feat: improve LLM validation and error handling

- Add descriptive error messages with usage context
- Add LLM instance validation
- Add deprecation warning for openai_model_name
- Add string representation to CrewEvaluator
- Add edge case tests

Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
Devin AI
2025-02-09 22:48:56 +00:00
parent 3e67a2eca1
commit 90aea23dd6
3 changed files with 61 additions and 6 deletions

View File

@@ -1087,13 +1087,31 @@ class Crew(BaseModel):
llm: LLM instance or model name to use for evaluation
inputs: Optional dictionary of inputs to pass to the crew
"""
if not llm and not openai_model_name:
raise ValueError("Either llm or openai_model_name must be provided")
if openai_model_name:
warnings.warn(
"openai_model_name is deprecated and will be removed in future versions. Use llm parameter instead.",
DeprecationWarning,
stacklevel=2
)
test_crew = self.copy()
model = llm if llm else openai_model_name
if isinstance(model, str):
try:
if not model:
raise ValueError(
"Either llm or openai_model_name must be provided. Please provide either "
"a custom LLM instance or an OpenAI model name."
)
if isinstance(model, LLM):
if not hasattr(model, 'model'):
raise ValueError("Provided LLM instance must have a 'model' attribute")
elif isinstance(model, str):
model = LLM(model=model)
else:
raise ValueError("LLM must be either a string model name or an LLM instance")
except Exception as e:
raise ValueError(f"Failed to initialize LLM: {str(e)}")
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,

View File

@@ -38,10 +38,18 @@ class CrewEvaluator:
def __init__(self, crew, llm: Union[str, LLM]):
self.crew = crew
try:
self.llm = llm if isinstance(llm, LLM) else LLM(model=llm)
if not hasattr(self.llm, 'model'):
raise ValueError("Provided LLM instance must have a 'model' attribute")
except Exception as e:
raise ValueError(f"Failed to initialize LLM: {str(e)}")
self._telemetry = Telemetry()
self._setup_for_evaluating()
def __str__(self) -> str:
return f"CrewEvaluator(model={str(self.llm)}, iteration={self.iteration})"
def _setup_for_evaluating(self) -> None:
"""Sets up the crew for evaluating."""
for task in self.crew.tasks:

View File

@@ -2862,6 +2862,7 @@ def test_crew_testing_backward_compatibility(kickoff_mock, copy_mock, crew_evalu
copy_mock.return_value = crew
n_iterations = 2
with pytest.warns(DeprecationWarning, match="openai_model_name is deprecated"):
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
# Ensure kickoff is called on the copied crew
@@ -2900,6 +2901,34 @@ def test_crew_testing_missing_llm(kickoff_mock, copy_mock, crew_evaluator):
with pytest.raises(ValueError, match="Either llm or openai_model_name must be provided"):
crew.test(n_iterations)
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_with_invalid_llm(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew = Crew(
agents=[researcher],
tasks=[task],
)
# Create a mock for the copied crew
copy_mock.return_value = crew
# Test invalid LLM type
with pytest.raises(ValueError, match="Failed to initialize LLM"):
crew.test(n_iterations=2, llm={})
# Test LLM without model attribute
class InvalidLLM:
def __init__(self): pass
with pytest.raises(ValueError, match="LLM must be either a string model name or an LLM instance"):
crew.test(n_iterations=2, llm=InvalidLLM())
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_verbose_manager_agent():