Merge branch 'main' of github.com:crewAIInc/crewAI into better/event-emitter

This commit is contained in:
Lorenze Jay
2025-02-18 14:18:24 -08:00
6 changed files with 252 additions and 17 deletions

View File

@@ -94,6 +94,13 @@ class CrewAgentParser:
elif includes_answer:
final_answer = text.split(FINAL_ANSWER_ACTION)[-1].strip()
# Check whether the final answer ends with triple backticks.
if final_answer.endswith("```"):
# Count occurrences of triple backticks in the final answer.
count = final_answer.count("```")
# If count is odd then it's an unmatched trailing set; remove it.
if count % 2 != 0:
final_answer = final_answer[:-3].rstrip()
return AgentFinish(thought, final_answer, text)
if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL):
@@ -120,7 +127,10 @@ class CrewAgentParser:
regex = r"(.*?)(?:\n\nAction|\n\nFinal Answer)"
thought_match = re.search(regex, text, re.DOTALL)
if thought_match:
return thought_match.group(1).strip()
thought = thought_match.group(1).strip()
# Remove any triple backticks from the thought string
thought = thought.replace("```", "").strip()
return thought
return ""
def _clean_action(self, text: str) -> str:

View File

@@ -281,12 +281,26 @@ class Crew(BaseModel):
if self.entity_memory
else EntityMemory(crew=self, embedder_config=self.embedder)
)
if hasattr(self, "memory_config") and self.memory_config is not None:
self._user_memory = (
self.user_memory if self.user_memory else UserMemory(crew=self)
)
if (
self.memory_config and "user_memory" in self.memory_config
): # Check for user_memory in config
user_memory_config = self.memory_config["user_memory"]
if isinstance(
user_memory_config, UserMemory
): # Check if it is already an instance
self._user_memory = user_memory_config
elif isinstance(
user_memory_config, dict
): # Check if it's a configuration dict
self._user_memory = UserMemory(
crew=self, **user_memory_config
) # Initialize with config
else:
raise TypeError(
"user_memory must be a UserMemory instance or a configuration dictionary"
)
else:
self._user_memory = None
self._user_memory = None # No user memory if not in config
return self
@model_validator(mode="after")
@@ -1182,7 +1196,7 @@ class Crew(BaseModel):
def test(
self,
n_iterations: int,
openai_model_name: Optional[str] = None,
eval_llm: Union[str, InstanceOf[LLM]],
inputs: Optional[Dict[str, Any]] = None,
) -> None:
"""Test and evaluate the Crew with the given inputs for n iterations concurrently using concurrent.futures."""
@@ -1192,12 +1206,12 @@ class Crew(BaseModel):
CrewTestStartedEvent(
crew_name=self.name or "crew",
n_iterations=n_iterations,
openai_model_name=openai_model_name,
eval_llm=eval_llm,
inputs=inputs,
),
)
test_crew = self.copy()
evaluator = CrewEvaluator(test_crew, openai_model_name or "gpt-4o-mini")
evaluator = CrewEvaluator(test_crew, eval_llm)
for i in range(1, n_iterations + 1):
evaluator.set_iteration(i)

View File

@@ -0,0 +1,52 @@
from datetime import date, datetime
from typing import Any
from pydantic import BaseModel
from crewai.flow import Flow
def export_state(flow: Flow) -> dict[str, Any]:
"""Exports the Flow's internal state as JSON-compatible data structures.
Performs a one-way transformation of a Flow's state into basic Python types
that can be safely serialized to JSON. To prevent infinite recursion with
circular references, the conversion is limited to a depth of 5 levels.
Args:
flow: The Flow object whose state needs to be exported
Returns:
dict[str, Any]: The transformed state using JSON-compatible Python
types.
"""
return _to_serializable(flow._state)
def _to_serializable(obj: Any, max_depth: int = 5, _current_depth: int = 0) -> Any:
if _current_depth >= max_depth:
return repr(obj)
if isinstance(obj, (str, int, float, bool, type(None))):
return obj
elif isinstance(obj, (date, datetime)):
return obj.isoformat()
elif isinstance(obj, (list, tuple, set)):
return [_to_serializable(item, max_depth, _current_depth + 1) for item in obj]
elif isinstance(obj, dict):
return {
_to_serializable_key(key): _to_serializable(
value, max_depth, _current_depth + 1
)
for key, value in obj.items()
}
elif isinstance(obj, BaseModel):
return _to_serializable(obj.model_dump(), max_depth, _current_depth + 1)
else:
return repr(obj)
def _to_serializable_key(key: Any) -> str:
if isinstance(key, (str, int)):
return str(key)
return f"key_{id(key)}_{repr(key)}"

View File

@@ -1,11 +1,12 @@
from collections import defaultdict
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, InstanceOf
from rich.box import HEAVY_EDGE
from rich.console import Console
from rich.table import Table
from crewai.agent import Agent
from crewai.llm import LLM
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
from crewai.telemetry import Telemetry
@@ -23,7 +24,7 @@ class CrewEvaluator:
Attributes:
crew (Crew): The crew of agents to evaluate.
openai_model_name (str): The model to use for evaluating the performance of the agents (for now ONLY OpenAI accepted).
eval_llm (LLM): Language model instance to use for evaluations
tasks_scores (defaultdict): A dictionary to store the scores of the agents for each task.
iteration (int): The current iteration of the evaluation.
"""
@@ -32,9 +33,9 @@ class CrewEvaluator:
run_execution_times: defaultdict = defaultdict(list)
iteration: int = 0
def __init__(self, crew, openai_model_name: str):
def __init__(self, crew, eval_llm: InstanceOf[LLM]):
self.crew = crew
self.openai_model_name = openai_model_name
self.llm = eval_llm
self._telemetry = Telemetry()
self._setup_for_evaluating()
@@ -51,7 +52,7 @@ class CrewEvaluator:
),
backstory="Evaluator agent for crew evaluation with precise capabilities to evaluate the performance of the agents in the crew based on the tasks they have performed",
verbose=False,
llm=self.openai_model_name,
llm=self.llm,
)
def _evaluation_task(
@@ -181,7 +182,7 @@ class CrewEvaluator:
self.crew,
evaluation_result.pydantic.quality,
current_task.execution_duration,
self.openai_model_name,
self.llm.model,
)
self.tasks_scores[self.iteration].append(evaluation_result.pydantic.quality)
self.run_execution_times[self.iteration].append(

View File

@@ -14,6 +14,7 @@ from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.task import Task
@@ -3375,6 +3376,7 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
copy_mock.return_value = crew
n_iterations = 2
llm_instance = LLM("gpt-4o-mini")
received_events = []
@@ -3386,7 +3388,7 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
def on_crew_test_completed(source, event: CrewTestCompletedEvent):
received_events.append(event)
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
crew.test(n_iterations, llm_instance, inputs={"topic": "AI"})
# Ensure kickoff is called on the copied crew
kickoff_mock.assert_has_calls(
@@ -3395,7 +3397,7 @@ def test_crew_testing_function(kickoff_mock, copy_mock, crew_evaluator):
crew_evaluator.assert_has_calls(
[
mock.call(crew, "gpt-4o-mini"),
mock.call(crew, llm_instance),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),

View File

@@ -0,0 +1,156 @@
from datetime import date, datetime
from typing import List
from unittest.mock import Mock
import pytest
from pydantic import BaseModel
from crewai.flow import Flow
from crewai.flow.state_utils import export_state
class Address(BaseModel):
street: str
city: str
country: str
class Person(BaseModel):
name: str
age: int
address: Address
birthday: date
skills: List[str]
@pytest.fixture
def mock_flow():
def create_flow(state):
flow = Mock(spec=Flow)
flow._state = state
return flow
return create_flow
@pytest.mark.parametrize(
"test_input,expected",
[
({"text": "hello world"}, {"text": "hello world"}),
({"number": 42}, {"number": 42}),
({"decimal": 3.14}, {"decimal": 3.14}),
({"flag": True}, {"flag": True}),
({"empty": None}, {"empty": None}),
({"list": [1, 2, 3]}, {"list": [1, 2, 3]}),
({"tuple": (1, 2, 3)}, {"tuple": [1, 2, 3]}),
({"set": {1, 2, 3}}, {"set": [1, 2, 3]}),
({"nested": [1, [2, 3], {4, 5}]}, {"nested": [1, [2, 3], [4, 5]]}),
],
)
def test_basic_serialization(mock_flow, test_input, expected):
flow = mock_flow(test_input)
result = export_state(flow)
assert result == expected
@pytest.mark.parametrize(
"input_date,expected",
[
(date(2024, 1, 1), "2024-01-01"),
(datetime(2024, 1, 1, 12, 30), "2024-01-01T12:30:00"),
],
)
def test_temporal_serialization(mock_flow, input_date, expected):
flow = mock_flow({"date": input_date})
result = export_state(flow)
assert result["date"] == expected
@pytest.mark.parametrize(
"key,value,expected_key_type",
[
(("tuple", "key"), "value", str),
(None, "value", str),
(123, "value", str),
("normal", "value", str),
],
)
def test_dictionary_key_serialization(mock_flow, key, value, expected_key_type):
flow = mock_flow({key: value})
result = export_state(flow)
assert len(result) == 1
result_key = next(iter(result.keys()))
assert isinstance(result_key, expected_key_type)
assert result[result_key] == value
@pytest.mark.parametrize(
"callable_obj,expected_in_result",
[
(lambda x: x * 2, "lambda"),
(str.upper, "upper"),
],
)
def test_callable_serialization(mock_flow, callable_obj, expected_in_result):
flow = mock_flow({"func": callable_obj})
result = export_state(flow)
assert isinstance(result["func"], str)
assert expected_in_result in result["func"].lower()
def test_pydantic_model_serialization(mock_flow):
address = Address(street="123 Main St", city="Tech City", country="Pythonia")
person = Person(
name="John Doe",
age=30,
address=address,
birthday=date(1994, 1, 1),
skills=["Python", "Testing"],
)
flow = mock_flow(
{
"single_model": address,
"nested_model": person,
"model_list": [address, address],
"model_dict": {"home": address},
}
)
result = export_state(flow)
assert result["single_model"]["street"] == "123 Main St"
assert result["nested_model"]["name"] == "John Doe"
assert result["nested_model"]["address"]["city"] == "Tech City"
assert result["nested_model"]["birthday"] == "1994-01-01"
assert len(result["model_list"]) == 2
assert all(m["street"] == "123 Main St" for m in result["model_list"])
assert result["model_dict"]["home"]["city"] == "Tech City"
def test_depth_limit(mock_flow):
"""Test max depth handling with a deeply nested structure"""
def create_nested(depth):
if depth == 0:
return "value"
return {"next": create_nested(depth - 1)}
deep_structure = create_nested(10)
flow = mock_flow(deep_structure)
result = export_state(flow)
assert result == {
"next": {
"next": {
"next": {
"next": {
"next": "{'next': {'next': {'next': {'next': {'next': 'value'}}}}}"
}
}
}
}
}