docs: update memory docs and images in readme (#2898)
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled

This commit is contained in:
Tony Kipkemboi
2025-05-23 19:36:28 -04:00
committed by GitHub
parent 2460f61d3e
commit 921423679a
2 changed files with 241 additions and 554 deletions

View File

@@ -6,9 +6,11 @@ icon: database
## Overview
The crewAI framework introduces a sophisticated memory system designed to significantly enhance the capabilities of AI agents.
This system comprises `short-term memory`, `long-term memory`, `entity memory`, and `contextual memory`, each serving a unique purpose in aiding agents to remember,
reason, and learn from past interactions.
The CrewAI framework provides a sophisticated memory system designed to significantly enhance AI agent capabilities. CrewAI offers **three distinct memory approaches** that serve different use cases:
1. **Basic Memory System** - Built-in short-term, long-term, and entity memory
2. **User Memory** - User-specific memory with Mem0 integration (legacy approach)
3. **External Memory** - Standalone external memory providers (new approach)
## Memory System Components
@@ -18,709 +20,360 @@ reason, and learn from past interactions.
| **Long-Term Memory** | Preserves valuable insights and learnings from past executions, allowing agents to build and refine their knowledge over time. |
| **Entity Memory** | Captures and organizes information about entities (people, places, concepts) encountered during tasks, facilitating deeper understanding and relationship mapping. Uses `RAG` for storing entity information. |
| **Contextual Memory**| Maintains the context of interactions by combining `ShortTermMemory`, `LongTermMemory`, and `EntityMemory`, aiding in the coherence and relevance of agent responses over a sequence of tasks or a conversation. |
| **External Memory** | Enables integration with external memory systems and providers (like Mem0), allowing for specialized memory storage and retrieval across different applications. Supports custom storage implementations for flexible memory management. |
| **User Memory** | ⚠️ **DEPRECATED**: This component is deprecated and will be removed in a future version. Please use [External Memory](#using-external-memory) instead. |
## How Memory Systems Empower Agents
## 1. Basic Memory System (Recommended)
1. **Contextual Awareness**: With short-term and contextual memory, agents gain the ability to maintain context over a conversation or task sequence, leading to more coherent and relevant responses.
The simplest and most commonly used approach. Enable memory for your crew with a single parameter:
2. **Experience Accumulation**: Long-term memory allows agents to accumulate experiences, learning from past actions to improve future decision-making and problem-solving.
3. **Entity Understanding**: By maintaining entity memory, agents can recognize and remember key entities, enhancing their ability to process and interact with complex information.
## Implementing Memory in Your Crew
When configuring a crew, you can enable and customize each memory component to suit the crew's objectives and the nature of tasks it will perform.
By default, the memory system is disabled, and you can ensure it is active by setting `memory=True` in the crew configuration.
The memory will use OpenAI embeddings by default, but you can change it by setting `embedder` to a different model.
It's also possible to initialize the memory instance with your own instance.
The 'embedder' only applies to **Short-Term Memory** which uses Chroma for RAG.
The **Long-Term Memory** uses SQLite3 to store task results. Currently, there is no way to override these storage implementations.
The data storage files are saved into a platform-specific location found using the appdirs package,
and the name of the project can be overridden using the **CREWAI_STORAGE_DIR** environment variable.
### Example: Configuring Memory for a Crew
```python Code
### Quick Start
```python
from crewai import Crew, Agent, Task, Process
# Assemble your crew with memory capabilities
my_crew = Crew(
# Enable basic memory system
crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
memory=True, # Enables short-term, long-term, and entity memory
verbose=True
)
```
### Example: Use Custom Memory Instances e.g FAISS as the VectorDB
### How It Works
- **Short-Term Memory**: Uses ChromaDB with RAG for current context
- **Long-Term Memory**: Uses SQLite3 to store task results across sessions
- **Entity Memory**: Uses RAG to track entities (people, places, concepts)
- **Storage Location**: Platform-specific location via `appdirs` package
- **Custom Storage Directory**: Set `CREWAI_STORAGE_DIR` environment variable
```python Code
from crewai import Crew, Process
from crewai.memory import LongTermMemory, ShortTermMemory, EntityMemory
from crewai.memory.storage.rag_storage import RAGStorage
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
from typing import List, Optional
# Assemble your crew with memory capabilities
my_crew: Crew = Crew(
agents = [...],
tasks = [...],
process = Process.sequential,
memory = True,
# Long-term memory for persistent storage across sessions
long_term_memory = LongTermMemory(
storage=LTMSQLiteStorage(
db_path="/my_crew1/long_term_memory_storage.db"
)
),
# Short-term memory for current context using RAG
short_term_memory = ShortTermMemory(
storage = RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
),
),
# Entity memory for tracking key information about entities
entity_memory = EntityMemory(
storage=RAGStorage(
embedder_config={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
},
type="short_term",
path="/my_crew1/"
)
),
verbose=True,
### Custom Embedder Configuration
```python
crew = Crew(
agents=[...],
tasks=[...],
memory=True,
embedder={
"provider": "openai",
"config": {
"model": "text-embedding-3-small"
}
}
)
```
## Security Considerations
When configuring memory storage:
- Use environment variables for storage paths (e.g., `CREWAI_STORAGE_DIR`)
- Never hardcode sensitive information like database credentials
- Consider access permissions for storage directories
- Use relative paths when possible to maintain portability
Example using environment variables:
### Custom Storage Paths
```python
import os
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
# Configure storage path using environment variable
storage_path = os.getenv("CREWAI_STORAGE_DIR", "./storage")
# Configure custom storage location
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(
db_path="{storage_path}/memory.db".format(storage_path=storage_path)
db_path=os.getenv("CREWAI_STORAGE_DIR", "./storage") + "/memory.db"
)
)
)
```
## Configuration Examples
## 2. User Memory with Mem0 (Legacy)
### Basic Memory Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
<Warning>
**Legacy Approach**: While fully functional, this approach is considered legacy. For new projects requiring user-specific memory, consider using External Memory instead.
</Warning>
# Simple memory configuration
crew = Crew(memory=True) # Uses default storage locations
```
Note that External Memory wont be defined when `memory=True` is set, as we cant infer which external memory would be suitable for your case
User Memory integrates with [Mem0](https://mem0.ai/) to provide user-specific memory that persists across sessions and integrates with the crew's contextual memory system.
### Custom Storage Configuration
```python
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
# Configure custom storage paths
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(db_path="./memory.db")
)
)
### Prerequisites
```bash
pip install mem0ai
```
## Integrating Mem0 for Enhanced User Memory
[Mem0](https://mem0.ai/) is a self-improving memory layer for LLM applications, enabling personalized AI experiences.
### Using Mem0 API platform
To include user-specific memory you can get your API key [here](https://app.mem0.ai/dashboard/api-keys) and refer the [docs](https://docs.mem0.ai/platform/quickstart#4-1-create-memories) for adding user preferences. In this case `user_memory` is set to `MemoryClient` from mem0.
```python Code
### Mem0 Cloud Configuration
```python
import os
from crewai import Crew, Process
from mem0 import MemoryClient
# Set environment variables for Mem0
os.environ["MEM0_API_KEY"] = "m0-xx"
# Step 1: Create a Crew with User Memory
# Set your Mem0 API key
os.environ["MEM0_API_KEY"] = "m0-your-api-key"
crew = Crew(
agents=[...],
tasks=[...],
verbose=True,
process=Process.sequential,
memory=True,
memory=True, # Required for contextual memory integration
memory_config={
"provider": "mem0",
"config": {"user_id": "john"},
"user_memory" : {} #Set user_memory explicitly to a dictionary, we are working on this issue.
"user_memory": {} # Required - triggers user memory initialization
},
process=Process.sequential,
verbose=True
)
```
#### Additional Memory Configuration Options
If you want to access a specific organization and project, you can set the `org_id` and `project_id` parameters in the memory configuration.
```python Code
from crewai import Crew
### Advanced Mem0 Configuration
```python
crew = Crew(
agents=[...],
tasks=[...],
verbose=True,
memory=True,
memory_config={
"provider": "mem0",
"config": {"user_id": "john", "org_id": "my_org_id", "project_id": "my_project_id"},
"user_memory" : {} #Set user_memory explicitly to a dictionary, we are working on this issue.
},
"config": {
"user_id": "john",
"org_id": "my_org_id", # Optional
"project_id": "my_project_id", # Optional
"api_key": "custom-api-key" # Optional - overrides env var
},
"user_memory": {}
}
)
```
### Using Local Mem0 memory
If you want to use local mem0 memory, with a custom configuration, you can set a parameter `local_mem0_config` in the config itself.
If both os environment key is set and local_mem0_config is given, the API platform takes higher priority over the local configuration.
Check [this](https://docs.mem0.ai/open-source/python-quickstart#run-mem0-locally) mem0 local configuration docs for more understanding.
In this case `user_memory` is set to `Memory` from mem0.
```python Code
from crewai import Crew
#local mem0 config
config = {
"vector_store": {
"provider": "qdrant",
"config": {
"host": "localhost",
"port": 6333
}
},
"llm": {
"provider": "openai",
"config": {
"api_key": "your-api-key",
"model": "gpt-4"
}
},
"embedder": {
"provider": "openai",
"config": {
"api_key": "your-api-key",
"model": "text-embedding-3-small"
}
},
"graph_store": {
"provider": "neo4j",
"config": {
"url": "neo4j+s://your-instance",
"username": "neo4j",
"password": "password"
}
},
"history_db_path": "/path/to/history.db",
"version": "v1.1",
"custom_fact_extraction_prompt": "Optional custom prompt for fact extraction for memory",
"custom_update_memory_prompt": "Optional custom prompt for update memory"
}
### Local Mem0 Configuration
```python
crew = Crew(
agents=[...],
tasks=[...],
verbose=True,
memory=True,
memory_config={
"provider": "mem0",
"config": {"user_id": "john", 'local_mem0_config': config},
"user_memory" : {} #Set user_memory explicitly to a dictionary, we are working on this issue.
},
"config": {
"user_id": "john",
"local_mem0_config": {
"vector_store": {
"provider": "qdrant",
"config": {"host": "localhost", "port": 6333}
},
"llm": {
"provider": "openai",
"config": {"api_key": "your-api-key", "model": "gpt-4"}
},
"embedder": {
"provider": "openai",
"config": {"api_key": "your-api-key", "model": "text-embedding-3-small"}
}
}
},
"user_memory": {}
}
)
```
### Using External Memory
## 3. External Memory (New Approach)
External Memory is a powerful feature that allows you to integrate external memory systems with your CrewAI applications. This is particularly useful when you want to use specialized memory providers or maintain memory across different applications.
Since its an external memory, were not able to add a default value to it - unlike with Long Term and Short Term memory.
#### Basic Usage with Mem0
The most common way to use External Memory is with Mem0 as the provider:
External Memory provides a standalone memory system that operates independently from the crew's built-in memory. This is ideal for specialized memory providers or cross-application memory sharing.
### Basic External Memory with Mem0
```python
import os
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
os.environ["MEM0_API_KEY"] = "YOUR-API-KEY"
os.environ["MEM0_API_KEY"] = "your-api-key"
agent = Agent(
role="You are a helpful assistant",
goal="Plan a vacation for the user",
backstory="You are a helpful assistant that can plan a vacation for the user",
verbose=True,
)
task = Task(
description="Give things related to the user's vacation",
expected_output="A plan for the vacation",
agent=agent,
# Create external memory instance
external_memory = ExternalMemory(
embedder_config={
"provider": "mem0",
"config": {"user_id": "U-123"}
}
)
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
agents=[...],
tasks=[...],
external_memory=external_memory, # Separate from basic memory
process=Process.sequential,
external_memory=ExternalMemory(
embedder_config={"provider": "mem0", "config": {"user_id": "U-123"}} # you can provide an entire Mem0 configuration
),
)
crew.kickoff(
inputs={"question": "which destination is better for a beach vacation?"}
verbose=True
)
```
#### Using External Memory with Custom Storage
You can also create custom storage implementations for External Memory. Here's an example of how to create a custom storage:
### Custom Storage Implementation
```python
from crewai import Agent, Crew, Process, Task
from crewai.memory.external.external_memory import ExternalMemory
from crewai.memory.storage.interface import Storage
class CustomStorage(Storage):
def __init__(self):
self.memories = []
def save(self, value, metadata=None, agent=None):
self.memories.append({"value": value, "metadata": metadata, "agent": agent})
self.memories.append({
"value": value,
"metadata": metadata,
"agent": agent
})
def search(self, query, limit=10, score_threshold=0.5):
# Implement your search logic here
return []
return [m for m in self.memories if query.lower() in str(m["value"]).lower()]
def reset(self):
self.memories = []
# Create external memory with custom storage
external_memory = ExternalMemory(
storage=CustomStorage(),
embedder_config={"provider": "mem0", "config": {"user_id": "U-123"}},
)
agent = Agent(
role="You are a helpful assistant",
goal="Plan a vacation for the user",
backstory="You are a helpful assistant that can plan a vacation for the user",
verbose=True,
)
task = Task(
description="Give things related to the user's vacation",
expected_output="A plan for the vacation",
agent=agent,
)
# Use custom storage
external_memory = ExternalMemory(storage=CustomStorage())
crew = Crew(
agents=[agent],
tasks=[task],
verbose=True,
process=Process.sequential,
external_memory=external_memory,
)
crew.kickoff(
inputs={"question": "which destination is better for a beach vacation?"}
agents=[...],
tasks=[...],
external_memory=external_memory
)
```
## Memory System Comparison
## Additional Embedding Providers
| Feature | Basic Memory | User Memory (Legacy) | External Memory |
|---------|-------------|---------------------|----------------|
| **Setup Complexity** | Simple | Medium | Medium |
| **Integration** | Built-in contextual | Contextual + User-specific | Standalone |
| **Storage** | Local files | Mem0 Cloud/Local | Custom/Mem0 |
| **Cross-session** | ✅ | ✅ | ✅ |
| **User-specific** | ❌ | ✅ | ✅ |
| **Custom providers** | Limited | Mem0 only | Any provider |
| **Recommended for** | Most use cases | Legacy projects | Specialized needs |
### Using OpenAI embeddings (already default)
```python Code
from crewai import Crew, Agent, Task, Process
## Supported Embedding Providers
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
### OpenAI (Default)
```python
crew = Crew(
memory=True,
verbose=True,
embedder={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
}
)
```
Alternatively, you can directly pass the OpenAIEmbeddingFunction to the embedder parameter.
Example:
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "openai",
"config": {
"model": 'text-embedding-3-small'
}
"config": {"model": "text-embedding-3-small"}
}
)
```
### Using Ollama embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
### Ollama
```python
crew = Crew(
memory=True,
verbose=True,
embedder={
"provider": "ollama",
"config": {
"model": "mxbai-embed-large"
}
"config": {"model": "mxbai-embed-large"}
}
)
```
### Using Google AI embeddings
#### Prerequisites
Before using Google AI embeddings, ensure you have:
- Access to the Gemini API
- The necessary API keys and permissions
You will need to update your *pyproject.toml* dependencies:
```YAML
dependencies = [
"google-generativeai>=0.8.4", #main version in January/2025 - crewai v.0.100.0 and crewai-tools 0.33.0
"crewai[tools]>=0.100.0,<1.0.0"
]
```
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
### Google AI
```python
crew = Crew(
memory=True,
verbose=True,
embedder={
"provider": "google",
"config": {
"api_key": "<YOUR_API_KEY>",
"model": "<model_name>"
"api_key": "your-api-key",
"model": "text-embedding-004"
}
}
)
```
### Using Azure OpenAI embeddings
```python Code
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
### Azure OpenAI
```python
crew = Crew(
memory=True,
verbose=True,
embedder={
"provider": "openai",
"config": {
"api_key": "YOUR_API_KEY",
"api_base": "YOUR_API_BASE_PATH",
"api_version": "YOUR_API_VERSION",
"model_name": 'text-embedding-3-small'
"api_key": "your-api-key",
"api_base": "https://your-resource.openai.azure.com/",
"api_version": "2023-05-15",
"model_name": "text-embedding-3-small"
}
}
)
```
### Using Vertex AI embeddings
```python Code
from chromadb.utils.embedding_functions import GoogleVertexEmbeddingFunction
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
### Vertex AI
```python
crew = Crew(
memory=True,
verbose=True,
embedder={
"provider": "vertexai",
"config": {
"project_id"="YOUR_PROJECT_ID",
"region"="YOUR_REGION",
"api_key"="YOUR_API_KEY",
"model_name"="textembedding-gecko"
"project_id": "your-project-id",
"region": "your-region",
"api_key": "your-api-key",
"model_name": "textembedding-gecko"
}
}
)
```
### Using Cohere embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "cohere",
"config": {
"api_key": "YOUR_API_KEY",
"model": "<model_name>"
}
}
)
```
### Using VoyageAI embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "voyageai",
"config": {
"api_key": "YOUR_API_KEY",
"model": "<model_name>"
}
}
)
```
### Using HuggingFace embeddings
```python Code
from crewai import Crew, Agent, Task, Process
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "huggingface",
"config": {
"api_url": "<api_url>",
}
}
)
```
### Using Watson embeddings
```python Code
from crewai import Crew, Agent, Task, Process
# Note: Ensure you have installed and imported `ibm_watsonx_ai` for Watson embeddings to work.
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "watson",
"config": {
"model": "<model_name>",
"api_url": "<api_url>",
"api_key": "<YOUR_API_KEY>",
"project_id": "<YOUR_PROJECT_ID>",
}
}
)
```
### Using Amazon Bedrock embeddings
```python Code
# Note: Ensure you have installed `boto3` for Bedrock embeddings to work.
import os
import boto3
from crewai import Crew, Agent, Task, Process
boto3_session = boto3.Session(
region_name=os.environ.get("AWS_REGION_NAME"),
aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY")
)
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
embedder={
"provider": "bedrock",
"config":{
"session": boto3_session,
"model": "amazon.titan-embed-text-v2:0",
"vector_dimension": 1024
}
}
verbose=True
)
```
### Adding Custom Embedding Function
```python Code
from crewai import Crew, Agent, Task, Process
from chromadb import Documents, EmbeddingFunction, Embeddings
# Create a custom embedding function
class CustomEmbedder(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
# generate embeddings
return [1, 2, 3] # this is a dummy embedding
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
memory=True,
verbose=True,
embedder={
"provider": "custom",
"config": {
"embedder": CustomEmbedder()
}
}
)
```
### Resetting Memory via cli
```shell
crewai reset-memories [OPTIONS]
```
#### Resetting Memory Options
| Option | Description | Type | Default |
| :----------------- | :------------------------------- | :------------- | :------ |
| `-l`, `--long` | Reset LONG TERM memory. | Flag (boolean) | False |
| `-s`, `--short` | Reset SHORT TERM memory. | Flag (boolean) | False |
| `-e`, `--entities` | Reset ENTITIES memory. | Flag (boolean) | False |
| `-k`, `--kickoff-outputs` | Reset LATEST KICKOFF TASK OUTPUTS. | Flag (boolean) | False |
| `-kn`, `--knowledge` | Reset KNOWLEDEGE storage | Flag (boolean) | False |
| `-akn`, `--agent-knowledge` | Reset AGENT KNOWLEDGE storage | Flag (boolean) | False |
| `-a`, `--all` | Reset ALL memories. | Flag (boolean) | False |
Note: To use the cli command you need to have your crew in a file called crew.py in the same directory.
### Resetting Memory via crew object
## Security Best Practices
### Environment Variables
```python
import os
from crewai import Crew
my_crew = Crew(
agents=[...],
tasks=[...],
process=Process.sequential,
# Store sensitive data in environment variables
crew = Crew(
memory=True,
verbose=True,
embedder={
"provider": "custom",
"provider": "openai",
"config": {
"embedder": CustomEmbedder()
"api_key": os.getenv("OPENAI_API_KEY"),
"model": "text-embedding-3-small"
}
}
)
my_crew.reset_memories(command_type = 'all') # Resets all the memory
```
#### Resetting Memory Options
### Storage Security
```python
import os
from crewai import Crew
from crewai.memory import LongTermMemory
from crewai.memory.storage.ltm_sqlite_storage import LTMSQLiteStorage
| Command Type | Description |
| :----------------- | :------------------------------- |
| `long` | Reset LONG TERM memory. |
| `short` | Reset SHORT TERM memory. |
| `entities` | Reset ENTITIES memory. |
| `kickoff_outputs` | Reset LATEST KICKOFF TASK OUTPUTS. |
| `knowledge` | Reset KNOWLEDGE memory. |
| `agent_knowledge` | Reset AGENT KNOWLEDGE memory. |
| `all` | Reset ALL memories. |
# Use secure storage paths
storage_path = os.getenv("CREWAI_STORAGE_DIR", "./storage")
os.makedirs(storage_path, mode=0o700, exist_ok=True) # Restricted permissions
crew = Crew(
memory=True,
long_term_memory=LongTermMemory(
storage=LTMSQLiteStorage(
db_path=f"{storage_path}/memory.db"
)
)
)
```
## Troubleshooting
### Common Issues
**Memory not persisting between sessions?**
- Check `CREWAI_STORAGE_DIR` environment variable
- Ensure write permissions to storage directory
- Verify memory is enabled with `memory=True`
**Mem0 authentication errors?**
- Verify `MEM0_API_KEY` environment variable is set
- Check API key permissions on Mem0 dashboard
- Ensure `mem0ai` package is installed
**High memory usage with large datasets?**
- Consider using External Memory with custom storage
- Implement pagination in custom storage search methods
- Use smaller embedding models for reduced memory footprint
### Performance Tips
- Use `memory=True` for most use cases (simplest and fastest)
- Only use User Memory if you need user-specific persistence
- Consider External Memory for high-scale or specialized requirements
- Choose smaller embedding models for faster processing
- Set appropriate search limits to control memory retrieval size
## Benefits of Using CrewAI's Memory System