|
||||
for result in results:
|
||||
try:
|
||||
stirng.append(
|
||||
string.append(
|
||||
"\n".join(
|
||||
[
|
||||
f"Title: {result['title']}",
|
||||
@@ -43,7 +41,7 @@ class EXABaseTool(BaseTool):
|
||||
)
|
||||
)
|
||||
except KeyError:
|
||||
next
|
||||
continue
|
||||
|
||||
content = "\n".join(stirng)
|
||||
content = "\n".join(string)
|
||||
return f"\nSearch results: {content}\n"
|
||||
|
||||
@@ -1,28 +1,30 @@
|
||||
import os
|
||||
import requests
|
||||
from typing import Any
|
||||
|
||||
import requests
|
||||
|
||||
from .exa_base_tool import EXABaseTool
|
||||
|
||||
|
||||
class EXASearchTool(EXABaseTool):
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
search_query = kwargs.get('search_query')
|
||||
if search_query is None:
|
||||
search_query = kwargs.get('query')
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
search_query = kwargs.get("search_query")
|
||||
if search_query is None:
|
||||
search_query = kwargs.get("query")
|
||||
|
||||
payload = {
|
||||
"query": search_query,
|
||||
"type": "magic",
|
||||
}
|
||||
payload = {
|
||||
"query": search_query,
|
||||
"type": "magic",
|
||||
}
|
||||
|
||||
headers = self.headers.copy()
|
||||
headers["x-api-key"] = os.environ['EXA_API_KEY']
|
||||
headers = self.headers.copy()
|
||||
headers["x-api-key"] = os.environ["EXA_API_KEY"]
|
||||
|
||||
response = requests.post(self.search_url, json=payload, headers=headers)
|
||||
results = response.json()
|
||||
if 'results' in results:
|
||||
results = super()._parse_results(results['results'])
|
||||
return results
|
||||
response = requests.post(self.search_url, json=payload, headers=headers)
|
||||
results = response.json()
|
||||
if "results" in results:
|
||||
results = super()._parse_results(results["results"])
|
||||
return results
|
||||
|
||||
@@ -1,43 +1,81 @@
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ..base_tool import BaseTool
|
||||
|
||||
|
||||
class FixedFileReadToolSchema(BaseModel):
|
||||
"""Input for FileReadTool."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class FileReadToolSchema(FixedFileReadToolSchema):
|
||||
class FileReadToolSchema(BaseModel):
|
||||
"""Input for FileReadTool."""
|
||||
|
||||
file_path: str = Field(..., description="Mandatory file full path to read the file")
|
||||
|
||||
|
||||
class FileReadTool(BaseTool):
|
||||
"""A tool for reading file contents.
|
||||
|
||||
This tool inherits its schema handling from BaseTool to avoid recursive schema
|
||||
definition issues. The args_schema is set to FileReadToolSchema which defines
|
||||
the required file_path parameter. The schema should not be overridden in the
|
||||
constructor as it would break the inheritance chain and cause infinite loops.
|
||||
|
||||
The tool supports two ways of specifying the file path:
|
||||
1. At construction time via the file_path parameter
|
||||
2. At runtime via the file_path parameter in the tool's input
|
||||
|
||||
Args:
|
||||
file_path (Optional[str]): Path to the file to be read. If provided,
|
||||
this becomes the default file path for the tool.
|
||||
**kwargs: Additional keyword arguments passed to BaseTool.
|
||||
|
||||
Example:
|
||||
>>> tool = FileReadTool(file_path="/path/to/file.txt")
|
||||
>>> content = tool.run() # Reads /path/to/file.txt
|
||||
>>> content = tool.run(file_path="/path/to/other.txt") # Reads other.txt
|
||||
"""
|
||||
name: str = "Read a file's content"
|
||||
description: str = "A tool that can be used to read a file's content."
|
||||
description: str = "A tool that reads the content of a file. To use this tool, provide a 'file_path' parameter with the path to the file you want to read."
|
||||
args_schema: Type[BaseModel] = FileReadToolSchema
|
||||
file_path: Optional[str] = None
|
||||
|
||||
def __init__(self, file_path: Optional[str] = None, **kwargs):
|
||||
def __init__(self, file_path: Optional[str] = None, **kwargs: Any) -> None:
|
||||
"""Initialize the FileReadTool.
|
||||
|
||||
Args:
|
||||
file_path (Optional[str]): Path to the file to be read. If provided,
|
||||
this becomes the default file path for the tool.
|
||||
**kwargs: Additional keyword arguments passed to BaseTool.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
if file_path is not None:
|
||||
self.file_path = file_path
|
||||
self.description = f"A tool that can be used to read {file_path}'s content."
|
||||
self.args_schema = FixedFileReadToolSchema
|
||||
self._generate_description()
|
||||
self.description = f"A tool that reads file content. The default file is {file_path}, but you can provide a different 'file_path' parameter to read another file."
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
) -> str:
|
||||
file_path = kwargs.get("file_path", self.file_path)
|
||||
if file_path is None:
|
||||
return "Error: No file path provided. Please provide a file path either in the constructor or as an argument."
|
||||
|
||||
try:
|
||||
file_path = kwargs.get("file_path", self.file_path)
|
||||
with open(file_path, "r") as file:
|
||||
return file.read()
|
||||
except FileNotFoundError:
|
||||
return f"Error: File not found at path: {file_path}"
|
||||
except PermissionError:
|
||||
return f"Error: Permission denied when trying to read file: {file_path}"
|
||||
except Exception as e:
|
||||
return f"Fail to read the file {file_path}. Error: {e}"
|
||||
return f"Error: Failed to read file {file_path}. {str(e)}"
|
||||
|
||||
def _generate_description(self) -> None:
|
||||
"""Generate the tool description based on file path.
|
||||
|
||||
This method updates the tool's description to include information about
|
||||
the default file path while maintaining the ability to specify a different
|
||||
file at runtime.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
self.description = f"A tool that can be used to read {self.file_path}'s content."
|
||||
|
||||
@@ -1,16 +1,18 @@
|
||||
import os
|
||||
from typing import Any, Optional, Type
|
||||
from pydantic import BaseModel
|
||||
from ..base_tool import BaseTool
|
||||
from distutils.util import strtobool
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class FileWriterToolInput(BaseModel):
|
||||
filename: str
|
||||
filename: str
|
||||
directory: Optional[str] = "./"
|
||||
overwrite: str = "False"
|
||||
content: str
|
||||
|
||||
|
||||
|
||||
class FileWriterTool(BaseTool):
|
||||
name: str = "File Writer Tool"
|
||||
description: str = (
|
||||
@@ -26,7 +28,7 @@ class FileWriterTool(BaseTool):
|
||||
|
||||
# Construct the full path
|
||||
filepath = os.path.join(kwargs.get("directory") or "", kwargs["filename"])
|
||||
|
||||
|
||||
# Convert overwrite to boolean
|
||||
kwargs["overwrite"] = bool(strtobool(kwargs["overwrite"]))
|
||||
|
||||
@@ -46,4 +48,4 @@ class FileWriterTool(BaseTool):
|
||||
except KeyError as e:
|
||||
return f"An error occurred while accessing key: {str(e)}"
|
||||
except Exception as e:
|
||||
return f"An error occurred while writing to the file: {str(e)}"
|
||||
return f"An error occurred while writing to the file: {str(e)}"
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Type
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
# Type checking import
|
||||
if TYPE_CHECKING:
|
||||
@@ -11,22 +12,33 @@ if TYPE_CHECKING:
|
||||
|
||||
class FirecrawlCrawlWebsiteToolSchema(BaseModel):
|
||||
url: str = Field(description="Website URL")
|
||||
crawler_options: Optional[Dict[str, Any]] = Field(
|
||||
default=None, description="Options for crawling"
|
||||
)
|
||||
page_options: Optional[Dict[str, Any]] = Field(
|
||||
default=None, description="Options for page"
|
||||
)
|
||||
|
||||
|
||||
class FirecrawlCrawlWebsiteTool(BaseTool):
|
||||
model_config = ConfigDict(
|
||||
arbitrary_types_allowed=True, validate_assignment=True, frozen=False
|
||||
)
|
||||
name: str = "Firecrawl web crawl tool"
|
||||
description: str = "Crawl webpages using Firecrawl and return the contents"
|
||||
args_schema: Type[BaseModel] = FirecrawlCrawlWebsiteToolSchema
|
||||
firecrawl_app: Optional["FirecrawlApp"] = None
|
||||
api_key: Optional[str] = None
|
||||
firecrawl: Optional["FirecrawlApp"] = None
|
||||
url: Optional[str] = None
|
||||
params: Optional[Dict[str, Any]] = None
|
||||
poll_interval: Optional[int] = 2
|
||||
idempotency_key: Optional[str] = None
|
||||
|
||||
def __init__(self, api_key: Optional[str] = None, **kwargs):
|
||||
"""Initialize FirecrawlCrawlWebsiteTool.
|
||||
|
||||
Args:
|
||||
api_key (Optional[str]): Firecrawl API key. If not provided, will check FIRECRAWL_API_KEY env var.
|
||||
url (Optional[str]): Base URL to crawl. Can be overridden by the _run method.
|
||||
firecrawl_app (Optional[FirecrawlApp]): Previously created FirecrawlApp instance.
|
||||
params (Optional[Dict[str, Any]]): Additional parameters to pass to the FirecrawlApp.
|
||||
poll_interval (Optional[int]): Poll interval for the FirecrawlApp.
|
||||
idempotency_key (Optional[str]): Idempotency key for the FirecrawlApp.
|
||||
**kwargs: Additional arguments passed to BaseTool.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
try:
|
||||
from firecrawl import FirecrawlApp # type: ignore
|
||||
@@ -35,18 +47,37 @@ class FirecrawlCrawlWebsiteTool(BaseTool):
|
||||
"`firecrawl` package not found, please run `pip install firecrawl-py`"
|
||||
)
|
||||
|
||||
self.firecrawl = FirecrawlApp(api_key=api_key)
|
||||
# Allows passing a previously created FirecrawlApp instance
|
||||
# or builds a new one with the provided API key
|
||||
if not self.firecrawl_app:
|
||||
client_api_key = api_key or os.getenv("FIRECRAWL_API_KEY")
|
||||
if not client_api_key:
|
||||
raise ValueError(
|
||||
"FIRECRAWL_API_KEY is not set. Please provide it either via the constructor "
|
||||
"with the `api_key` argument or by setting the FIRECRAWL_API_KEY environment variable."
|
||||
)
|
||||
self.firecrawl_app = FirecrawlApp(api_key=client_api_key)
|
||||
|
||||
def _run(
|
||||
self,
|
||||
url: str,
|
||||
crawler_options: Optional[Dict[str, Any]] = None,
|
||||
page_options: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
if crawler_options is None:
|
||||
crawler_options = {}
|
||||
if page_options is None:
|
||||
page_options = {}
|
||||
def _run(self, url: str):
|
||||
# Unless url has been previously set via constructor by the user,
|
||||
# use the url argument provided by the agent at runtime.
|
||||
base_url = self.url or url
|
||||
|
||||
options = {"crawlerOptions": crawler_options, "pageOptions": page_options}
|
||||
return self.firecrawl.crawl_url(url, options)
|
||||
return self.firecrawl_app.crawl_url(
|
||||
base_url,
|
||||
params=self.params,
|
||||
poll_interval=self.poll_interval,
|
||||
idempotency_key=self.idempotency_key
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
from firecrawl import FirecrawlApp
|
||||
|
||||
# Must rebuild model after class is defined
|
||||
FirecrawlCrawlWebsiteTool.model_rebuild()
|
||||
except ImportError:
|
||||
"""
|
||||
When this tool is not used, then exception can be ignored.
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Type
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
# Type checking import
|
||||
if TYPE_CHECKING:
|
||||
@@ -24,6 +23,9 @@ class FirecrawlScrapeWebsiteToolSchema(BaseModel):
|
||||
|
||||
|
||||
class FirecrawlScrapeWebsiteTool(BaseTool):
|
||||
model_config = ConfigDict(
|
||||
arbitrary_types_allowed=True, validate_assignment=True, frozen=False
|
||||
)
|
||||
name: str = "Firecrawl web scrape tool"
|
||||
description: str = "Scrape webpages url using Firecrawl and return the contents"
|
||||
args_schema: Type[BaseModel] = FirecrawlScrapeWebsiteToolSchema
|
||||
@@ -61,3 +63,15 @@ class FirecrawlScrapeWebsiteTool(BaseTool):
|
||||
"timeout": timeout,
|
||||
}
|
||||
return self.firecrawl.scrape_url(url, options)
|
||||
|
||||
|
||||
try:
|
||||
from firecrawl import FirecrawlApp
|
||||
|
||||
# Must rebuild model after class is defined
|
||||
FirecrawlScrapeWebsiteTool.model_rebuild()
|
||||
except ImportError:
|
||||
"""
|
||||
When this tool is not used, then exception can be ignored.
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Type
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
# Type checking import
|
||||
if TYPE_CHECKING:
|
||||
from firecrawl import FirecrawlApp
|
||||
|
||||
38
src/crewai_tools/tools/jina_scrape_website_tool/README.md
Normal file
38
src/crewai_tools/tools/jina_scrape_website_tool/README.md
Normal file
@@ -0,0 +1,38 @@
|
||||
# JinaScrapeWebsiteTool
|
||||
|
||||
## Description
|
||||
A tool designed to extract and read the content of a specified website by using Jina.ai reader. It is capable of handling various types of web pages by making HTTP requests and parsing the received HTML content. This tool can be particularly useful for web scraping tasks, data collection, or extracting specific information from websites.
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
```python
|
||||
from crewai_tools import JinaScrapeWebsiteTool
|
||||
|
||||
# To enable scraping any website it finds during its execution
|
||||
tool = JinaScrapeWebsiteTool(api_key='YOUR_API_KEY')
|
||||
|
||||
# Initialize the tool with the website URL, so the agent can only scrape the content of the specified website
|
||||
tool = JinaScrapeWebsiteTool(website_url='https://www.example.com')
|
||||
|
||||
# With custom headers
|
||||
tool = JinaScrapeWebsiteTool(
|
||||
website_url='https://www.example.com',
|
||||
custom_headers={'X-Target-Selector': 'body, .class, #id'}
|
||||
)
|
||||
```
|
||||
|
||||
## Authentication
|
||||
The tool uses Jina.ai's reader service. While it can work without an API key, Jina.ai may apply rate limiting or blocking to unauthenticated requests. For production use, it's recommended to provide an API key.
|
||||
|
||||
## Arguments
|
||||
- `website_url`: Mandatory website URL to read the file. This is the primary input for the tool, specifying which website's content should be scraped and read.
|
||||
- `api_key`: Optional Jina.ai API key for authenticated access to the reader service.
|
||||
- `custom_headers`: Optional dictionary of HTTP headers to use when making requests.
|
||||
|
||||
## Note
|
||||
This tool is an alternative to the standard `ScrapeWebsiteTool` that specifically uses Jina.ai's reader service for enhanced content extraction. Choose this tool when you need more sophisticated content parsing capabilities.
|
||||
@@ -0,0 +1,54 @@
|
||||
from typing import Optional, Type
|
||||
|
||||
import requests
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class JinaScrapeWebsiteToolInput(BaseModel):
|
||||
"""Input schema for JinaScrapeWebsiteTool."""
|
||||
|
||||
website_url: str = Field(..., description="Mandatory website url to read the file")
|
||||
|
||||
|
||||
class JinaScrapeWebsiteTool(BaseTool):
|
||||
name: str = "JinaScrapeWebsiteTool"
|
||||
description: str = (
|
||||
"A tool that can be used to read a website content using Jina.ai reader and return markdown content."
|
||||
)
|
||||
args_schema: Type[BaseModel] = JinaScrapeWebsiteToolInput
|
||||
website_url: Optional[str] = None
|
||||
api_key: Optional[str] = None
|
||||
headers: dict = {}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
website_url: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
custom_headers: Optional[dict] = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
if website_url is not None:
|
||||
self.website_url = website_url
|
||||
self.description = f"A tool that can be used to read {website_url}'s content and return markdown content."
|
||||
self._generate_description()
|
||||
|
||||
if custom_headers is not None:
|
||||
self.headers = custom_headers
|
||||
|
||||
if api_key is not None:
|
||||
self.headers["Authorization"] = f"Bearer {api_key}"
|
||||
|
||||
def _run(self, website_url: Optional[str] = None) -> str:
|
||||
url = website_url or self.website_url
|
||||
if not url:
|
||||
raise ValueError(
|
||||
"Website URL must be provided either during initialization or execution"
|
||||
)
|
||||
|
||||
response = requests.get(
|
||||
f"https://r.jina.ai/{url}", headers=self.headers, timeout=15
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.text
|
||||
98
src/crewai_tools/tools/linkup/README.md
Normal file
98
src/crewai_tools/tools/linkup/README.md
Normal file
@@ -0,0 +1,98 @@
|
||||
# Linkup Search Tool
|
||||
|
||||
## Description
|
||||
|
||||
The `LinkupSearchTool` is a tool designed for integration with the CrewAI framework. It provides the ability to query the Linkup API for contextual information and retrieve structured results. This tool is ideal for enriching workflows with up-to-date and reliable information from Linkup.
|
||||
|
||||
---
|
||||
|
||||
## Features
|
||||
|
||||
- Perform API queries to the Linkup platform using customizable parameters (`query`, `depth`, `output_type`).
|
||||
- Gracefully handles API errors and provides structured feedback.
|
||||
- Returns well-structured results for seamless integration into CrewAI processes.
|
||||
|
||||
---
|
||||
|
||||
## Installation
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Linkup API Key
|
||||
|
||||
### Steps
|
||||
|
||||
1. ```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
2. Create a `.env` file in your project root and add your Linkup API Key:
|
||||
```plaintext
|
||||
LINKUP_API_KEY=your_linkup_api_key
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic Example
|
||||
|
||||
Here is how to use the `LinkupSearchTool` in a CrewAI project:
|
||||
|
||||
1. **Import and Initialize**:
|
||||
```python
|
||||
from tools.linkup_tools import LinkupSearchTool
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
linkup_tool = LinkupSearchTool(api_key=os.getenv("LINKUP_API_KEY"))
|
||||
```
|
||||
|
||||
2. **Set Up an Agent and Task**:
|
||||
```python
|
||||
from crewai import Agent, Task, Crew
|
||||
|
||||
# Define the agent
|
||||
research_agent = Agent(
|
||||
role="Information Researcher",
|
||||
goal="Fetch relevant results from Linkup.",
|
||||
backstory="An expert in online information retrieval...",
|
||||
tools=[linkup_tool],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Define the task
|
||||
search_task = Task(
|
||||
expected_output="A detailed list of Nobel Prize-winning women in physics with their achievements.",
|
||||
description="Search for women who have won the Nobel Prize in Physics.",
|
||||
agent=research_agent
|
||||
)
|
||||
|
||||
# Create and run the crew
|
||||
crew = Crew(
|
||||
agents=[research_agent],
|
||||
tasks=[search_task]
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Advanced Configuration
|
||||
|
||||
You can customize the parameters for the `LinkupSearchTool`:
|
||||
|
||||
- `query`: The search term or phrase.
|
||||
- `depth`: The search depth (`"standard"` by default).
|
||||
- `output_type`: The type of output (`"searchResults"` by default).
|
||||
|
||||
Example:
|
||||
```python
|
||||
response = linkup_tool._run(
|
||||
query="Women Nobel Prize Physics",
|
||||
depth="standard",
|
||||
output_type="searchResults"
|
||||
)
|
||||
```
|
||||
BIN
src/crewai_tools/tools/linkup/assets/icon.png
Normal file
BIN
src/crewai_tools/tools/linkup/assets/icon.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 32 KiB |
49
src/crewai_tools/tools/linkup/linkup_search_tool.py
Normal file
49
src/crewai_tools/tools/linkup/linkup_search_tool.py
Normal file
@@ -0,0 +1,49 @@
|
||||
from typing import Any
|
||||
|
||||
try:
|
||||
from linkup import LinkupClient
|
||||
LINKUP_AVAILABLE = True
|
||||
except ImportError:
|
||||
LINKUP_AVAILABLE = False
|
||||
LinkupClient = Any # type placeholder when package is not available
|
||||
|
||||
from pydantic import PrivateAttr
|
||||
|
||||
class LinkupSearchTool:
|
||||
name: str = "Linkup Search Tool"
|
||||
description: str = "Performs an API call to Linkup to retrieve contextual information."
|
||||
_client: LinkupClient = PrivateAttr() # type: ignore
|
||||
|
||||
def __init__(self, api_key: str):
|
||||
"""
|
||||
Initialize the tool with an API key.
|
||||
"""
|
||||
if not LINKUP_AVAILABLE:
|
||||
raise ImportError(
|
||||
"The 'linkup' package is required to use the LinkupSearchTool. "
|
||||
"Please install it with: uv add linkup"
|
||||
)
|
||||
self._client = LinkupClient(api_key=api_key)
|
||||
|
||||
def _run(self, query: str, depth: str = "standard", output_type: str = "searchResults") -> dict:
|
||||
"""
|
||||
Executes a search using the Linkup API.
|
||||
|
||||
:param query: The query to search for.
|
||||
:param depth: Search depth (default is "standard").
|
||||
:param output_type: Desired result type (default is "searchResults").
|
||||
:return: A dictionary containing the results or an error message.
|
||||
"""
|
||||
try:
|
||||
response = self._client.search(
|
||||
query=query,
|
||||
depth=depth,
|
||||
output_type=output_type
|
||||
)
|
||||
results = [
|
||||
{"name": result.name, "url": result.url, "content": result.content}
|
||||
for result in response.results
|
||||
]
|
||||
return {"success": True, "results": results}
|
||||
except Exception as e:
|
||||
return {"success": False, "error": str(e)}
|
||||
@@ -1,9 +1,8 @@
|
||||
from typing import Any, Optional, Type, cast
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
|
||||
class LlamaIndexTool(BaseTool):
|
||||
"""Tool to wrap LlamaIndex tools/query engines."""
|
||||
@@ -19,6 +18,10 @@ class LlamaIndexTool(BaseTool):
|
||||
from llama_index.core.tools import BaseTool as LlamaBaseTool
|
||||
|
||||
tool = cast(LlamaBaseTool, self.llama_index_tool)
|
||||
|
||||
if self.result_as_answer:
|
||||
return tool(*args, **kwargs).content
|
||||
|
||||
return tool(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -41,7 +41,7 @@ crew.kickoff()
|
||||
|
||||
## Arguments
|
||||
|
||||
- `api_key`: Specifies Browserbase API key. Defaults is the `BROWSERBASE_API_KEY` environment variable.
|
||||
- `api_key`: Specifies MultiOn API key. Default is the `MULTION_API_KEY` environment variable.
|
||||
- `local`: Use the local flag set as "true" to run the agent locally on your browser. Make sure the multion browser extension is installed and API Enabled is checked.
|
||||
- `max_steps`: Optional. Set the max_steps the multion agent can take for a command
|
||||
|
||||
@@ -51,4 +51,3 @@ To effectively use the `MultiOnTool`, follow these steps:
|
||||
1. **Install CrewAI**: Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||
2. **Install and use MultiOn**: Follow MultiOn documentation for installing the MultiOn Browser Extension (https://docs.multion.ai/learn/browser-extension).
|
||||
3. **Enable API Usage**: Click on the MultiOn extension in the extensions folder of your browser (not the hovering MultiOn icon on the web page) to open the extension configurations. Click the API Enabled toggle to enable the API
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
from typing import Any, Optional
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
|
||||
class MultiOnTool(BaseTool):
|
||||
|
||||
@@ -2,9 +2,9 @@
|
||||
|
||||
## Description
|
||||
|
||||
This tool is used to convert natural language to SQL queries. When passsed to the agent it will generate queries and then use them to interact with the database.
|
||||
This tool is used to convert natural language to SQL queries. When passed to the agent it will generate queries and then use them to interact with the database.
|
||||
|
||||
This enables multiple workflows like having an Agent to access the database fetch information based on the goal and then use the information to generate a response, report or any other output. Along with that proivdes the ability for the Agent to update the database based on its goal.
|
||||
This enables multiple workflows like having an Agent to access the database fetch information based on the goal and then use the information to generate a response, report or any other output. Along with that provides the ability for the Agent to update the database based on its goal.
|
||||
|
||||
**Attention**: Make sure that the Agent has access to a Read-Replica or that is okay for the Agent to run insert/update queries on the database.
|
||||
|
||||
@@ -23,7 +23,6 @@ pip install 'crewai[tools]'
|
||||
|
||||
In order to use the NL2SQLTool, you need to pass the database URI to the tool. The URI should be in the format `dialect+driver://username:password@host:port/database`.
|
||||
|
||||
|
||||
```python
|
||||
from crewai_tools import NL2SQLTool
|
||||
|
||||
@@ -43,7 +42,7 @@ def researcher(self) -> Agent:
|
||||
|
||||
The primary task goal was:
|
||||
|
||||
"Retrieve the average, maximum, and minimum monthly revenue for each city, but only include cities that have more than one user. Also, count the number of user in each city and sort the results by the average monthly revenue in descending order"
|
||||
"Retrieve the average, maximum, and minimum monthly revenue for each city, but only include cities that have more than one user. Also, count the number of users in each city and sort the results by the average monthly revenue in descending order"
|
||||
|
||||
So the Agent tried to get information from the DB, the first one is wrong so the Agent tries again and gets the correct information and passes to the next agent.
|
||||
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
from typing import Any, Union
|
||||
from typing import Any, Type, Union
|
||||
|
||||
from ..base_tool import BaseTool
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy import create_engine, text
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
from typing import Type, Any
|
||||
|
||||
class NL2SQLToolInput(BaseModel):
|
||||
sql_query: str = Field(
|
||||
@@ -13,6 +12,7 @@ class NL2SQLToolInput(BaseModel):
|
||||
description="The SQL query to execute.",
|
||||
)
|
||||
|
||||
|
||||
class NL2SQLTool(BaseTool):
|
||||
name: str = "NL2SQLTool"
|
||||
description: str = "Converts natural language to SQL queries and executes them."
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
|
||||
class Adapter(BaseModel, ABC):
|
||||
class Config:
|
||||
|
||||
@@ -3,10 +3,9 @@ from typing import Any, Optional, Type
|
||||
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ..base_tool import BaseTool
|
||||
|
||||
|
||||
class FixedScrapeElementFromWebsiteToolSchema(BaseModel):
|
||||
"""Input for ScrapeElementFromWebsiteTool."""
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
import os
|
||||
import re
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ..base_tool import BaseTool
|
||||
|
||||
|
||||
class FixedScrapeWebsiteToolSchema(BaseModel):
|
||||
"""Input for ScrapeWebsiteTool."""
|
||||
@@ -67,7 +67,7 @@ class ScrapeWebsiteTool(BaseTool):
|
||||
page.encoding = page.apparent_encoding
|
||||
parsed = BeautifulSoup(page.text, "html.parser")
|
||||
|
||||
text = parsed.get_text()
|
||||
text = "\n".join([i for i in text.split("\n") if i.strip() != ""])
|
||||
text = " ".join([i for i in text.split(" ") if i.strip() != ""])
|
||||
text = parsed.get_text(" ")
|
||||
text = re.sub("[ \t]+", " ", text)
|
||||
text = re.sub("\\s+\n\\s+", "\n", text)
|
||||
return text
|
||||
|
||||
84
src/crewai_tools/tools/scrapegraph_scrape_tool/README.md
Normal file
84
src/crewai_tools/tools/scrapegraph_scrape_tool/README.md
Normal file
@@ -0,0 +1,84 @@
|
||||
# ScrapegraphScrapeTool
|
||||
|
||||
## Description
|
||||
A tool that leverages Scrapegraph AI's SmartScraper API to intelligently extract content from websites. This tool provides advanced web scraping capabilities with AI-powered content extraction, making it ideal for targeted data collection and content analysis tasks.
|
||||
|
||||
## Installation
|
||||
Install the required packages:
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example Usage
|
||||
|
||||
### Basic Usage
|
||||
```python
|
||||
from crewai_tools import ScrapegraphScrapeTool
|
||||
|
||||
# Basic usage with API key
|
||||
tool = ScrapegraphScrapeTool(api_key="your_api_key")
|
||||
result = tool.run(
|
||||
website_url="https://www.example.com",
|
||||
user_prompt="Extract the main heading and summary"
|
||||
)
|
||||
```
|
||||
|
||||
### Fixed Website URL
|
||||
```python
|
||||
# Initialize with a fixed website URL
|
||||
tool = ScrapegraphScrapeTool(
|
||||
website_url="https://www.example.com",
|
||||
api_key="your_api_key"
|
||||
)
|
||||
result = tool.run()
|
||||
```
|
||||
|
||||
### Custom Prompt
|
||||
```python
|
||||
# With custom prompt
|
||||
tool = ScrapegraphScrapeTool(
|
||||
api_key="your_api_key",
|
||||
user_prompt="Extract all product prices and descriptions"
|
||||
)
|
||||
result = tool.run(website_url="https://www.example.com")
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
```python
|
||||
try:
|
||||
tool = ScrapegraphScrapeTool(api_key="your_api_key")
|
||||
result = tool.run(
|
||||
website_url="https://www.example.com",
|
||||
user_prompt="Extract the main heading"
|
||||
)
|
||||
except ValueError as e:
|
||||
print(f"Configuration error: {e}") # Handles invalid URLs or missing API keys
|
||||
except RuntimeError as e:
|
||||
print(f"Scraping error: {e}") # Handles API or network errors
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `website_url`: The URL of the website to scrape (required if not set during initialization)
|
||||
- `user_prompt`: Custom instructions for content extraction (optional)
|
||||
- `api_key`: Your Scrapegraph API key (required, can be set via SCRAPEGRAPH_API_KEY environment variable)
|
||||
|
||||
## Environment Variables
|
||||
- `SCRAPEGRAPH_API_KEY`: Your Scrapegraph API key, you can obtain one [here](https://scrapegraphai.com)
|
||||
|
||||
## Rate Limiting
|
||||
The Scrapegraph API has rate limits that vary based on your subscription plan. Consider the following best practices:
|
||||
- Implement appropriate delays between requests when processing multiple URLs
|
||||
- Handle rate limit errors gracefully in your application
|
||||
- Check your API plan limits on the Scrapegraph dashboard
|
||||
|
||||
## Error Handling
|
||||
The tool may raise the following exceptions:
|
||||
- `ValueError`: When API key is missing or URL format is invalid
|
||||
- `RuntimeError`: When scraping operation fails (network issues, API errors)
|
||||
- `RateLimitError`: When API rate limits are exceeded
|
||||
|
||||
## Best Practices
|
||||
1. Always validate URLs before making requests
|
||||
2. Implement proper error handling as shown in examples
|
||||
3. Consider caching results for frequently accessed pages
|
||||
4. Monitor your API usage through the Scrapegraph dashboard
|
||||
@@ -0,0 +1,147 @@
|
||||
import os
|
||||
from typing import Any, Optional, Type
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field, validator
|
||||
from scrapegraph_py import Client
|
||||
from scrapegraph_py.logger import sgai_logger
|
||||
|
||||
|
||||
class ScrapegraphError(Exception):
|
||||
"""Base exception for Scrapegraph-related errors"""
|
||||
pass
|
||||
|
||||
|
||||
class RateLimitError(ScrapegraphError):
|
||||
"""Raised when API rate limits are exceeded"""
|
||||
pass
|
||||
|
||||
|
||||
class FixedScrapegraphScrapeToolSchema(BaseModel):
|
||||
"""Input for ScrapegraphScrapeTool when website_url is fixed."""
|
||||
pass
|
||||
|
||||
|
||||
class ScrapegraphScrapeToolSchema(FixedScrapegraphScrapeToolSchema):
|
||||
"""Input for ScrapegraphScrapeTool."""
|
||||
|
||||
website_url: str = Field(..., description="Mandatory website url to scrape")
|
||||
user_prompt: str = Field(
|
||||
default="Extract the main content of the webpage",
|
||||
description="Prompt to guide the extraction of content",
|
||||
)
|
||||
|
||||
@validator('website_url')
|
||||
def validate_url(cls, v):
|
||||
"""Validate URL format"""
|
||||
try:
|
||||
result = urlparse(v)
|
||||
if not all([result.scheme, result.netloc]):
|
||||
raise ValueError
|
||||
return v
|
||||
except Exception:
|
||||
raise ValueError("Invalid URL format. URL must include scheme (http/https) and domain")
|
||||
|
||||
|
||||
class ScrapegraphScrapeTool(BaseTool):
|
||||
"""
|
||||
A tool that uses Scrapegraph AI to intelligently scrape website content.
|
||||
|
||||
Raises:
|
||||
ValueError: If API key is missing or URL format is invalid
|
||||
RateLimitError: If API rate limits are exceeded
|
||||
RuntimeError: If scraping operation fails
|
||||
"""
|
||||
|
||||
name: str = "Scrapegraph website scraper"
|
||||
description: str = "A tool that uses Scrapegraph AI to intelligently scrape website content."
|
||||
args_schema: Type[BaseModel] = ScrapegraphScrapeToolSchema
|
||||
website_url: Optional[str] = None
|
||||
user_prompt: Optional[str] = None
|
||||
api_key: Optional[str] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
website_url: Optional[str] = None,
|
||||
user_prompt: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
self.api_key = api_key or os.getenv("SCRAPEGRAPH_API_KEY")
|
||||
|
||||
if not self.api_key:
|
||||
raise ValueError("Scrapegraph API key is required")
|
||||
|
||||
if website_url is not None:
|
||||
self._validate_url(website_url)
|
||||
self.website_url = website_url
|
||||
self.description = f"A tool that uses Scrapegraph AI to intelligently scrape {website_url}'s content."
|
||||
self.args_schema = FixedScrapegraphScrapeToolSchema
|
||||
|
||||
if user_prompt is not None:
|
||||
self.user_prompt = user_prompt
|
||||
|
||||
# Configure logging
|
||||
sgai_logger.set_logging(level="INFO")
|
||||
|
||||
@staticmethod
|
||||
def _validate_url(url: str) -> None:
|
||||
"""Validate URL format"""
|
||||
try:
|
||||
result = urlparse(url)
|
||||
if not all([result.scheme, result.netloc]):
|
||||
raise ValueError
|
||||
except Exception:
|
||||
raise ValueError("Invalid URL format. URL must include scheme (http/https) and domain")
|
||||
|
||||
def _handle_api_response(self, response: dict) -> str:
|
||||
"""Handle and validate API response"""
|
||||
if not response:
|
||||
raise RuntimeError("Empty response from Scrapegraph API")
|
||||
|
||||
if "error" in response:
|
||||
error_msg = response.get("error", {}).get("message", "Unknown error")
|
||||
if "rate limit" in error_msg.lower():
|
||||
raise RateLimitError(f"Rate limit exceeded: {error_msg}")
|
||||
raise RuntimeError(f"API error: {error_msg}")
|
||||
|
||||
if "result" not in response:
|
||||
raise RuntimeError("Invalid response format from Scrapegraph API")
|
||||
|
||||
return response["result"]
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
website_url = kwargs.get("website_url", self.website_url)
|
||||
user_prompt = kwargs.get("user_prompt", self.user_prompt) or "Extract the main content of the webpage"
|
||||
|
||||
if not website_url:
|
||||
raise ValueError("website_url is required")
|
||||
|
||||
# Validate URL format
|
||||
self._validate_url(website_url)
|
||||
|
||||
# Initialize the client
|
||||
sgai_client = Client(api_key=self.api_key)
|
||||
|
||||
try:
|
||||
# Make the SmartScraper request
|
||||
response = sgai_client.smartscraper(
|
||||
website_url=website_url,
|
||||
user_prompt=user_prompt,
|
||||
)
|
||||
|
||||
# Handle and validate the response
|
||||
return self._handle_api_response(response)
|
||||
|
||||
except RateLimitError:
|
||||
raise # Re-raise rate limit errors
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Scraping failed: {str(e)}")
|
||||
finally:
|
||||
# Always close the client
|
||||
sgai_client.close()
|
||||
@@ -1,10 +1,9 @@
|
||||
import logging
|
||||
from typing import Any, Dict, Literal, Optional, Type
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
logger = logging.getLogger(__file__)
|
||||
|
||||
|
||||
|
||||
@@ -24,6 +24,16 @@ tool = SeleniumScrapingTool(website_url='https://example.com', css_element='.mai
|
||||
|
||||
# Example 4: Scrape using optional parameters for customized scraping
|
||||
tool = SeleniumScrapingTool(website_url='https://example.com', css_element='.main-content', cookie={'name': 'user', 'value': 'John Doe'})
|
||||
|
||||
# Example 5: Scrape content in HTML format
|
||||
tool = SeleniumScrapingTool(website_url='https://example.com', return_html=True)
|
||||
result = tool._run()
|
||||
# Returns HTML content like: ['<div class="content">Hello World</div>', '<div class="footer">Copyright 2024</div>']
|
||||
|
||||
# Example 6: Scrape content in text format (default)
|
||||
tool = SeleniumScrapingTool(website_url='https://example.com', return_html=False)
|
||||
result = tool._run()
|
||||
# Returns text content like: ['Hello World', 'Copyright 2024']
|
||||
```
|
||||
|
||||
## Arguments
|
||||
@@ -31,3 +41,4 @@ tool = SeleniumScrapingTool(website_url='https://example.com', css_element='.mai
|
||||
- `css_element`: Mandatory. The CSS selector for a specific element to scrape from the website.
|
||||
- `cookie`: Optional. A dictionary containing cookie information. This parameter allows the tool to simulate a session with cookie information, providing access to content that may be restricted to logged-in users.
|
||||
- `wait_time`: Optional. The number of seconds the tool waits after loading the website and after setting a cookie, before scraping the content. This allows for dynamic content to load properly.
|
||||
- `return_html`: Optional. If True, the tool returns HTML content. If False, the tool returns text content.
|
||||
|
||||
@@ -1,30 +1,51 @@
|
||||
import re
|
||||
import time
|
||||
from typing import Any, Optional, Type
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
from pydantic import BaseModel, Field
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field, validator
|
||||
from selenium import webdriver
|
||||
from selenium.webdriver.chrome.options import Options
|
||||
from selenium.webdriver.common.by import By
|
||||
|
||||
from ..base_tool import BaseTool
|
||||
|
||||
|
||||
class FixedSeleniumScrapingToolSchema(BaseModel):
|
||||
"""Input for SeleniumScrapingTool."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class SeleniumScrapingToolSchema(FixedSeleniumScrapingToolSchema):
|
||||
"""Input for SeleniumScrapingTool."""
|
||||
|
||||
website_url: str = Field(..., description="Mandatory website url to read the file")
|
||||
website_url: str = Field(..., description="Mandatory website url to read the file. Must start with http:// or https://")
|
||||
css_element: str = Field(
|
||||
...,
|
||||
description="Mandatory css reference for element to scrape from the website",
|
||||
)
|
||||
|
||||
@validator('website_url')
|
||||
def validate_website_url(cls, v):
|
||||
if not v:
|
||||
raise ValueError("Website URL cannot be empty")
|
||||
|
||||
if len(v) > 2048: # Common maximum URL length
|
||||
raise ValueError("URL is too long (max 2048 characters)")
|
||||
|
||||
if not re.match(r'^https?://', v):
|
||||
raise ValueError("URL must start with http:// or https://")
|
||||
|
||||
try:
|
||||
result = urlparse(v)
|
||||
if not all([result.scheme, result.netloc]):
|
||||
raise ValueError("Invalid URL format")
|
||||
except Exception as e:
|
||||
raise ValueError(f"Invalid URL: {str(e)}")
|
||||
|
||||
if re.search(r'\s', v):
|
||||
raise ValueError("URL cannot contain whitespace")
|
||||
|
||||
return v
|
||||
|
||||
|
||||
class SeleniumScrapingTool(BaseTool):
|
||||
name: str = "Read a website content"
|
||||
@@ -35,6 +56,7 @@ class SeleniumScrapingTool(BaseTool):
|
||||
cookie: Optional[dict] = None
|
||||
wait_time: Optional[int] = 3
|
||||
css_element: Optional[str] = None
|
||||
return_html: Optional[bool] = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -65,19 +87,54 @@ class SeleniumScrapingTool(BaseTool):
|
||||
) -> Any:
|
||||
website_url = kwargs.get("website_url", self.website_url)
|
||||
css_element = kwargs.get("css_element", self.css_element)
|
||||
return_html = kwargs.get("return_html", self.return_html)
|
||||
driver = self._create_driver(website_url, self.cookie, self.wait_time)
|
||||
|
||||
content = []
|
||||
if css_element is None or css_element.strip() == "":
|
||||
body_text = driver.find_element(By.TAG_NAME, "body").text
|
||||
content.append(body_text)
|
||||
else:
|
||||
for element in driver.find_elements(By.CSS_SELECTOR, css_element):
|
||||
content.append(element.text)
|
||||
content = self._get_content(driver, css_element, return_html)
|
||||
driver.close()
|
||||
|
||||
return "\n".join(content)
|
||||
|
||||
def _get_content(self, driver, css_element, return_html):
|
||||
content = []
|
||||
|
||||
if self._is_css_element_empty(css_element):
|
||||
content.append(self._get_body_content(driver, return_html))
|
||||
else:
|
||||
content.extend(self._get_elements_content(driver, css_element, return_html))
|
||||
|
||||
return content
|
||||
|
||||
def _is_css_element_empty(self, css_element):
|
||||
return css_element is None or css_element.strip() == ""
|
||||
|
||||
def _get_body_content(self, driver, return_html):
|
||||
body_element = driver.find_element(By.TAG_NAME, "body")
|
||||
|
||||
return (
|
||||
body_element.get_attribute("outerHTML")
|
||||
if return_html
|
||||
else body_element.text
|
||||
)
|
||||
|
||||
def _get_elements_content(self, driver, css_element, return_html):
|
||||
elements_content = []
|
||||
|
||||
for element in driver.find_elements(By.CSS_SELECTOR, css_element):
|
||||
elements_content.append(
|
||||
element.get_attribute("outerHTML") if return_html else element.text
|
||||
)
|
||||
|
||||
return elements_content
|
||||
|
||||
def _create_driver(self, url, cookie, wait_time):
|
||||
if not url:
|
||||
raise ValueError("URL cannot be empty")
|
||||
|
||||
# Validate URL format
|
||||
if not re.match(r'^https?://', url):
|
||||
raise ValueError("URL must start with http:// or https://")
|
||||
|
||||
options = Options()
|
||||
options.add_argument("--headless")
|
||||
driver = self.driver(options=options)
|
||||
|
||||
32
src/crewai_tools/tools/serpapi_tool/README.md
Normal file
32
src/crewai_tools/tools/serpapi_tool/README.md
Normal file
@@ -0,0 +1,32 @@
|
||||
# SerpApi Tools
|
||||
|
||||
## Description
|
||||
[SerpApi](https://serpapi.com/) tools are built for searching information in the internet. It currently supports:
|
||||
- Google Search
|
||||
- Google Shopping
|
||||
|
||||
To successfully make use of SerpApi tools, you have to have `SERPAPI_API_KEY` set in the environment. To get the API key, register a free account at [SerpApi](https://serpapi.com/).
|
||||
|
||||
## Installation
|
||||
To start using the SerpApi Tools, you must first install the `crewai_tools` package. This can be easily done with the following command:
|
||||
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Examples
|
||||
The following example demonstrates how to initialize the tool
|
||||
|
||||
### Google Search
|
||||
```python
|
||||
from crewai_tools import SerpApiGoogleSearchTool
|
||||
|
||||
tool = SerpApiGoogleSearchTool()
|
||||
```
|
||||
|
||||
### Google Shopping
|
||||
```python
|
||||
from crewai_tools import SerpApiGoogleShoppingTool
|
||||
|
||||
tool = SerpApiGoogleShoppingTool()
|
||||
```
|
||||
38
src/crewai_tools/tools/serpapi_tool/serpapi_base_tool.py
Normal file
38
src/crewai_tools/tools/serpapi_tool/serpapi_base_tool.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import os
|
||||
import re
|
||||
from typing import Optional, Any, Union
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
class SerpApiBaseTool(BaseTool):
|
||||
"""Base class for SerpApi functionality with shared capabilities."""
|
||||
|
||||
client: Optional[Any] = None
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
try:
|
||||
from serpapi import Client
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`serpapi` package not found, please install with `pip install serpapi`"
|
||||
)
|
||||
api_key = os.getenv("SERPAPI_API_KEY")
|
||||
if not api_key:
|
||||
raise ValueError(
|
||||
"Missing API key, you can get the key from https://serpapi.com/manage-api-key"
|
||||
)
|
||||
self.client = Client(api_key=api_key)
|
||||
|
||||
def _omit_fields(self, data: Union[dict, list], omit_patterns: list[str]) -> None:
|
||||
if isinstance(data, dict):
|
||||
for field in list(data.keys()):
|
||||
if any(re.compile(p).match(field) for p in omit_patterns):
|
||||
data.pop(field, None)
|
||||
else:
|
||||
if isinstance(data[field], (dict, list)):
|
||||
self._omit_fields(data[field], omit_patterns)
|
||||
elif isinstance(data, list):
|
||||
for item in data:
|
||||
self._omit_fields(item, omit_patterns)
|
||||
@@ -0,0 +1,40 @@
|
||||
from typing import Any, Type, Optional
|
||||
|
||||
import re
|
||||
from pydantic import BaseModel, Field
|
||||
from .serpapi_base_tool import SerpApiBaseTool
|
||||
from serpapi import HTTPError
|
||||
|
||||
class SerpApiGoogleSearchToolSchema(BaseModel):
|
||||
"""Input for Google Search."""
|
||||
search_query: str = Field(..., description="Mandatory search query you want to use to Google search.")
|
||||
location: Optional[str] = Field(None, description="Location you want the search to be performed in.")
|
||||
|
||||
class SerpApiGoogleSearchTool(SerpApiBaseTool):
|
||||
name: str = "Google Search"
|
||||
description: str = (
|
||||
"A tool to perform to perform a Google search with a search_query."
|
||||
)
|
||||
args_schema: Type[BaseModel] = SerpApiGoogleSearchToolSchema
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
try:
|
||||
results = self.client.search({
|
||||
"q": kwargs.get("search_query"),
|
||||
"location": kwargs.get("location"),
|
||||
}).as_dict()
|
||||
|
||||
self._omit_fields(
|
||||
results,
|
||||
[r"search_metadata", r"search_parameters", r"serpapi_.+", r".+_token", r"displayed_link", r"pagination"]
|
||||
)
|
||||
|
||||
return results
|
||||
except HTTPError as e:
|
||||
return f"An error occurred: {str(e)}. Some parameters may be invalid."
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,42 @@
|
||||
from typing import Any, Type, Optional
|
||||
|
||||
import re
|
||||
from pydantic import BaseModel, Field
|
||||
from .serpapi_base_tool import SerpApiBaseTool
|
||||
from serpapi import HTTPError
|
||||
|
||||
class SerpApiGoogleShoppingToolSchema(BaseModel):
|
||||
"""Input for Google Shopping."""
|
||||
search_query: str = Field(..., description="Mandatory search query you want to use to Google shopping.")
|
||||
location: Optional[str] = Field(None, description="Location you want the search to be performed in.")
|
||||
|
||||
|
||||
class SerpApiGoogleShoppingTool(SerpApiBaseTool):
|
||||
name: str = "Google Shopping"
|
||||
description: str = (
|
||||
"A tool to perform search on Google shopping with a search_query."
|
||||
)
|
||||
args_schema: Type[BaseModel] = SerpApiGoogleShoppingToolSchema
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
try:
|
||||
results = self.client.search({
|
||||
"engine": "google_shopping",
|
||||
"q": kwargs.get("search_query"),
|
||||
"location": kwargs.get("location")
|
||||
}).as_dict()
|
||||
|
||||
self._omit_fields(
|
||||
results,
|
||||
[r"search_metadata", r"search_parameters", r"serpapi_.+", r"filters", r"pagination"]
|
||||
)
|
||||
|
||||
return results
|
||||
except HTTPError as e:
|
||||
return f"An error occurred: {str(e)}. Some parameters may be invalid."
|
||||
|
||||
|
||||
|
||||
@@ -1,30 +1,49 @@
|
||||
# SerperDevTool Documentation
|
||||
|
||||
## Description
|
||||
This tool is designed to perform a semantic search for a specified query from a text's content across the internet. It utilizes the `serper.dev` API to fetch and display the most relevant search results based on the query provided by the user.
|
||||
The SerperDevTool is a powerful search tool that interfaces with the `serper.dev` API to perform internet searches. It supports multiple search types including general search and news search, with features like knowledge graph integration, organic results, "People Also Ask" questions, and related searches.
|
||||
|
||||
## Features
|
||||
- Multiple search types: 'search' (default) and 'news'
|
||||
- Knowledge graph integration for enhanced search context
|
||||
- Organic search results with sitelinks
|
||||
- "People Also Ask" questions and answers
|
||||
- Related searches suggestions
|
||||
- News search with date, source, and image information
|
||||
- Configurable number of results
|
||||
- Optional result saving to file
|
||||
|
||||
## Installation
|
||||
To incorporate this tool into your project, follow the installation instructions below:
|
||||
```shell
|
||||
pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
The following example demonstrates how to initialize the tool and execute a search with a given query:
|
||||
|
||||
## Usage
|
||||
```python
|
||||
from crewai_tools import SerperDevTool
|
||||
|
||||
# Initialize the tool for internet searching capabilities
|
||||
tool = SerperDevTool()
|
||||
# Initialize the tool
|
||||
tool = SerperDevTool(
|
||||
n_results=10, # Optional: Number of results to return (default: 10)
|
||||
save_file=False, # Optional: Save results to file (default: False)
|
||||
search_type="search" # Optional: Type of search - "search" or "news" (default: "search")
|
||||
)
|
||||
|
||||
# Execute a search
|
||||
results = tool._run(search_query="your search query")
|
||||
```
|
||||
|
||||
## Steps to Get Started
|
||||
To effectively use the `SerperDevTool`, follow these steps:
|
||||
## Configuration
|
||||
1. **API Key Setup**:
|
||||
- Sign up for an account at `serper.dev`
|
||||
- Obtain your API key
|
||||
- Set the environment variable: `SERPER_API_KEY`
|
||||
|
||||
1. **Package Installation**: Confirm that the `crewai[tools]` package is installed in your Python environment.
|
||||
2. **API Key Acquisition**: Acquire a `serper.dev` API key by registering for a free account at `serper.dev`.
|
||||
3. **Environment Configuration**: Store your obtained API key in an environment variable named `SERPER_API_KEY` to facilitate its use by the tool.
|
||||
|
||||
## Conclusion
|
||||
By integrating the `SerperDevTool` into Python projects, users gain the ability to conduct real-time, relevant searches across the internet directly from their applications. By adhering to the setup and usage guidelines provided, incorporating this tool into projects is streamlined and straightforward.
|
||||
## Response Format
|
||||
The tool returns structured data including:
|
||||
- Search parameters
|
||||
- Knowledge graph data (for general search)
|
||||
- Organic search results
|
||||
- "People Also Ask" questions
|
||||
- Related searches
|
||||
- News results (for news search type)
|
||||
|
||||
@@ -1,20 +1,29 @@
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
from typing import Any, Optional, Type
|
||||
import logging
|
||||
from typing import Any, Type
|
||||
|
||||
import requests
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def _save_results_to_file(content: str) -> None:
|
||||
"""Saves the search results to a file."""
|
||||
filename = f"search_results_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
|
||||
with open(filename, "w") as file:
|
||||
file.write(content)
|
||||
print(f"Results saved to {filename}")
|
||||
try:
|
||||
filename = f"search_results_{datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
|
||||
with open(filename, "w") as file:
|
||||
file.write(content)
|
||||
logger.info(f"Results saved to {filename}")
|
||||
except IOError as e:
|
||||
logger.error(f"Failed to save results to file: {e}")
|
||||
raise
|
||||
|
||||
|
||||
class SerperDevToolSchema(BaseModel):
|
||||
@@ -28,67 +37,199 @@ class SerperDevToolSchema(BaseModel):
|
||||
class SerperDevTool(BaseTool):
|
||||
name: str = "Search the internet"
|
||||
description: str = (
|
||||
"A tool that can be used to search the internet with a search_query."
|
||||
"A tool that can be used to search the internet with a search_query. "
|
||||
"Supports different search types: 'search' (default), 'news'"
|
||||
)
|
||||
args_schema: Type[BaseModel] = SerperDevToolSchema
|
||||
search_url: str = "https://google.serper.dev/search"
|
||||
country: Optional[str] = ""
|
||||
location: Optional[str] = ""
|
||||
locale: Optional[str] = ""
|
||||
base_url: str = "https://google.serper.dev"
|
||||
n_results: int = 10
|
||||
save_file: bool = False
|
||||
search_type: str = "search"
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
def _get_search_url(self, search_type: str) -> str:
|
||||
"""Get the appropriate endpoint URL based on search type."""
|
||||
search_type = search_type.lower()
|
||||
allowed_search_types = ["search", "news"]
|
||||
if search_type not in allowed_search_types:
|
||||
raise ValueError(
|
||||
f"Invalid search type: {search_type}. Must be one of: {', '.join(allowed_search_types)}"
|
||||
)
|
||||
return f"{self.base_url}/{search_type}"
|
||||
|
||||
search_query = kwargs.get("search_query") or kwargs.get("query")
|
||||
save_file = kwargs.get("save_file", self.save_file)
|
||||
n_results = kwargs.get("n_results", self.n_results)
|
||||
def _process_knowledge_graph(self, kg: dict) -> dict:
|
||||
"""Process knowledge graph data from search results."""
|
||||
return {
|
||||
"title": kg.get("title", ""),
|
||||
"type": kg.get("type", ""),
|
||||
"website": kg.get("website", ""),
|
||||
"imageUrl": kg.get("imageUrl", ""),
|
||||
"description": kg.get("description", ""),
|
||||
"descriptionSource": kg.get("descriptionSource", ""),
|
||||
"descriptionLink": kg.get("descriptionLink", ""),
|
||||
"attributes": kg.get("attributes", {}),
|
||||
}
|
||||
|
||||
payload = {"q": search_query, "num": n_results}
|
||||
def _process_organic_results(self, organic_results: list) -> list:
|
||||
"""Process organic search results."""
|
||||
processed_results = []
|
||||
for result in organic_results[: self.n_results]:
|
||||
try:
|
||||
result_data = {
|
||||
"title": result["title"],
|
||||
"link": result["link"],
|
||||
"snippet": result.get("snippet", ""),
|
||||
"position": result.get("position"),
|
||||
}
|
||||
|
||||
if self.country != "":
|
||||
payload["gl"] = self.country
|
||||
if self.location != "":
|
||||
payload["location"] = self.location
|
||||
if self.locale != "":
|
||||
payload["hl"] = self.locale
|
||||
if "sitelinks" in result:
|
||||
result_data["sitelinks"] = [
|
||||
{
|
||||
"title": sitelink.get("title", ""),
|
||||
"link": sitelink.get("link", ""),
|
||||
}
|
||||
for sitelink in result["sitelinks"]
|
||||
]
|
||||
|
||||
payload = json.dumps(payload)
|
||||
processed_results.append(result_data)
|
||||
except KeyError:
|
||||
logger.warning(f"Skipping malformed organic result: {result}")
|
||||
continue
|
||||
return processed_results
|
||||
|
||||
def _process_people_also_ask(self, paa_results: list) -> list:
|
||||
"""Process 'People Also Ask' results."""
|
||||
processed_results = []
|
||||
for result in paa_results[: self.n_results]:
|
||||
try:
|
||||
result_data = {
|
||||
"question": result["question"],
|
||||
"snippet": result.get("snippet", ""),
|
||||
"title": result.get("title", ""),
|
||||
"link": result.get("link", ""),
|
||||
}
|
||||
processed_results.append(result_data)
|
||||
except KeyError:
|
||||
logger.warning(f"Skipping malformed PAA result: {result}")
|
||||
continue
|
||||
return processed_results
|
||||
|
||||
def _process_related_searches(self, related_results: list) -> list:
|
||||
"""Process related search results."""
|
||||
processed_results = []
|
||||
for result in related_results[: self.n_results]:
|
||||
try:
|
||||
processed_results.append({"query": result["query"]})
|
||||
except KeyError:
|
||||
logger.warning(f"Skipping malformed related search result: {result}")
|
||||
continue
|
||||
return processed_results
|
||||
|
||||
def _process_news_results(self, news_results: list) -> list:
|
||||
"""Process news search results."""
|
||||
processed_results = []
|
||||
for result in news_results[: self.n_results]:
|
||||
try:
|
||||
result_data = {
|
||||
"title": result["title"],
|
||||
"link": result["link"],
|
||||
"snippet": result.get("snippet", ""),
|
||||
"date": result.get("date", ""),
|
||||
"source": result.get("source", ""),
|
||||
"imageUrl": result.get("imageUrl", ""),
|
||||
}
|
||||
processed_results.append(result_data)
|
||||
except KeyError:
|
||||
logger.warning(f"Skipping malformed news result: {result}")
|
||||
continue
|
||||
return processed_results
|
||||
|
||||
def _make_api_request(self, search_query: str, search_type: str) -> dict:
|
||||
"""Make API request to Serper."""
|
||||
search_url = self._get_search_url(search_type)
|
||||
payload = json.dumps({"q": search_query, "num": self.n_results})
|
||||
headers = {
|
||||
"X-API-KEY": os.environ["SERPER_API_KEY"],
|
||||
"content-type": "application/json",
|
||||
}
|
||||
|
||||
response = requests.request(
|
||||
"POST", self.search_url, headers=headers, data=payload
|
||||
)
|
||||
results = response.json()
|
||||
|
||||
if "organic" in results:
|
||||
results = results["organic"][: self.n_results]
|
||||
string = []
|
||||
for result in results:
|
||||
try:
|
||||
string.append(
|
||||
"\n".join(
|
||||
[
|
||||
f"Title: {result['title']}",
|
||||
f"Link: {result['link']}",
|
||||
f"Snippet: {result['snippet']}",
|
||||
"---",
|
||||
]
|
||||
)
|
||||
)
|
||||
except KeyError:
|
||||
continue
|
||||
|
||||
content = "\n".join(string)
|
||||
if save_file:
|
||||
_save_results_to_file(content)
|
||||
return f"\nSearch results: {content}\n"
|
||||
else:
|
||||
response = None
|
||||
try:
|
||||
response = requests.post(
|
||||
search_url, headers=headers, json=json.loads(payload), timeout=10
|
||||
)
|
||||
response.raise_for_status()
|
||||
results = response.json()
|
||||
if not results:
|
||||
logger.error("Empty response from Serper API")
|
||||
raise ValueError("Empty response from Serper API")
|
||||
return results
|
||||
except requests.exceptions.RequestException as e:
|
||||
error_msg = f"Error making request to Serper API: {e}"
|
||||
if response is not None and hasattr(response, "content"):
|
||||
error_msg += f"\nResponse content: {response.content}"
|
||||
logger.error(error_msg)
|
||||
raise
|
||||
except json.JSONDecodeError as e:
|
||||
if response is not None and hasattr(response, "content"):
|
||||
logger.error(f"Error decoding JSON response: {e}")
|
||||
logger.error(f"Response content: {response.content}")
|
||||
else:
|
||||
logger.error(
|
||||
f"Error decoding JSON response: {e} (No response content available)"
|
||||
)
|
||||
raise
|
||||
|
||||
def _process_search_results(self, results: dict, search_type: str) -> dict:
|
||||
"""Process search results based on search type."""
|
||||
formatted_results = {}
|
||||
|
||||
if search_type == "search":
|
||||
if "knowledgeGraph" in results:
|
||||
formatted_results["knowledgeGraph"] = self._process_knowledge_graph(
|
||||
results["knowledgeGraph"]
|
||||
)
|
||||
|
||||
if "organic" in results:
|
||||
formatted_results["organic"] = self._process_organic_results(
|
||||
results["organic"]
|
||||
)
|
||||
|
||||
if "peopleAlsoAsk" in results:
|
||||
formatted_results["peopleAlsoAsk"] = self._process_people_also_ask(
|
||||
results["peopleAlsoAsk"]
|
||||
)
|
||||
|
||||
if "relatedSearches" in results:
|
||||
formatted_results["relatedSearches"] = self._process_related_searches(
|
||||
results["relatedSearches"]
|
||||
)
|
||||
|
||||
elif search_type == "news":
|
||||
if "news" in results:
|
||||
formatted_results["news"] = self._process_news_results(results["news"])
|
||||
|
||||
return formatted_results
|
||||
|
||||
def _run(self, **kwargs: Any) -> Any:
|
||||
"""Execute the search operation."""
|
||||
search_query = kwargs.get("search_query") or kwargs.get("query")
|
||||
search_type = kwargs.get("search_type", self.search_type)
|
||||
save_file = kwargs.get("save_file", self.save_file)
|
||||
|
||||
results = self._make_api_request(search_query, search_type)
|
||||
|
||||
formatted_results = {
|
||||
"searchParameters": {
|
||||
"q": search_query,
|
||||
"type": search_type,
|
||||
**results.get("searchParameters", {}),
|
||||
}
|
||||
}
|
||||
|
||||
formatted_results.update(self._process_search_results(results, search_type))
|
||||
formatted_results["credits"] = results.get("credits", 1)
|
||||
|
||||
if save_file:
|
||||
_save_results_to_file(json.dumps(formatted_results, indent=2))
|
||||
|
||||
return formatted_results
|
||||
|
||||
@@ -3,10 +3,9 @@ from typing import Any, Optional, Type
|
||||
from urllib.parse import urlencode
|
||||
|
||||
import requests
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
|
||||
class SerplyNewsSearchToolSchema(BaseModel):
|
||||
"""Input for Serply News Search."""
|
||||
|
||||
@@ -3,10 +3,9 @@ from typing import Any, Optional, Type
|
||||
from urllib.parse import urlencode
|
||||
|
||||
import requests
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
|
||||
class SerplyScholarSearchToolSchema(BaseModel):
|
||||
"""Input for Serply Scholar Search."""
|
||||
|
||||
@@ -3,10 +3,9 @@ from typing import Any, Optional, Type
|
||||
from urllib.parse import urlencode
|
||||
|
||||
import requests
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
|
||||
|
||||
class SerplyWebSearchToolSchema(BaseModel):
|
||||
"""Input for Serply Web Search."""
|
||||
|
||||
@@ -1,81 +1,87 @@
|
||||
# SpiderTool
|
||||
|
||||
## Description
|
||||
|
||||
[Spider](https://spider.cloud/?ref=crewai) is the [fastest](https://github.com/spider-rs/spider/blob/main/benches/BENCHMARKS.md#benchmark-results) open source scraper and crawler that returns LLM-ready data. It converts any website into pure HTML, markdown, metadata or text while enabling you to crawl with custom actions using AI.
|
||||
[Spider](https://spider.cloud/?ref=crewai) is a high-performance web scraping and crawling tool that delivers optimized markdown for LLMs and AI agents. It intelligently switches between HTTP requests and JavaScript rendering based on page requirements. Perfect for both single-page scraping and website crawling—making it ideal for content extraction and data collection.
|
||||
|
||||
## Installation
|
||||
|
||||
To use the Spider API you need to download the [Spider SDK](https://pypi.org/project/spider-client/) and the crewai[tools] SDK too:
|
||||
To use the Spider API you need to download the [Spider SDK](https://pypi.org/project/spider-client/) and the crewai[tools] SDK, too:
|
||||
|
||||
```python
|
||||
pip install spider-client 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
|
||||
This example shows you how you can use the Spider tool to enable your agent to scrape and crawl websites. The data returned from the Spider API is already LLM-ready, so no need to do any cleaning there.
|
||||
This example shows you how you can use the Spider tool to enable your agent to scrape and crawl websites. The data returned from the Spider API is LLM-ready.
|
||||
|
||||
```python
|
||||
from crewai_tools import SpiderTool
|
||||
|
||||
def main():
|
||||
spider_tool = SpiderTool()
|
||||
|
||||
searcher = Agent(
|
||||
role="Web Research Expert",
|
||||
goal="Find related information from specific URL's",
|
||||
backstory="An expert web researcher that uses the web extremely well",
|
||||
tools=[spider_tool],
|
||||
verbose=True,
|
||||
)
|
||||
# To enable scraping any website it finds during its execution
|
||||
spider_tool = SpiderTool(api_key='YOUR_API_KEY')
|
||||
|
||||
return_metadata = Task(
|
||||
description="Scrape https://spider.cloud with a limit of 1 and enable metadata",
|
||||
expected_output="Metadata and 10 word summary of spider.cloud",
|
||||
agent=searcher
|
||||
)
|
||||
# Initialize the tool with the website URL, so the agent can only scrape the content of the specified website
|
||||
spider_tool = SpiderTool(website_url='https://spider.cloud')
|
||||
|
||||
crew = Crew(
|
||||
agents=[searcher],
|
||||
tasks=[
|
||||
return_metadata,
|
||||
],
|
||||
verbose=2
|
||||
)
|
||||
|
||||
crew.kickoff()
|
||||
# Pass in custom parameters, see below for more details
|
||||
spider_tool = SpiderTool(
|
||||
website_url='https://spider.cloud',
|
||||
custom_params={"depth": 2, "anti_bot": True, "proxy_enabled": True}
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
# Advanced usage using css query selector to extract content
|
||||
css_extraction_map = {
|
||||
"/": [ # pass in path (main index in this case)
|
||||
{
|
||||
"name": "headers", # give it a name for this element
|
||||
"selectors": [
|
||||
"h1"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
spider_tool = SpiderTool(
|
||||
website_url='https://spider.cloud',
|
||||
custom_params={"anti_bot": True, "proxy_enabled": True, "metadata": True, "css_extraction_map": css_extraction_map}
|
||||
)
|
||||
|
||||
### Response (extracted text will be in the metadata)
|
||||
"css_extracted": {
|
||||
"headers": [
|
||||
"The Web Crawler for AI Agents and LLMs!"
|
||||
]
|
||||
}
|
||||
```
|
||||
## Agent setup
|
||||
```yaml
|
||||
researcher:
|
||||
role: >
|
||||
You're a researcher that is tasked with researching a website and it's content (use crawl mode). The website is to crawl is: {website_url}.
|
||||
```
|
||||
|
||||
## Arguments
|
||||
|
||||
- `api_key` (string, optional): Specifies Spider API key. If not specified, it looks for `SPIDER_API_KEY` in environment variables.
|
||||
- `params` (object, optional): Optional parameters for the request. Defaults to `{"return_format": "markdown"}` to return the website's content in a format that fits LLMs better.
|
||||
- `website_url` (string): The website URL. Will be used as a fallback if passed when the tool is initialized.
|
||||
- `log_failures` (bool): Log scrape failures or fail silently. Defaults to `true`.
|
||||
- `custom_params` (object, optional): Optional parameters for the request.
|
||||
- `return_format` (string): The return format of the website's content. Defaults to `markdown`.
|
||||
- `request` (string): The request type to perform. Possible values are `http`, `chrome`, and `smart`. Use `smart` to perform an HTTP request by default until JavaScript rendering is needed for the HTML.
|
||||
- `limit` (int): The maximum number of pages allowed to crawl per website. Remove the value or set it to `0` to crawl all pages.
|
||||
- `depth` (int): The crawl limit for maximum depth. If `0`, no limit will be applied.
|
||||
- `cache` (bool): Use HTTP caching for the crawl to speed up repeated runs. Default is `true`.
|
||||
- `budget` (object): Object that has paths with a counter for limiting the amount of pages example `{"*":1}` for only crawling the root page.
|
||||
- `locale` (string): The locale to use for request, example `en-US`.
|
||||
- `cookies` (string): Add HTTP cookies to use for request.
|
||||
- `stealth` (bool): Use stealth mode for headless chrome request to help prevent being blocked. The default is `true` on chrome.
|
||||
- `headers` (object): Forward HTTP headers to use for all request. The object is expected to be a map of key value pairs.
|
||||
- `metadata` (bool): Boolean to store metadata about the pages and content found. This could help improve AI interopt. Defaults to `false` unless you have the website already stored with the configuration enabled.
|
||||
- `viewport` (object): Configure the viewport for chrome. Defaults to `800x600`.
|
||||
- `encoding` (string): The type of encoding to use like `UTF-8`, `SHIFT_JIS`, or etc.
|
||||
- `metadata` (bool): Boolean to store metadata about the pages and content found. Defaults to `false`.
|
||||
- `subdomains` (bool): Allow subdomains to be included. Default is `false`.
|
||||
- `user_agent` (string): Add a custom HTTP user agent to the request. By default this is set to a random agent.
|
||||
- `store_data` (bool): Boolean to determine if storage should be used. If set this takes precedence over `storageless`. Defaults to `false`.
|
||||
- `gpt_config` (object): Use AI to generate actions to perform during the crawl. You can pass an array for the `"prompt"` to chain steps.
|
||||
- `fingerprint` (bool): Use advanced fingerprint for chrome.
|
||||
- `storageless` (bool): Boolean to prevent storing any type of data for the request including storage and AI vectors embedding. Defaults to `false` unless you have the website already stored.
|
||||
- `readability` (bool): Use [readability](https://github.com/mozilla/readability) to pre-process the content for reading. This may drastically improve the content for LLM usage.
|
||||
`return_format` (string): The format to return the data in. Possible values are `markdown`, `raw`, `text`, and `html2text`. Use `raw` to return the default format of the page like HTML etc.
|
||||
- `proxy_enabled` (bool): Enable high performance premium proxies for the request to prevent being blocked at the network level.
|
||||
- `query_selector` (string): The CSS query selector to use when extracting content from the markup.
|
||||
- `full_resources` (bool): Crawl and download all the resources for a website.
|
||||
- `css_extraction_map` (object): Use CSS or XPath selectors to scrape contents from the web page. Set the paths and the extraction object map to perform extractions per path or page.
|
||||
- `request_timeout` (int): The timeout to use for request. Timeouts can be from `5-60`. The default is `30` seconds.
|
||||
- `run_in_background` (bool): Run the request in the background. Useful if storing data and wanting to trigger crawls to the dashboard. This has no effect if storageless is set.
|
||||
- `return_headers` (bool): Return the HTTP response headers with the results. Defaults to `false`.
|
||||
- `filter_output_main_only` (bool): Filter the nav, aside, and footer from the output.
|
||||
- `headers` (object): Forward HTTP headers to use for all request. The object is expected to be a map of key value pairs.
|
||||
|
||||
Learn other parameters that can be used: [https://spider.cloud/docs/api](https://spider.cloud/docs/api)
|
||||
|
||||
|
||||
@@ -1,61 +1,202 @@
|
||||
import logging
|
||||
from typing import Any, Dict, Literal, Optional, Type
|
||||
from urllib.parse import unquote, urlparse
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai_tools.tools.base_tool import BaseTool
|
||||
logger = logging.getLogger(__file__)
|
||||
|
||||
|
||||
class SpiderToolSchema(BaseModel):
|
||||
url: str = Field(description="Website URL")
|
||||
params: Optional[Dict[str, Any]] = Field(
|
||||
description="Set additional params. Options include:\n"
|
||||
"- `limit`: Optional[int] - The maximum number of pages allowed to crawl per website. Remove the value or set it to `0` to crawl all pages.\n"
|
||||
"- `depth`: Optional[int] - The crawl limit for maximum depth. If `0`, no limit will be applied.\n"
|
||||
"- `metadata`: Optional[bool] - Boolean to include metadata or not. Defaults to `False` unless set to `True`. If the user wants metadata, include params.metadata = True.\n"
|
||||
"- `query_selector`: Optional[str] - The CSS query selector to use when extracting content from the markup.\n"
|
||||
"""Input schema for SpiderTool."""
|
||||
|
||||
website_url: str = Field(
|
||||
..., description="Mandatory website URL to scrape or crawl"
|
||||
)
|
||||
mode: Literal["scrape", "crawl"] = Field(
|
||||
default="scrape",
|
||||
description="Mode, the only two allowed modes are `scrape` or `crawl`. Use `scrape` to scrape a single page and `crawl` to crawl the entire website following subpages. These modes are the only allowed values even when ANY params is set.",
|
||||
description="The mode of the SpiderTool. The only two allowed modes are `scrape` or `crawl`. Crawl mode will follow up to 5 links and return their content in markdown format.",
|
||||
)
|
||||
|
||||
|
||||
class SpiderTool(BaseTool):
|
||||
name: str = "Spider scrape & crawl tool"
|
||||
description: str = "Scrape & Crawl any url and return LLM-ready data."
|
||||
args_schema: Type[BaseModel] = SpiderToolSchema
|
||||
api_key: Optional[str] = None
|
||||
spider: Optional[Any] = None
|
||||
class SpiderToolConfig(BaseModel):
|
||||
"""Configuration settings for SpiderTool.
|
||||
|
||||
Contains all default values and constants used by SpiderTool.
|
||||
Centralizes configuration management for easier maintenance.
|
||||
"""
|
||||
|
||||
# Crawling settings
|
||||
DEFAULT_CRAWL_LIMIT: int = 5
|
||||
DEFAULT_RETURN_FORMAT: str = "markdown"
|
||||
|
||||
# Request parameters
|
||||
DEFAULT_REQUEST_MODE: str = "smart"
|
||||
FILTER_SVG: bool = True
|
||||
|
||||
|
||||
class SpiderTool(BaseTool):
|
||||
"""Tool for scraping and crawling websites.
|
||||
This tool provides functionality to either scrape a single webpage or crawl multiple
|
||||
pages, returning content in a format suitable for LLM processing.
|
||||
"""
|
||||
|
||||
name: str = "SpiderTool"
|
||||
description: str = (
|
||||
"A tool to scrape or crawl a website and return LLM-ready content."
|
||||
)
|
||||
args_schema: Type[BaseModel] = SpiderToolSchema
|
||||
custom_params: Optional[Dict[str, Any]] = None
|
||||
website_url: Optional[str] = None
|
||||
api_key: Optional[str] = None
|
||||
spider: Any = None
|
||||
log_failures: bool = True
|
||||
config: SpiderToolConfig = SpiderToolConfig()
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_key: Optional[str] = None,
|
||||
website_url: Optional[str] = None,
|
||||
custom_params: Optional[Dict[str, Any]] = None,
|
||||
log_failures: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
"""Initialize SpiderTool for web scraping and crawling.
|
||||
|
||||
Args:
|
||||
api_key (Optional[str]): Spider API key for authentication. Required for production use.
|
||||
website_url (Optional[str]): Default website URL to scrape/crawl. Can be overridden during execution.
|
||||
custom_params (Optional[Dict[str, Any]]): Additional parameters to pass to Spider API.
|
||||
These override any parameters set by the LLM.
|
||||
log_failures (bool): If True, logs errors. Defaults to True.
|
||||
**kwargs: Additional arguments passed to BaseTool.
|
||||
|
||||
Raises:
|
||||
ImportError: If spider-client package is not installed.
|
||||
RuntimeError: If Spider client initialization fails.
|
||||
"""
|
||||
|
||||
def __init__(self, api_key: Optional[str] = None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
if website_url is not None:
|
||||
self.website_url = website_url
|
||||
|
||||
self.log_failures = log_failures
|
||||
self.custom_params = custom_params
|
||||
|
||||
try:
|
||||
from spider import Spider # type: ignore
|
||||
|
||||
self.spider = Spider(api_key=api_key)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"`spider-client` package not found, please run `pip install spider-client`"
|
||||
"`spider-client` package not found, please run `uv add spider-client`"
|
||||
)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to initialize Spider client: {str(e)}")
|
||||
|
||||
self.spider = Spider(api_key=api_key)
|
||||
def _validate_url(self, url: str) -> bool:
|
||||
"""Validate URL format and security constraints.
|
||||
|
||||
Args:
|
||||
url (str): URL to validate. Must be a properly formatted HTTP(S) URL
|
||||
|
||||
Returns:
|
||||
bool: True if URL is valid and meets security requirements, False otherwise.
|
||||
"""
|
||||
try:
|
||||
url = url.strip()
|
||||
decoded_url = unquote(url)
|
||||
|
||||
result = urlparse(decoded_url)
|
||||
if not all([result.scheme, result.netloc]):
|
||||
return False
|
||||
|
||||
if result.scheme not in ["http", "https"]:
|
||||
return False
|
||||
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
def _run(
|
||||
self,
|
||||
url: str,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
mode: Optional[Literal["scrape", "crawl"]] = "scrape",
|
||||
):
|
||||
if mode not in ["scrape", "crawl"]:
|
||||
raise ValueError(
|
||||
"Unknown mode in `mode` parameter, `scrape` or `crawl` are the allowed modes"
|
||||
website_url: str,
|
||||
mode: Literal["scrape", "crawl"] = "scrape",
|
||||
) -> Optional[str]:
|
||||
"""Execute the spider tool to scrape or crawl the specified website.
|
||||
|
||||
Args:
|
||||
website_url (str): The URL to process. Must be a valid HTTP(S) URL.
|
||||
mode (Literal["scrape", "crawl"]): Operation mode.
|
||||
- "scrape": Extract content from single page
|
||||
- "crawl": Follow links and extract content from multiple pages
|
||||
|
||||
Returns:
|
||||
Optional[str]: Extracted content in markdown format, or None if extraction fails
|
||||
and log_failures is True.
|
||||
|
||||
Raises:
|
||||
ValueError: If URL is invalid or missing, or if mode is invalid.
|
||||
ImportError: If spider-client package is not properly installed.
|
||||
ConnectionError: If network connection fails while accessing the URL.
|
||||
Exception: For other runtime errors.
|
||||
"""
|
||||
|
||||
try:
|
||||
params = {}
|
||||
url = website_url or self.website_url
|
||||
|
||||
if not url:
|
||||
raise ValueError(
|
||||
"Website URL must be provided either during initialization or execution"
|
||||
)
|
||||
|
||||
if not self._validate_url(url):
|
||||
raise ValueError(f"Invalid URL format: {url}")
|
||||
|
||||
if mode not in ["scrape", "crawl"]:
|
||||
raise ValueError(
|
||||
f"Invalid mode: {mode}. Must be either 'scrape' or 'crawl'"
|
||||
)
|
||||
|
||||
params = {
|
||||
"request": self.config.DEFAULT_REQUEST_MODE,
|
||||
"filter_output_svg": self.config.FILTER_SVG,
|
||||
"return_format": self.config.DEFAULT_RETURN_FORMAT,
|
||||
}
|
||||
|
||||
if mode == "crawl":
|
||||
params["limit"] = self.config.DEFAULT_CRAWL_LIMIT
|
||||
|
||||
if self.custom_params:
|
||||
params.update(self.custom_params)
|
||||
|
||||
action = (
|
||||
self.spider.scrape_url if mode == "scrape" else self.spider.crawl_url
|
||||
)
|
||||
return action(url=url, params=params)
|
||||
|
||||
# Ensure 'return_format': 'markdown' is always included
|
||||
if params:
|
||||
params["return_format"] = "markdown"
|
||||
else:
|
||||
params = {"return_format": "markdown"}
|
||||
except ValueError as ve:
|
||||
if self.log_failures:
|
||||
logger.error(f"Validation error for URL {url}: {str(ve)}")
|
||||
return None
|
||||
raise ve
|
||||
|
||||
action = self.spider.scrape_url if mode == "scrape" else self.spider.crawl_url
|
||||
spider_docs = action(url=url, params=params)
|
||||
except ImportError as ie:
|
||||
logger.error(f"Spider client import error: {str(ie)}")
|
||||
raise ie
|
||||
|
||||
return spider_docs
|
||||
except ConnectionError as ce:
|
||||
if self.log_failures:
|
||||
logger.error(f"Connection error while accessing {url}: {str(ce)}")
|
||||
return None
|
||||
raise ce
|
||||
|
||||
except Exception as e:
|
||||
if self.log_failures:
|
||||
logger.error(
|
||||
f"Unexpected error during {mode} operation on {url}: {str(e)}"
|
||||
)
|
||||
return None
|
||||
raise e
|
||||
|
||||
@@ -1,12 +1,10 @@
|
||||
import base64
|
||||
from typing import Type, Optional
|
||||
from pathlib import Path
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
from openai import OpenAI
|
||||
from pydantic import BaseModel, validator
|
||||
|
||||
|
||||
class ImagePromptSchema(BaseModel):
|
||||
"""Input for Vision Tool."""
|
||||
image_path_url: str = "The image path or URL."
|
||||
|
||||
80
src/crewai_tools/tools/weaviate_tool/README.md
Normal file
80
src/crewai_tools/tools/weaviate_tool/README.md
Normal file
@@ -0,0 +1,80 @@
|
||||
# WeaviateVectorSearchTool
|
||||
|
||||
## Description
|
||||
This tool is specifically crafted for conducting semantic searches within docs within a Weaviate vector database. Use this tool to find semantically similar docs to a given query.
|
||||
|
||||
Weaviate is a vector database that is used to store and query vector embeddings. You can follow their docs here: https://weaviate.io/developers/wcs/connect
|
||||
|
||||
## Installation
|
||||
Install the crewai_tools package by executing the following command in your terminal:
|
||||
|
||||
```shell
|
||||
uv pip install 'crewai[tools]'
|
||||
```
|
||||
|
||||
## Example
|
||||
To utilize the WeaviateVectorSearchTool for different use cases, follow these examples:
|
||||
|
||||
```python
|
||||
from crewai_tools import WeaviateVectorSearchTool
|
||||
|
||||
# To enable the tool to search any website the agent comes across or learns about during its operation
|
||||
tool = WeaviateVectorSearchTool(
|
||||
collection_name='example_collections',
|
||||
limit=3,
|
||||
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
|
||||
weaviate_api_key="your-weaviate-api-key",
|
||||
)
|
||||
|
||||
# or
|
||||
|
||||
# Setup custom model for vectorizer and generative model
|
||||
tool = WeaviateVectorSearchTool(
|
||||
collection_name='example_collections',
|
||||
limit=3,
|
||||
vectorizer=Configure.Vectorizer.text2vec_openai(model="nomic-embed-text"),
|
||||
generative_model=Configure.Generative.openai(model="gpt-4o-mini"),
|
||||
weaviate_cluster_url="https://your-weaviate-cluster-url.com",
|
||||
weaviate_api_key="your-weaviate-api-key",
|
||||
)
|
||||
|
||||
# Adding the tool to an agent
|
||||
rag_agent = Agent(
|
||||
name="rag_agent",
|
||||
role="You are a helpful assistant that can answer questions with the help of the WeaviateVectorSearchTool.",
|
||||
llm="gpt-4o-mini",
|
||||
tools=[tool],
|
||||
)
|
||||
```
|
||||
|
||||
## Arguments
|
||||
- `collection_name` : The name of the collection to search within. (Required)
|
||||
- `weaviate_cluster_url` : The URL of the Weaviate cluster. (Required)
|
||||
- `weaviate_api_key` : The API key for the Weaviate cluster. (Required)
|
||||
- `limit` : The number of results to return. (Optional)
|
||||
- `vectorizer` : The vectorizer to use. (Optional)
|
||||
- `generative_model` : The generative model to use. (Optional)
|
||||
|
||||
Preloading the Weaviate database with documents:
|
||||
|
||||
```python
|
||||
from crewai_tools import WeaviateVectorSearchTool
|
||||
|
||||
# Use before hooks to generate the documents and add them to the Weaviate database. Follow the weaviate docs: https://weaviate.io/developers/wcs/connect
|
||||
test_docs = client.collections.get("example_collections")
|
||||
|
||||
|
||||
docs_to_load = os.listdir("knowledge")
|
||||
with test_docs.batch.dynamic() as batch:
|
||||
for d in docs_to_load:
|
||||
with open(os.path.join("knowledge", d), "r") as f:
|
||||
content = f.read()
|
||||
batch.add_object(
|
||||
{
|
||||
"content": content,
|
||||
"year": d.split("_")[0],
|
||||
}
|
||||
)
|
||||
tool = WeaviateVectorSearchTool(collection_name='example_collections', limit=3)
|
||||
|
||||
```
|
||||
105
src/crewai_tools/tools/weaviate_tool/vector_search.py
Normal file
105
src/crewai_tools/tools/weaviate_tool/vector_search.py
Normal file
@@ -0,0 +1,105 @@
|
||||
import json
|
||||
import os
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
try:
|
||||
import weaviate
|
||||
from weaviate.classes.config import Configure, Vectorizers
|
||||
from weaviate.classes.init import Auth
|
||||
|
||||
WEAVIATE_AVAILABLE = True
|
||||
except ImportError:
|
||||
WEAVIATE_AVAILABLE = False
|
||||
weaviate = Any # type placeholder
|
||||
Configure = Any
|
||||
Vectorizers = Any
|
||||
Auth = Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
|
||||
|
||||
class WeaviateToolSchema(BaseModel):
|
||||
"""Input for WeaviateTool."""
|
||||
|
||||
query: str = Field(
|
||||
...,
|
||||
description="The query to search retrieve relevant information from the Weaviate database. Pass only the query, not the question.",
|
||||
)
|
||||
|
||||
|
||||
class WeaviateVectorSearchTool(BaseTool):
|
||||
"""Tool to search the Weaviate database"""
|
||||
|
||||
name: str = "WeaviateVectorSearchTool"
|
||||
description: str = "A tool to search the Weaviate database for relevant information on internal documents."
|
||||
args_schema: Type[BaseModel] = WeaviateToolSchema
|
||||
query: Optional[str] = None
|
||||
vectorizer: Optional[Vectorizers] = None
|
||||
generative_model: Optional[str] = None
|
||||
collection_name: Optional[str] = None
|
||||
limit: Optional[int] = Field(default=3)
|
||||
headers: Optional[dict] = None
|
||||
weaviate_cluster_url: str = Field(
|
||||
...,
|
||||
description="The URL of the Weaviate cluster",
|
||||
)
|
||||
weaviate_api_key: str = Field(
|
||||
...,
|
||||
description="The API key for the Weaviate cluster",
|
||||
)
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
if WEAVIATE_AVAILABLE:
|
||||
openai_api_key = os.environ.get("OPENAI_API_KEY")
|
||||
if not openai_api_key:
|
||||
raise ValueError(
|
||||
"OPENAI_API_KEY environment variable is required for WeaviateVectorSearchTool and it is mandatory to use the tool."
|
||||
)
|
||||
self.headers = {"X-OpenAI-Api-Key": openai_api_key}
|
||||
self.vectorizer = self.vectorizer or Configure.Vectorizer.text2vec_openai(
|
||||
model="nomic-embed-text",
|
||||
)
|
||||
self.generative_model = (
|
||||
self.generative_model
|
||||
or Configure.Generative.openai(
|
||||
model="gpt-4o",
|
||||
)
|
||||
)
|
||||
|
||||
def _run(self, query: str) -> str:
|
||||
if not WEAVIATE_AVAILABLE:
|
||||
raise ImportError(
|
||||
"The 'weaviate-client' package is required to use the WeaviateVectorSearchTool. "
|
||||
"Please install it with: uv add weaviate-client"
|
||||
)
|
||||
|
||||
if not self.weaviate_cluster_url or not self.weaviate_api_key:
|
||||
raise ValueError("WEAVIATE_URL or WEAVIATE_API_KEY is not set")
|
||||
|
||||
client = weaviate.connect_to_weaviate_cloud(
|
||||
cluster_url=self.weaviate_cluster_url,
|
||||
auth_credentials=Auth.api_key(self.weaviate_api_key),
|
||||
headers=self.headers,
|
||||
)
|
||||
internal_docs = client.collections.get(self.collection_name)
|
||||
|
||||
if not internal_docs:
|
||||
internal_docs = client.collections.create(
|
||||
name=self.collection_name,
|
||||
vectorizer_config=self.vectorizer,
|
||||
generative_config=self.generative_model,
|
||||
)
|
||||
|
||||
response = internal_docs.query.near_text(
|
||||
query=query,
|
||||
limit=self.limit,
|
||||
)
|
||||
json_response = ""
|
||||
for obj in response.objects:
|
||||
json_response += json.dumps(obj.properties, indent=2)
|
||||
|
||||
client.close()
|
||||
return json_response
|
||||
@@ -1,5 +1,6 @@
|
||||
from typing import Callable
|
||||
from crewai_tools import BaseTool, tool
|
||||
from crewai.tools import BaseTool, tool
|
||||
from crewai.tools.base_tool import to_langchain
|
||||
|
||||
def test_creating_a_tool_using_annotation():
|
||||
@tool("Name of my tool")
|
||||
@@ -9,14 +10,14 @@ def test_creating_a_tool_using_annotation():
|
||||
|
||||
# Assert all the right attributes were defined
|
||||
assert my_tool.name == "Name of my tool"
|
||||
assert my_tool.description == "Name of my tool(question: 'string') - Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
assert my_tool.description == "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
assert my_tool.args_schema.schema()["properties"] == {'question': {'title': 'Question', 'type': 'string'}}
|
||||
assert my_tool.func("What is the meaning of life?") == "What is the meaning of life?"
|
||||
|
||||
# Assert the langchain tool conversion worked as expected
|
||||
converted_tool = my_tool.to_langchain()
|
||||
converted_tool = to_langchain([my_tool])[0]
|
||||
assert converted_tool.name == "Name of my tool"
|
||||
assert converted_tool.description == "Name of my tool(question: 'string') - Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
assert converted_tool.description == "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
assert converted_tool.args_schema.schema()["properties"] == {'question': {'title': 'Question', 'type': 'string'}}
|
||||
assert converted_tool.func("What is the meaning of life?") == "What is the meaning of life?"
|
||||
|
||||
@@ -31,16 +32,16 @@ def test_creating_a_tool_using_baseclass():
|
||||
my_tool = MyCustomTool()
|
||||
# Assert all the right attributes were defined
|
||||
assert my_tool.name == "Name of my tool"
|
||||
assert my_tool.description == "Name of my tool(question: 'string') - Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
assert my_tool.description == "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
assert my_tool.args_schema.schema()["properties"] == {'question': {'title': 'Question', 'type': 'string'}}
|
||||
assert my_tool.run("What is the meaning of life?") == "What is the meaning of life?"
|
||||
assert my_tool._run("What is the meaning of life?") == "What is the meaning of life?"
|
||||
|
||||
# Assert the langchain tool conversion worked as expected
|
||||
converted_tool = my_tool.to_langchain()
|
||||
converted_tool = to_langchain([my_tool])[0]
|
||||
assert converted_tool.name == "Name of my tool"
|
||||
assert converted_tool.description == "Name of my tool(question: 'string') - Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
assert converted_tool.description == "Tool Name: Name of my tool\nTool Arguments: {'question': {'description': None, 'type': 'str'}}\nTool Description: Clear description for what this tool is useful for, you agent will need this information to use it."
|
||||
assert converted_tool.args_schema.schema()["properties"] == {'question': {'title': 'Question', 'type': 'string'}}
|
||||
assert converted_tool.run("What is the meaning of life?") == "What is the meaning of life?"
|
||||
assert converted_tool.invoke({"question": "What is the meaning of life?"}) == "What is the meaning of life?"
|
||||
|
||||
def test_setting_cache_function():
|
||||
class MyCustomTool(BaseTool):
|
||||
|
||||
84
tests/file_read_tool_test.py
Normal file
84
tests/file_read_tool_test.py
Normal file
@@ -0,0 +1,84 @@
|
||||
import os
|
||||
import pytest
|
||||
from crewai_tools import FileReadTool
|
||||
|
||||
def test_file_read_tool_constructor():
|
||||
"""Test FileReadTool initialization with file_path."""
|
||||
# Create a temporary test file
|
||||
test_file = "/tmp/test_file.txt"
|
||||
test_content = "Hello, World!"
|
||||
with open(test_file, "w") as f:
|
||||
f.write(test_content)
|
||||
|
||||
# Test initialization with file_path
|
||||
tool = FileReadTool(file_path=test_file)
|
||||
assert tool.file_path == test_file
|
||||
assert "test_file.txt" in tool.description
|
||||
|
||||
# Clean up
|
||||
os.remove(test_file)
|
||||
|
||||
def test_file_read_tool_run():
|
||||
"""Test FileReadTool _run method with file_path at runtime."""
|
||||
# Create a temporary test file
|
||||
test_file = "/tmp/test_file.txt"
|
||||
test_content = "Hello, World!"
|
||||
with open(test_file, "w") as f:
|
||||
f.write(test_content)
|
||||
|
||||
# Test reading file with runtime file_path
|
||||
tool = FileReadTool()
|
||||
result = tool._run(file_path=test_file)
|
||||
assert result == test_content
|
||||
|
||||
# Clean up
|
||||
os.remove(test_file)
|
||||
|
||||
def test_file_read_tool_error_handling():
|
||||
"""Test FileReadTool error handling."""
|
||||
# Test missing file path
|
||||
tool = FileReadTool()
|
||||
result = tool._run()
|
||||
assert "Error: No file path provided" in result
|
||||
|
||||
# Test non-existent file
|
||||
result = tool._run(file_path="/nonexistent/file.txt")
|
||||
assert "Error: File not found at path:" in result
|
||||
|
||||
# Test permission error (create a file without read permissions)
|
||||
test_file = "/tmp/no_permission.txt"
|
||||
with open(test_file, "w") as f:
|
||||
f.write("test")
|
||||
os.chmod(test_file, 0o000)
|
||||
|
||||
result = tool._run(file_path=test_file)
|
||||
assert "Error: Permission denied" in result
|
||||
|
||||
# Clean up
|
||||
os.chmod(test_file, 0o666) # Restore permissions to delete
|
||||
os.remove(test_file)
|
||||
|
||||
def test_file_read_tool_constructor_and_run():
|
||||
"""Test FileReadTool using both constructor and runtime file paths."""
|
||||
# Create two test files
|
||||
test_file1 = "/tmp/test1.txt"
|
||||
test_file2 = "/tmp/test2.txt"
|
||||
content1 = "File 1 content"
|
||||
content2 = "File 2 content"
|
||||
|
||||
with open(test_file1, "w") as f1, open(test_file2, "w") as f2:
|
||||
f1.write(content1)
|
||||
f2.write(content2)
|
||||
|
||||
# Test that constructor file_path works
|
||||
tool = FileReadTool(file_path=test_file1)
|
||||
result = tool._run()
|
||||
assert result == content1
|
||||
|
||||
# Test that runtime file_path overrides constructor
|
||||
result = tool._run(file_path=test_file2)
|
||||
assert result == content2
|
||||
|
||||
# Clean up
|
||||
os.remove(test_file1)
|
||||
os.remove(test_file2)
|
||||
@@ -3,7 +3,7 @@ from crewai import Agent, Task, Crew
|
||||
|
||||
def test_spider_tool():
|
||||
spider_tool = SpiderTool()
|
||||
|
||||
|
||||
searcher = Agent(
|
||||
role="Web Research Expert",
|
||||
goal="Find related information from specific URL's",
|
||||
@@ -12,7 +12,7 @@ def test_spider_tool():
|
||||
verbose=True,
|
||||
cache=False
|
||||
)
|
||||
|
||||
|
||||
choose_between_scrape_crawl = Task(
|
||||
description="Scrape the page of spider.cloud and return a summary of how fast it is",
|
||||
expected_output="spider.cloud is a fast scraping and crawling tool",
|
||||
@@ -34,13 +34,13 @@ def test_spider_tool():
|
||||
crew = Crew(
|
||||
agents=[searcher],
|
||||
tasks=[
|
||||
choose_between_scrape_crawl,
|
||||
return_metadata,
|
||||
choose_between_scrape_crawl,
|
||||
return_metadata,
|
||||
css_selector
|
||||
],
|
||||
verbose=2
|
||||
verbose=True
|
||||
)
|
||||
|
||||
|
||||
crew.kickoff()
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
50
tests/tools/brave_search_tool_test.py
Normal file
50
tests/tools/brave_search_tool_test.py
Normal file
@@ -0,0 +1,50 @@
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
from crewai_tools.tools.brave_search_tool.brave_search_tool import BraveSearchTool
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def brave_tool():
|
||||
return BraveSearchTool(n_results=2)
|
||||
|
||||
|
||||
def test_brave_tool_initialization():
|
||||
tool = BraveSearchTool()
|
||||
assert tool.n_results == 10
|
||||
assert tool.save_file is False
|
||||
|
||||
|
||||
@patch("requests.get")
|
||||
def test_brave_tool_search(mock_get, brave_tool):
|
||||
mock_response = {
|
||||
"web": {
|
||||
"results": [
|
||||
{
|
||||
"title": "Test Title",
|
||||
"url": "http://test.com",
|
||||
"description": "Test Description",
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
mock_get.return_value.json.return_value = mock_response
|
||||
|
||||
result = brave_tool.run(search_query="test")
|
||||
assert "Test Title" in result
|
||||
assert "http://test.com" in result
|
||||
|
||||
|
||||
def test_brave_tool():
|
||||
tool = BraveSearchTool(
|
||||
n_results=2,
|
||||
)
|
||||
x = tool.run(search_query="ChatGPT")
|
||||
print(x)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_brave_tool()
|
||||
test_brave_tool_initialization()
|
||||
# test_brave_tool_search(brave_tool)
|
||||
93
tests/tools/selenium_scraping_tool_test.py
Normal file
93
tests/tools/selenium_scraping_tool_test.py
Normal file
@@ -0,0 +1,93 @@
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
from crewai_tools.tools.selenium_scraping_tool.selenium_scraping_tool import (
|
||||
SeleniumScrapingTool,
|
||||
)
|
||||
|
||||
|
||||
def mock_driver_with_html(html_content):
|
||||
driver = MagicMock()
|
||||
mock_element = MagicMock()
|
||||
mock_element.get_attribute.return_value = html_content
|
||||
bs = BeautifulSoup(html_content, "html.parser")
|
||||
mock_element.text = bs.get_text()
|
||||
|
||||
driver.find_elements.return_value = [mock_element]
|
||||
driver.find_element.return_value = mock_element
|
||||
|
||||
return driver
|
||||
|
||||
|
||||
def initialize_tool_with(mock_driver):
|
||||
tool = SeleniumScrapingTool()
|
||||
tool.driver = MagicMock(return_value=mock_driver)
|
||||
|
||||
return tool
|
||||
|
||||
|
||||
def test_tool_initialization():
|
||||
tool = SeleniumScrapingTool()
|
||||
|
||||
assert tool.website_url is None
|
||||
assert tool.css_element is None
|
||||
assert tool.cookie is None
|
||||
assert tool.wait_time == 3
|
||||
assert tool.return_html is False
|
||||
|
||||
|
||||
@patch("selenium.webdriver.Chrome")
|
||||
def test_scrape_without_css_selector(_mocked_chrome_driver):
|
||||
html_content = "<html><body><div>test content</div></body></html>"
|
||||
mock_driver = mock_driver_with_html(html_content)
|
||||
tool = initialize_tool_with(mock_driver)
|
||||
|
||||
result = tool._run(website_url="https://example.com")
|
||||
|
||||
assert "test content" in result
|
||||
mock_driver.get.assert_called_once_with("https://example.com")
|
||||
mock_driver.find_element.assert_called_with("tag name", "body")
|
||||
mock_driver.close.assert_called_once()
|
||||
|
||||
|
||||
@patch("selenium.webdriver.Chrome")
|
||||
def test_scrape_with_css_selector(_mocked_chrome_driver):
|
||||
html_content = "<html><body><div>test content</div><div class='test'>test content in a specific div</div></body></html>"
|
||||
mock_driver = mock_driver_with_html(html_content)
|
||||
tool = initialize_tool_with(mock_driver)
|
||||
|
||||
result = tool._run(website_url="https://example.com", css_element="div.test")
|
||||
|
||||
assert "test content in a specific div" in result
|
||||
mock_driver.get.assert_called_once_with("https://example.com")
|
||||
mock_driver.find_elements.assert_called_with("css selector", "div.test")
|
||||
mock_driver.close.assert_called_once()
|
||||
|
||||
|
||||
@patch("selenium.webdriver.Chrome")
|
||||
def test_scrape_with_return_html_true(_mocked_chrome_driver):
|
||||
html_content = "<html><body><div>HTML content</div></body></html>"
|
||||
mock_driver = mock_driver_with_html(html_content)
|
||||
tool = initialize_tool_with(mock_driver)
|
||||
|
||||
result = tool._run(website_url="https://example.com", return_html=True)
|
||||
|
||||
assert html_content in result
|
||||
mock_driver.get.assert_called_once_with("https://example.com")
|
||||
mock_driver.find_element.assert_called_with("tag name", "body")
|
||||
mock_driver.close.assert_called_once()
|
||||
|
||||
|
||||
@patch("selenium.webdriver.Chrome")
|
||||
def test_scrape_with_return_html_false(_mocked_chrome_driver):
|
||||
html_content = "<html><body><div>HTML content</div></body></html>"
|
||||
mock_driver = mock_driver_with_html(html_content)
|
||||
tool = initialize_tool_with(mock_driver)
|
||||
|
||||
result = tool._run(website_url="https://example.com", return_html=False)
|
||||
|
||||
assert "HTML content" in result
|
||||
mock_driver.get.assert_called_once_with("https://example.com")
|
||||
mock_driver.find_element.assert_called_with("tag name", "body")
|
||||
mock_driver.close.assert_called_once()
|
||||
@@ -7,32 +7,47 @@ from crewai_tools.tools.code_interpreter_tool.code_interpreter_tool import (
|
||||
|
||||
|
||||
class TestCodeInterpreterTool(unittest.TestCase):
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker")
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker_from_env")
|
||||
def test_run_code_in_docker(self, docker_mock):
|
||||
tool = CodeInterpreterTool()
|
||||
code = "print('Hello, World!')"
|
||||
libraries_used = "numpy,pandas"
|
||||
libraries_used = ["numpy", "pandas"]
|
||||
expected_output = "Hello, World!\n"
|
||||
|
||||
docker_mock.from_env().containers.run().exec_run().exit_code = 0
|
||||
docker_mock.from_env().containers.run().exec_run().output = (
|
||||
docker_mock().containers.run().exec_run().exit_code = 0
|
||||
docker_mock().containers.run().exec_run().output = (
|
||||
expected_output.encode()
|
||||
)
|
||||
result = tool.run_code_in_docker(code, libraries_used)
|
||||
|
||||
self.assertEqual(result, expected_output)
|
||||
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker")
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker_from_env")
|
||||
def test_run_code_in_docker_with_error(self, docker_mock):
|
||||
tool = CodeInterpreterTool()
|
||||
code = "print(1/0)"
|
||||
libraries_used = "numpy,pandas"
|
||||
libraries_used = ["numpy", "pandas"]
|
||||
expected_output = "Something went wrong while running the code: \nZeroDivisionError: division by zero\n"
|
||||
|
||||
docker_mock.from_env().containers.run().exec_run().exit_code = 1
|
||||
docker_mock.from_env().containers.run().exec_run().output = (
|
||||
docker_mock().containers.run().exec_run().exit_code = 1
|
||||
docker_mock().containers.run().exec_run().output = (
|
||||
b"ZeroDivisionError: division by zero\n"
|
||||
)
|
||||
result = tool.run_code_in_docker(code, libraries_used)
|
||||
|
||||
self.assertEqual(result, expected_output)
|
||||
|
||||
@patch("crewai_tools.tools.code_interpreter_tool.code_interpreter_tool.docker_from_env")
|
||||
def test_run_code_in_docker_with_script(self, docker_mock):
|
||||
tool = CodeInterpreterTool()
|
||||
code = """print("This is line 1")
|
||||
print("This is line 2")"""
|
||||
libraries_used = [] # No additional libraries needed for this test
|
||||
expected_output = "This is line 1\nThis is line 2\n"
|
||||
|
||||
# Mock Docker responses
|
||||
docker_mock().containers.run().exec_run().exit_code = 0
|
||||
docker_mock().containers.run().exec_run().output = expected_output.encode()
|
||||
|
||||
result = tool.run_code_in_docker(code, libraries_used)
|
||||
self.assertEqual(result, expected_output)
|
||||
|
||||
Reference in New Issue
Block a user