Merge branch 'main' of github.com:crewAIInc/crewAI into better/event-emitter

This commit is contained in:
Lorenze Jay
2025-02-18 14:18:24 -08:00
6 changed files with 252 additions and 17 deletions

View File

@@ -94,6 +94,13 @@ class CrewAgentParser:
elif includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought, final_answer, text)
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
@@ -120,7 +127,10 @@ class CrewAgentParser:
regex = r"(.*?)(?:\n\nAction|\n\nFinal Answer)"
thought_match = re.search(regex, text, re.DOTALL)
if thought_match:
return thought_match.group(1).strip()
thought = thought_match.group(1).strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
return ""
def _clean_action(self, text: str) -> str:

View File

@@ -281,12 +281,26 @@ class Crew(BaseModel):
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if hasattr(self, "memory_config") and self.memory_config is not None:
self._user_memory = (
self.user_memory if self.user_memory else UserMemory(crew=self)
)
if (
self.memory_config and "user_memory" in self.memory_config
): # Check for user_memory in config
user_memory_config = self.memory_config["user_memory"]
if isinstance(
user_memory_config, UserMemory
): # Check if it is already an instance
self._user_memory = user_memory_config
elif isinstance(
user_memory_config, dict
): # Check if it's a configuration dict
self._user_memory = UserMemory(
crew=self, **user_memory_config
) # Initialize with config
else:
raise TypeError(
"user_memory must be a UserMemory instance or a configuration dictionary"
)
else:
self._user_memory = None
self._user_memory = None # No user memory if not in config
return self
@model_validator(mode="after")
@@ -1182,7 +1196,7 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
openai_model_name: Optional[str] = None,
eval_llm: Union[str, InstanceOf[LLM]],
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
@@ -1192,12 +1206,12 @@ class Crew(BaseModel):
CrewTestStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
openai_model_name=openai_model_name,
eval_llm=eval_llm,
inputs=inputs,
),
)
test_crew = self.copy()
evaluator = CrewEvaluator(test_crew, openai_model_name or "gpt-4o-mini")
evaluator = CrewEvaluator(test_crew, eval_llm)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)

View File

@@ -0,0 +1,52 @@
from datetime import date, datetime
from typing import Any
from pydantic import BaseModel
from crewai.flow import Flow
def export_state(flow: Flow) -> dict[str, Any]:
"""Exports the Flow's internal state as JSON-compatible data structures.
Performs a one-way transformation of a Flow's state into basic Python types
that can be safely serialized to JSON. To prevent infinite recursion with
circular references, the conversion is limited to a depth of 5 levels.
Args:
flow: The Flow object whose state needs to be exported
Returns:
dict[str, Any]: The transformed state using JSON-compatible Python
types.
"""
return _to_serializable(flow._state)
def _to_serializable(obj: Any, max_depth: int = 5, _current_depth: int = 0) -> Any:
if _current_depth >= max_depth:
return repr(obj)
if isinstance(obj, (str, int, float, bool, type(None))):
return obj
elif isinstance(obj, (date, datetime)):
return obj.isoformat()
elif isinstance(obj, (list, tuple, set)):
return [_to_serializable(item, max_depth, _current_depth + 1) for item in obj]
elif isinstance(obj, dict):
return {
_to_serializable_key(key): _to_serializable(
value, max_depth, _current_depth + 1
)
for key, value in obj.items()
}
elif isinstance(obj, BaseModel):
return _to_serializable(obj.model_dump(), max_depth, _current_depth + 1)
else:
return repr(obj)
def _to_serializable_key(key: Any) -> str:
if isinstance(key, (str, int)):
return str(key)
return f"key_{id(key)}_{repr(key)}"

View File

@@ -1,11 +1,12 @@
from collections import defaultdict
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, InstanceOf
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
@@ -23,7 +24,7 @@ class CrewEvaluator:
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
eval_llm (LLM): Language model instance to use for evaluations
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
@@ -32,9 +33,9 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
def __init__(self, crew, eval_llm: InstanceOf[LLM]):
self.crew = crew
self.openai_model_name = openai_model_name
self.llm = eval_llm
self._telemetry = Telemetry()
self._setup_for_evaluating()
@@ -51,7 +52,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.openai_model_name,
llm=self.llm,
)
def _evaluation_task(
@@ -181,7 +182,7 @@ class CrewEvaluator:
self.crew,
evaluation_result.pydantic.quality,
current_task.execution_duration,
self.openai_model_name,
self.llm.model,
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(