Merge branch 'main' into bugfix/kickoff-hangs-when-llm-call-fails

This commit is contained in:
Brandon Hancock (bhancock_ai)
2025-01-22 11:18:31 -05:00
committed by GitHub
3 changed files with 75 additions and 24 deletions

View File

@@ -12,7 +12,7 @@ The CrewAI CLI provides a set of commands to interact with CrewAI, allowing you
To use the CrewAI CLI, make sure you have CrewAI installed:
```shell
```shell Terminal
pip install crewai
```
@@ -20,7 +20,7 @@ pip install crewai
The basic structure of a CrewAI CLI command is:
```shell
```shell Terminal
crewai [COMMAND] [OPTIONS] [ARGUMENTS]
```
@@ -30,7 +30,7 @@ crewai [COMMAND] [OPTIONS] [ARGUMENTS]
Create a new crew or flow.
```shell
```shell Terminal
crewai create [OPTIONS] TYPE NAME
```
@@ -38,7 +38,7 @@ crewai create [OPTIONS] TYPE NAME
- `NAME`: Name of the crew or flow
Example:
```shell
```shell Terminal
crewai create crew my_new_crew
crewai create flow my_new_flow
```
@@ -47,14 +47,14 @@ crewai create flow my_new_flow
Show the installed version of CrewAI.
```shell
```shell Terminal
crewai version [OPTIONS]
```
- `--tools`: (Optional) Show the installed version of CrewAI tools
Example:
```shell
```shell Terminal
crewai version
crewai version --tools
```
@@ -63,7 +63,7 @@ crewai version --tools
Train the crew for a specified number of iterations.
```shell
```shell Terminal
crewai train [OPTIONS]
```
@@ -71,7 +71,7 @@ crewai train [OPTIONS]
- `-f, --filename TEXT`: Path to a custom file for training (default: "trained_agents_data.pkl")
Example:
```shell
```shell Terminal
crewai train -n 10 -f my_training_data.pkl
```
@@ -79,14 +79,14 @@ crewai train -n 10 -f my_training_data.pkl
Replay the crew execution from a specific task.
```shell
```shell Terminal
crewai replay [OPTIONS]
```
- `-t, --task_id TEXT`: Replay the crew from this task ID, including all subsequent tasks
Example:
```shell
```shell Terminal
crewai replay -t task_123456
```
@@ -94,7 +94,7 @@ crewai replay -t task_123456
Retrieve your latest crew.kickoff() task outputs.
```shell
```shell Terminal
crewai log-tasks-outputs
```
@@ -102,7 +102,7 @@ crewai log-tasks-outputs
Reset the crew memories (long, short, entity, latest_crew_kickoff_outputs).
```shell
```shell Terminal
crewai reset-memories [OPTIONS]
```
@@ -113,7 +113,7 @@ crewai reset-memories [OPTIONS]
- `-a, --all`: Reset ALL memories
Example:
```shell
```shell Terminal
crewai reset-memories --long --short
crewai reset-memories --all
```
@@ -122,7 +122,7 @@ crewai reset-memories --all
Test the crew and evaluate the results.
```shell
```shell Terminal
crewai test [OPTIONS]
```
@@ -130,7 +130,7 @@ crewai test [OPTIONS]
- `-m, --model TEXT`: LLM Model to run the tests on the Crew (default: "gpt-4o-mini")
Example:
```shell
```shell Terminal
crewai test -n 5 -m gpt-3.5-turbo
```
@@ -138,7 +138,7 @@ crewai test -n 5 -m gpt-3.5-turbo
Run the crew.
```shell
```shell Terminal
crewai run
```
<Note>
@@ -153,7 +153,7 @@ Starting in version `0.98.0`, when you run the `crewai chat` command, you start
After receiving the results, you can continue interacting with the assistant for further instructions or questions.
```shell
```shell Terminal
crewai chat
```
<Note>

View File

@@ -15,10 +15,48 @@ icon: wrench
If you need to update Python, visit [python.org/downloads](https://python.org/downloads)
</Note>
# Setting Up Your Environment
Before installing CrewAI, it's recommended to set up a virtual environment. This helps isolate your project dependencies and avoid conflicts.
<Steps>
<Step title="Create a Virtual Environment">
Choose your preferred method to create a virtual environment:
**Using venv (Python's built-in tool):**
```shell Terminal
python3 -m venv .venv
```
**Using conda:**
```shell Terminal
conda create -n crewai-env python=3.12
```
</Step>
<Step title="Activate the Virtual Environment">
Activate your virtual environment based on your platform:
**On macOS/Linux (venv):**
```shell Terminal
source .venv/bin/activate
```
**On Windows (venv):**
```shell Terminal
.venv\Scripts\activate
```
**Using conda (all platforms):**
```shell Terminal
conda activate crewai-env
```
</Step>
</Steps>
# Installing CrewAI
CrewAI is a flexible and powerful AI framework that enables you to create and manage AI agents, tools, and tasks efficiently.
Let's get you set up! 🚀
Now let's get you set up! 🚀
<Steps>
<Step title="Install CrewAI">
@@ -72,9 +110,9 @@ Let's get you set up! 🚀
# Creating a New Project
<Info>
<Tip>
We recommend using the YAML Template scaffolding for a structured approach to defining agents and tasks.
</Info>
</Tip>
<Steps>
<Step title="Generate Project Structure">
@@ -101,10 +139,22 @@ Let's get you set up! 🚀
│ └── __init__.py
└── config/
├── agents.yaml
├── config.yaml
└── tasks.yaml
```
</Frame>
</Step>
</Step>
<Step title="Install Additional Tools">
You can install additional tools using UV:
```shell Terminal
uv add <tool-name>
```
<Tip>
UV is our preferred package manager as it's significantly faster than pip and provides better dependency resolution.
</Tip>
</Step>
<Step title="Customize Your Project">
Your project will contain these essential files:

View File

@@ -1,5 +1,5 @@
---
title: Composio
title: Composio Tool
description: Composio provides 250+ production-ready tools for AI agents with flexible authentication management.
icon: gear-code
---
@@ -75,7 +75,8 @@ filtered_action_enums = toolset.find_actions_by_use_case(
)
tools = toolset.get_tools(actions=filtered_action_enums)
```<Tip>Set `advanced` to True to get actions for complex use cases</Tip>
```
<Tip>Set `advanced` to True to get actions for complex use cases</Tip>
- Using specific tools: