feat: enable custom LLM support for Crew.test()

- Add llm parameter to Crew.test() that accepts string or LLM instance
- Maintain backward compatibility with openai_model_name parameter
- Update CrewEvaluator to handle any LLM implementation
- Add comprehensive test coverage

Fixes #2079

Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
Devin AI
2025-02-09 22:36:41 +00:00
parent 409892d65f
commit 3e67a2eca1
4 changed files with 97 additions and 23 deletions

View File

@@ -1076,18 +1076,32 @@ class Crew(BaseModel):
self,
n_iterations: int,
openai_model_name: Optional[str] = None,
llm: Optional[Union[str, LLM]] = None,
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
"""Test and evaluate the Crew with the given inputs for n iterations.
Args:
n_iterations: Number of test iterations to run
openai_model_name: (Deprecated) Name of OpenAI model to use for evaluation
llm: LLM instance or model name to use for evaluation
inputs: Optional dictionary of inputs to pass to the crew
"""
if not llm and not openai_model_name:
raise ValueError("Either llm or openai_model_name must be provided")
test_crew = self.copy()
model = llm if llm else openai_model_name
if isinstance(model, str):
model = LLM(model=model)
self._test_execution_span = test_crew._telemetry.test_execution_span(
test_crew,
n_iterations,
inputs,
openai_model_name, # type: ignore[arg-type]
str(model), # type: ignore[arg-type]
) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, openai_model_name) # type: ignore[arg-type]
evaluator = CrewEvaluator(test_crew, model)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)

View File

@@ -1,6 +1,10 @@
from collections import defaultdict
from typing import Union
from pydantic import BaseModel, Field
from crewai.llm import LLM
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
@@ -23,7 +27,7 @@ class CrewEvaluator:
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
llm (LLM): The language model to use for evaluating the performance of the agents.
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
@@ -32,9 +36,9 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
def __init__(self, crew, llm: Union[str, LLM]):
self.crew = crew
self.openai_model_name = openai_model_name
self.llm = llm if isinstance(llm, LLM) else LLM(model=llm)
self._telemetry = Telemetry()
self._setup_for_evaluating()
@@ -51,7 +55,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.openai_model_name,
llm=self.llm,
)
def _evaluation_task(
@@ -181,7 +185,7 @@ class CrewEvaluator:
self.crew,
evaluation_result.pydantic.quality,
current_task._execution_time,
self.openai_model_name,
str(self.llm),
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(

View File

@@ -13,6 +13,7 @@ import pytest
from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.llm import LLM
from crewai.crews.crew_output import CrewOutput
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
@@ -1123,7 +1124,7 @@ def test_kickoff_for_each_empty_input():
assert results == []
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.vcr(filter_headeruvs=["authorization"])
def test_kickoff_for_each_invalid_input():
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
@@ -2812,10 +2813,43 @@ def test_conditional_should_execute():
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
def test_crew_testing_with_custom_llm(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew = Crew(
agents=[researcher],
tasks=[task],
)
# Create a mock for the copied crew
copy_mock.return_value = crew
custom_llm = LLM(model="gpt-4o-mini")
n_iterations = 2
crew.test(n_iterations, llm=custom_llm)
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls([mock.call(inputs=None), mock.call(inputs=None)])
# Verify CrewEvaluator was called with custom LLM
crew_evaluator.assert_has_calls([
mock.call(crew, custom_llm),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
])
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_backward_compatibility(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
@@ -2831,19 +2865,41 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
kickoff_mock.assert_has_calls([
mock.call(inputs={"topic": "AI"}),
mock.call(inputs={"topic": "AI"})
])
# Verify CrewEvaluator was called with string model name
crew_evaluator.assert_has_calls([
mock.call(crew, mock.ANY),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
])
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.copy")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_missing_llm(kickoff_mock, copy_mock, crew_evaluator):
task = Task(
description="Test task",
expected_output="Test output",
agent=researcher,
)
crew_evaluator.assert_has_calls(
[
mock.call(crew, "gpt-4o-mini"),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
]
crew = Crew(
agents=[researcher],
tasks=[task],
)
# Create a mock for the copied crew
copy_mock.return_value = crew
n_iterations = 2
with pytest.raises(ValueError, match="Either llm or openai_model_name must be provided"):
crew.test(n_iterations)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_verbose_manager_agent():
@@ -3125,4 +3181,4 @@ def test_multimodal_agent_live_image_analysis():
# Verify we got a meaningful response
assert isinstance(result.raw, str)
assert len(result.raw) > 100 # Expecting a detailed analysis
assert "error" not in result.raw.lower() # No error messages in response
assert "error" not in result.raw.lower() # No error messages in response

View File

@@ -23,7 +23,7 @@ class TestCrewEvaluator:
)
crew = Crew(agents=[agent], tasks=[task])
return CrewEvaluator(crew, openai_model_name="gpt-4o-mini")
return CrewEvaluator(crew, llm="gpt-4o-mini")
def test_setup_for_evaluating(self, crew_planner):
crew_planner._setup_for_evaluating()