mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 00:28:31 +00:00
feat: add AgentEvaluator class
This class will evaluate Agent' results and report to user
This commit is contained in:
39
src/crewai/evaluation/__init__.py
Normal file
39
src/crewai/evaluation/__init__.py
Normal file
@@ -0,0 +1,39 @@
|
||||
# First, import the core base classes without AgentEvaluator
|
||||
from crewai.evaluation.base_evaluator import (
|
||||
BaseEvaluator,
|
||||
EvaluationScore,
|
||||
MetricCategory,
|
||||
AgentEvaluationResult
|
||||
)
|
||||
|
||||
# Now import the evaluators which depend on base classes
|
||||
from crewai.evaluation.metrics.semantic_quality_metrics import (
|
||||
SemanticQualityEvaluator
|
||||
)
|
||||
|
||||
from crewai.evaluation.metrics.goal_metrics import (
|
||||
GoalAlignmentEvaluator
|
||||
)
|
||||
|
||||
from crewai.evaluation.metrics.reasoning_metrics import (
|
||||
ReasoningEfficiencyEvaluator
|
||||
)
|
||||
|
||||
|
||||
from crewai.evaluation.metrics.tools_metrics import (
|
||||
ToolSelectionEvaluator,
|
||||
ParameterExtractionEvaluator,
|
||||
ToolInvocationEvaluator
|
||||
)
|
||||
|
||||
# Next import integration which uses the base classes but not AgentEvaluator
|
||||
from crewai.evaluation.evaluation_listener import (
|
||||
EvaluationTraceCallback,
|
||||
create_evaluation_callbacks
|
||||
)
|
||||
|
||||
|
||||
from crewai.evaluation.agent_evaluator import (
|
||||
AgentEvaluator,
|
||||
create_default_evaluator
|
||||
)
|
||||
178
src/crewai/evaluation/agent_evaluator.py
Normal file
178
src/crewai/evaluation/agent_evaluator.py
Normal file
@@ -0,0 +1,178 @@
|
||||
from crewai.evaluation.base_evaluator import AgentEvaluationResult, AgentAggregatedEvaluationResult, AggregationStrategy
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
from crewai.evaluation.evaluation_display import EvaluationDisplayFormatter
|
||||
|
||||
from typing import List, Optional, Dict, Any, Tuple
|
||||
from collections import defaultdict
|
||||
from crewai.evaluation import EvaluationScore, BaseEvaluator, create_evaluation_callbacks
|
||||
from crewai.crew import Crew
|
||||
from rich.table import Table
|
||||
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
|
||||
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
|
||||
|
||||
class AgentEvaluator:
|
||||
def __init__(
|
||||
self,
|
||||
evaluators: Optional[List[BaseEvaluator]] = None,
|
||||
crew: Optional[Any] = None,
|
||||
):
|
||||
self.crew: Crew = crew
|
||||
self.evaluators = evaluators
|
||||
|
||||
self.agent_evaluators = {}
|
||||
if crew is not None:
|
||||
for agent in crew.agents:
|
||||
self.agent_evaluators[agent.id] = self.evaluators.copy()
|
||||
|
||||
self.callback = create_evaluation_callbacks()
|
||||
self.console_formatter = ConsoleFormatter()
|
||||
self.display_formatter = EvaluationDisplayFormatter()
|
||||
|
||||
self.iteration = 1
|
||||
self.iterations_results = {}
|
||||
|
||||
def set_iteration(self, iteration: int) -> None:
|
||||
self.iteration = iteration
|
||||
|
||||
def evaluate_current_iteration(self):
|
||||
if not self.crew:
|
||||
raise ValueError("Cannot evaluate: no crew was provided to the evaluator.")
|
||||
|
||||
if not self.callback:
|
||||
raise ValueError("Cannot evaluate: no callback was set. Use set_callback() method first.")
|
||||
|
||||
from rich.progress import Progress, SpinnerColumn, TextColumn, BarColumn
|
||||
self.console_formatter.print(f"\n[bold blue]📊 Running agent evaluations for iteration {self.iteration}...[/bold blue]\n")
|
||||
|
||||
evaluation_results = defaultdict(list)
|
||||
|
||||
total_evals = 0
|
||||
for agent in self.crew.agents:
|
||||
for task in self.crew.tasks:
|
||||
if task.agent.id == agent.id and self.agent_evaluators.get(agent.id):
|
||||
total_evals += 1
|
||||
|
||||
with Progress(
|
||||
SpinnerColumn(),
|
||||
TextColumn("[bold blue]{task.description}[/bold blue]"),
|
||||
BarColumn(),
|
||||
TextColumn("{task.percentage:.0f}% completed"),
|
||||
console=self.console_formatter.console
|
||||
) as progress:
|
||||
eval_task = progress.add_task(f"Evaluating agents (iteration {self.iteration})...", total=total_evals)
|
||||
|
||||
for agent in self.crew.agents:
|
||||
evaluator = self.agent_evaluators.get(agent.id)
|
||||
if not evaluator:
|
||||
continue
|
||||
|
||||
for task in self.crew.tasks:
|
||||
if task.agent.id != agent.id:
|
||||
continue
|
||||
|
||||
trace = self.callback.get_trace(agent.id, task.id)
|
||||
if not trace:
|
||||
self.console_formatter.print(f"[yellow]Warning: No trace found for agent {agent.role} on task {task.description[:30]}...[/yellow]")
|
||||
progress.update(eval_task, advance=1)
|
||||
continue
|
||||
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
result = self.evaluate(
|
||||
agent=agent,
|
||||
task=task,
|
||||
execution_trace=trace,
|
||||
final_output=task.output
|
||||
)
|
||||
evaluation_results[agent.role].append(result)
|
||||
progress.update(eval_task, advance=1)
|
||||
|
||||
self.iterations_results[self.iteration] = evaluation_results
|
||||
return evaluation_results
|
||||
|
||||
def get_evaluation_results(self):
|
||||
if self.iteration in self.iterations_results:
|
||||
return self.iterations_results[self.iteration]
|
||||
|
||||
return self.evaluate_current_iteration()
|
||||
|
||||
def display_results_with_iterations(self):
|
||||
self.display_formatter.display_summary_results(self.iterations_results)
|
||||
|
||||
def get_agent_evaluation(self, strategy: AggregationStrategy = AggregationStrategy.SIMPLE_AVERAGE):
|
||||
agent_results = {}
|
||||
with crewai_event_bus.scoped_handlers():
|
||||
task_results = self.get_evaluation_results()
|
||||
for agent_role, results in task_results.items():
|
||||
if not results:
|
||||
continue
|
||||
|
||||
agent_id = results[0].agent_id
|
||||
|
||||
aggregated_result = self.display_formatter._aggregate_agent_results(
|
||||
agent_id=agent_id,
|
||||
agent_role=agent_role,
|
||||
results=results,
|
||||
strategy=strategy
|
||||
)
|
||||
|
||||
agent_results[agent_role] = aggregated_result
|
||||
|
||||
if len(self.iterations_results) > 1 and self.iteration == max(self.iterations_results.keys()):
|
||||
self.display_results_with_iterations()
|
||||
elif agent_results:
|
||||
self.display_evaluation_results(agent_results)
|
||||
|
||||
return agent_results
|
||||
|
||||
def display_evaluation_results(self, agent_results: Dict[str, AgentAggregatedEvaluationResult]):
|
||||
self.display_formatter.display_evaluation_results(agent_results)
|
||||
|
||||
def evaluate(
|
||||
self,
|
||||
agent: Agent,
|
||||
task: Task,
|
||||
execution_trace: Dict[str, Any],
|
||||
final_output: Any
|
||||
) -> AgentEvaluationResult:
|
||||
result = AgentEvaluationResult(
|
||||
agent_id=str(agent.id),
|
||||
task_id=str(task.id)
|
||||
)
|
||||
|
||||
for evaluator in self.evaluators:
|
||||
try:
|
||||
score = evaluator.evaluate(
|
||||
agent=agent,
|
||||
task=task,
|
||||
execution_trace=execution_trace,
|
||||
final_output=final_output
|
||||
)
|
||||
result.metrics[evaluator.metric_category] = score
|
||||
except Exception as e:
|
||||
self.console_formatter.print(f"Error in {evaluator.metric_category.value} evaluator: {str(e)}")
|
||||
|
||||
return result
|
||||
|
||||
def create_default_evaluator(crew, llm=None):
|
||||
from crewai.evaluation import (
|
||||
GoalAlignmentEvaluator,
|
||||
SemanticQualityEvaluator,
|
||||
ToolSelectionEvaluator,
|
||||
ParameterExtractionEvaluator,
|
||||
ToolInvocationEvaluator,
|
||||
ReasoningEfficiencyEvaluator
|
||||
)
|
||||
|
||||
evaluators = [
|
||||
GoalAlignmentEvaluator(llm=llm),
|
||||
SemanticQualityEvaluator(llm=llm),
|
||||
ToolSelectionEvaluator(llm=llm),
|
||||
ParameterExtractionEvaluator(llm=llm),
|
||||
ToolInvocationEvaluator(llm=llm),
|
||||
ReasoningEfficiencyEvaluator(llm=llm),
|
||||
]
|
||||
|
||||
return AgentEvaluator(evaluators=evaluators, crew=crew)
|
||||
125
src/crewai/evaluation/base_evaluator.py
Normal file
125
src/crewai/evaluation/base_evaluator.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import abc
|
||||
import enum
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
from crewai.llm import BaseLLM
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
class MetricCategory(enum.Enum):
|
||||
GOAL_ALIGNMENT = "goal_alignment"
|
||||
SEMANTIC_QUALITY = "semantic_quality"
|
||||
REASONING_EFFICIENCY = "reasoning_efficiency"
|
||||
TOOL_SELECTION = "tool_selection"
|
||||
PARAMETER_EXTRACTION = "parameter_extraction"
|
||||
TOOL_INVOCATION = "tool_invocation"
|
||||
|
||||
def title(self):
|
||||
return self.value.replace('_', ' ').title()
|
||||
|
||||
|
||||
class EvaluationScore(BaseModel):
|
||||
score: Optional[float] = Field(
|
||||
default=5.0,
|
||||
description="Numeric score from 0-10 where 0 is worst and 10 is best, None if not applicable",
|
||||
ge=0.0,
|
||||
le=10.0
|
||||
)
|
||||
feedback: str = Field(
|
||||
default="",
|
||||
description="Detailed feedback explaining the evaluation score"
|
||||
)
|
||||
raw_response: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Raw response from the evaluator (e.g., LLM)"
|
||||
)
|
||||
|
||||
def __str__(self) -> str:
|
||||
if self.score is None:
|
||||
return f"Score: N/A - {self.feedback}"
|
||||
return f"Score: {self.score:.1f}/10 - {self.feedback}"
|
||||
|
||||
|
||||
class BaseEvaluator(abc.ABC):
|
||||
def __init__(self, llm: Optional[BaseLLM] = None):
|
||||
self.llm = create_llm(llm)
|
||||
|
||||
@property
|
||||
@abc.abstractmethod
|
||||
def metric_category(self) -> MetricCategory:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def evaluate(
|
||||
self,
|
||||
agent: Agent,
|
||||
task: Task,
|
||||
execution_trace: Dict[str, Any],
|
||||
final_output: Any,
|
||||
) -> EvaluationScore:
|
||||
pass
|
||||
|
||||
|
||||
class AgentEvaluationResult(BaseModel):
|
||||
agent_id: str = Field(description="ID of the evaluated agent")
|
||||
task_id: str = Field(description="ID of the task that was executed")
|
||||
metrics: Dict[MetricCategory, EvaluationScore] = Field(
|
||||
default_factory=dict,
|
||||
description="Evaluation scores for each metric category"
|
||||
)
|
||||
|
||||
|
||||
class AggregationStrategy(Enum):
|
||||
SIMPLE_AVERAGE = "simple_average" # Equal weight to all tasks
|
||||
WEIGHTED_BY_COMPLEXITY = "weighted_by_complexity" # Weight by task complexity
|
||||
BEST_PERFORMANCE = "best_performance" # Use best scores across tasks
|
||||
WORST_PERFORMANCE = "worst_performance" # Use worst scores across tasks
|
||||
|
||||
|
||||
class AgentAggregatedEvaluationResult(BaseModel):
|
||||
agent_id: str = Field(
|
||||
default="",
|
||||
description="ID of the agent"
|
||||
)
|
||||
agent_role: str = Field(
|
||||
default="",
|
||||
description="Role of the agent"
|
||||
)
|
||||
task_count: int = Field(
|
||||
default=0,
|
||||
description="Number of tasks included in this aggregation"
|
||||
)
|
||||
aggregation_strategy: AggregationStrategy = Field(
|
||||
default=AggregationStrategy.SIMPLE_AVERAGE,
|
||||
description="Strategy used for aggregation"
|
||||
)
|
||||
metrics: Dict[MetricCategory, EvaluationScore] = Field(
|
||||
default_factory=dict,
|
||||
description="Aggregated metrics across all tasks"
|
||||
)
|
||||
task_results: List[str] = Field(
|
||||
default_factory=list,
|
||||
description="IDs of tasks included in this aggregation"
|
||||
)
|
||||
overall_score: Optional[float] = Field(
|
||||
default=None,
|
||||
description="Overall score for this agent"
|
||||
)
|
||||
|
||||
def __str__(self) -> str:
|
||||
result = f"Agent Evaluation: {self.agent_role}\n"
|
||||
result += f"Strategy: {self.aggregation_strategy.value}\n"
|
||||
result += f"Tasks evaluated: {self.task_count}\n"
|
||||
|
||||
for category, score in self.metrics.items():
|
||||
result += f"\n\n- {category.value.upper()}: {score.score}/10\n"
|
||||
|
||||
if score.feedback:
|
||||
detailed_feedback = "\n ".join(score.feedback.split('\n'))
|
||||
result += f" {detailed_feedback}\n"
|
||||
|
||||
return result
|
||||
323
src/crewai/evaluation/evaluation_display.py
Normal file
323
src/crewai/evaluation/evaluation_display.py
Normal file
@@ -0,0 +1,323 @@
|
||||
from typing import Dict, Any, List
|
||||
from rich.table import Table
|
||||
from rich.box import HEAVY_EDGE, ROUNDED
|
||||
from rich.panel import Panel
|
||||
from crewai.evaluation.base_evaluator import AgentAggregatedEvaluationResult, AggregationStrategy
|
||||
from crewai.evaluation import EvaluationScore
|
||||
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
|
||||
class EvaluationDisplayFormatter:
|
||||
def __init__(self):
|
||||
self.console_formatter = ConsoleFormatter()
|
||||
|
||||
def display_evaluation_results(self, agent_results: Dict[str, AgentAggregatedEvaluationResult]):
|
||||
if not agent_results:
|
||||
self.console_formatter.print("[yellow]No evaluation results to display[/yellow]")
|
||||
return
|
||||
|
||||
for agent_role, result in agent_results.items():
|
||||
self.console_formatter.print(f"\n[bold cyan]Agent: {agent_role}[/bold cyan]\n")
|
||||
|
||||
table = Table(title=f"{agent_role} Evaluation Results", box=ROUNDED)
|
||||
table.add_column("Metric", style="cyan")
|
||||
table.add_column("Score (1-10)", justify="center")
|
||||
table.add_column("Feedback", style="green")
|
||||
|
||||
for metric, evaluation_score in result.metrics.items():
|
||||
score = evaluation_score.score if evaluation_score.score is not None else "N/A"
|
||||
|
||||
if isinstance(score, (int, float)) and score is not None:
|
||||
if score >= 8.0:
|
||||
score_text = f"[green]{score:.1f}[/green]"
|
||||
elif score >= 6.0:
|
||||
score_text = f"[cyan]{score:.1f}[/cyan]"
|
||||
elif score >= 4.0:
|
||||
score_text = f"[yellow]{score:.1f}[/yellow]"
|
||||
else:
|
||||
score_text = f"[red]{score:.1f}[/red]"
|
||||
else:
|
||||
score_text = "[dim]N/A[/dim]"
|
||||
|
||||
table.add_section()
|
||||
table.add_row(
|
||||
metric.title(),
|
||||
score_text,
|
||||
evaluation_score.feedback or ""
|
||||
)
|
||||
|
||||
if result.overall_score is not None:
|
||||
if result.overall_score >= 8.0:
|
||||
color = "green"
|
||||
elif result.overall_score >= 6.0:
|
||||
color = "cyan"
|
||||
elif result.overall_score >= 4.0:
|
||||
color = "yellow"
|
||||
else:
|
||||
color = "red"
|
||||
|
||||
table.add_section()
|
||||
table.add_row(
|
||||
"[bold]Overall Score[/bold]",
|
||||
f"[bold {color}]{result.overall_score:.1f}[/bold {color}]",
|
||||
""
|
||||
)
|
||||
|
||||
self.console_formatter.print(table)
|
||||
|
||||
def display_summary_results(self, iterations_results: Dict[int, Dict[str, List[AgentAggregatedEvaluationResult]]]):
|
||||
if not iterations_results:
|
||||
self.console_formatter.print("[yellow]No evaluation results to display[/yellow]")
|
||||
return
|
||||
|
||||
title = Panel(
|
||||
"[bold]Agent Evaluation Summary[/bold]",
|
||||
style="blue",
|
||||
box=ROUNDED
|
||||
)
|
||||
self.console_formatter.print(title, justify="center")
|
||||
self.console_formatter.print("\n")
|
||||
|
||||
table = Table(title="Agent Performance Scores \n (1-10 Higher is better)", box=HEAVY_EDGE)
|
||||
|
||||
table.add_column("Agent/Metric", style="cyan")
|
||||
|
||||
for iter_num in sorted(iterations_results.keys()):
|
||||
run_label = f"Run {iter_num}"
|
||||
table.add_column(run_label, justify="center")
|
||||
|
||||
table.add_column("Avg. Total", justify="center")
|
||||
|
||||
all_agent_roles = set()
|
||||
for results in iterations_results.values():
|
||||
all_agent_roles.update(results.keys())
|
||||
|
||||
for agent_role in sorted(all_agent_roles):
|
||||
agent_scores_by_iteration = {}
|
||||
agent_metrics_by_iteration = {}
|
||||
|
||||
for iter_num, results in sorted(iterations_results.items()):
|
||||
if agent_role not in results or not results[agent_role]:
|
||||
continue
|
||||
|
||||
agent_results = results[agent_role]
|
||||
agent_id = agent_results[0].agent_id
|
||||
|
||||
aggregated_result = self._aggregate_agent_results(
|
||||
agent_id=agent_id,
|
||||
agent_role=agent_role,
|
||||
results=agent_results,
|
||||
strategy=AggregationStrategy.SIMPLE_AVERAGE
|
||||
)
|
||||
|
||||
valid_scores = [score.score for score in aggregated_result.metrics.values()
|
||||
if score.score is not None]
|
||||
if valid_scores:
|
||||
avg_score = sum(valid_scores) / len(valid_scores)
|
||||
agent_scores_by_iteration[iter_num] = avg_score
|
||||
|
||||
agent_metrics_by_iteration[iter_num] = aggregated_result.metrics
|
||||
|
||||
if not agent_scores_by_iteration:
|
||||
continue
|
||||
|
||||
avg_across_iterations = sum(agent_scores_by_iteration.values()) / len(agent_scores_by_iteration)
|
||||
|
||||
row = [f"[bold]{agent_role}[/bold]"]
|
||||
|
||||
for iter_num in sorted(iterations_results.keys()):
|
||||
if iter_num in agent_scores_by_iteration:
|
||||
score = agent_scores_by_iteration[iter_num]
|
||||
if score >= 8.0:
|
||||
color = "green"
|
||||
elif score >= 6.0:
|
||||
color = "cyan"
|
||||
elif score >= 4.0:
|
||||
color = "yellow"
|
||||
else:
|
||||
color = "red"
|
||||
row.append(f"[bold {color}]{score:.1f}[/]")
|
||||
else:
|
||||
row.append("-")
|
||||
|
||||
if avg_across_iterations >= 8.0:
|
||||
color = "green"
|
||||
elif avg_across_iterations >= 6.0:
|
||||
color = "cyan"
|
||||
elif avg_across_iterations >= 4.0:
|
||||
color = "yellow"
|
||||
else:
|
||||
color = "red"
|
||||
row.append(f"[bold {color}]{avg_across_iterations:.1f}[/]")
|
||||
|
||||
table.add_row(*row)
|
||||
|
||||
all_metrics = set()
|
||||
for metrics in agent_metrics_by_iteration.values():
|
||||
all_metrics.update(metrics.keys())
|
||||
|
||||
for metric in sorted(all_metrics, key=lambda x: x.value):
|
||||
metric_scores = []
|
||||
|
||||
row = [f" - {metric.title()}"]
|
||||
|
||||
for iter_num in sorted(iterations_results.keys()):
|
||||
if (iter_num in agent_metrics_by_iteration and
|
||||
metric in agent_metrics_by_iteration[iter_num]):
|
||||
score = agent_metrics_by_iteration[iter_num][metric].score
|
||||
if score is not None:
|
||||
metric_scores.append(score)
|
||||
if score >= 8.0:
|
||||
color = "green"
|
||||
elif score >= 6.0:
|
||||
color = "cyan"
|
||||
elif score >= 4.0:
|
||||
color = "yellow"
|
||||
else:
|
||||
color = "red"
|
||||
row.append(f"[{color}]{score:.1f}[/]")
|
||||
else:
|
||||
row.append("[dim]N/A[/dim]")
|
||||
else:
|
||||
row.append("-")
|
||||
|
||||
if metric_scores:
|
||||
avg = sum(metric_scores) / len(metric_scores)
|
||||
if avg >= 8.0:
|
||||
color = "green"
|
||||
elif avg >= 6.0:
|
||||
color = "cyan"
|
||||
elif avg >= 4.0:
|
||||
color = "yellow"
|
||||
else:
|
||||
color = "red"
|
||||
row.append(f"[{color}]{avg:.1f}[/]")
|
||||
else:
|
||||
row.append("-")
|
||||
|
||||
table.add_row(*row)
|
||||
|
||||
table.add_row(*[""] * (len(sorted(iterations_results.keys())) + 2))
|
||||
|
||||
self.console_formatter.print(table)
|
||||
self.console_formatter.print("\n")
|
||||
|
||||
def _aggregate_agent_results(
|
||||
self,
|
||||
agent_id: str,
|
||||
agent_role: str,
|
||||
results: List[Any],
|
||||
strategy: AggregationStrategy = AggregationStrategy.SIMPLE_AVERAGE,
|
||||
) -> AgentAggregatedEvaluationResult:
|
||||
metrics_by_category = {}
|
||||
|
||||
for result in results:
|
||||
for metric_name, evaluation_score in result.metrics.items():
|
||||
if metric_name not in metrics_by_category:
|
||||
metrics_by_category[metric_name] = []
|
||||
metrics_by_category[metric_name].append(evaluation_score)
|
||||
|
||||
aggregated_metrics = {}
|
||||
for category, scores in metrics_by_category.items():
|
||||
valid_scores = [s for s in scores if s.score is not None]
|
||||
|
||||
avg_score = sum(s.score for s in valid_scores) / len(valid_scores) if valid_scores else None
|
||||
|
||||
# Extract all feedback text from scores
|
||||
feedbacks = [s.feedback for s in scores if s.feedback]
|
||||
|
||||
# Process feedback based on number of entries
|
||||
feedback_summary = None
|
||||
if feedbacks:
|
||||
if len(feedbacks) > 1:
|
||||
# Use the summarization method for multiple feedbacks
|
||||
feedback_summary = self._summarize_feedbacks(
|
||||
agent_role=agent_role,
|
||||
metric=category,
|
||||
feedbacks=feedbacks,
|
||||
scores=[s.score for s in scores],
|
||||
strategy=strategy
|
||||
)
|
||||
else:
|
||||
feedback_summary = feedbacks[0]
|
||||
|
||||
aggregated_metrics[category] = EvaluationScore(
|
||||
score=avg_score,
|
||||
feedback=feedback_summary
|
||||
)
|
||||
|
||||
overall_score = None
|
||||
if aggregated_metrics:
|
||||
scores = [m.score for m in aggregated_metrics.values() if m.score is not None]
|
||||
if scores:
|
||||
overall_score = sum(scores) / len(scores)
|
||||
|
||||
return AgentAggregatedEvaluationResult(
|
||||
agent_id=agent_id,
|
||||
agent_role=agent_role,
|
||||
metrics=aggregated_metrics,
|
||||
overall_score=overall_score,
|
||||
task_count=len(results),
|
||||
aggregation_strategy=strategy
|
||||
)
|
||||
|
||||
def _summarize_feedbacks(
|
||||
self,
|
||||
agent_role: str,
|
||||
metric: str,
|
||||
feedbacks: List[str],
|
||||
scores: List[float],
|
||||
strategy: AggregationStrategy
|
||||
) -> str:
|
||||
if len(feedbacks) <= 2 and all(len(fb) < 200 for fb in feedbacks):
|
||||
return "\n\n".join([f"Feedback {i+1}: {fb}" for i, fb in enumerate(feedbacks)])
|
||||
|
||||
try:
|
||||
llm = create_llm()
|
||||
|
||||
formatted_feedbacks = []
|
||||
for i, (feedback, score) in enumerate(zip(feedbacks, scores)):
|
||||
if len(feedback) > 500:
|
||||
feedback = feedback[:500] + "..."
|
||||
score_text = f"{score:.1f}" if score is not None else "N/A"
|
||||
formatted_feedbacks.append(f"Feedback #{i+1} (Score: {score_text}):\n{feedback}")
|
||||
|
||||
all_feedbacks = "\n\n" + "\n\n---\n\n".join(formatted_feedbacks)
|
||||
|
||||
strategy_guidance = ""
|
||||
if strategy == AggregationStrategy.BEST_PERFORMANCE:
|
||||
strategy_guidance = "Focus on the highest-scoring aspects and strengths demonstrated."
|
||||
elif strategy == AggregationStrategy.WORST_PERFORMANCE:
|
||||
strategy_guidance = "Focus on areas that need improvement and common issues across tasks."
|
||||
else: # Default/average strategies
|
||||
strategy_guidance = "Provide a balanced analysis of strengths and weaknesses across all tasks."
|
||||
|
||||
prompt = [
|
||||
{"role": "system", "content": f"""You are an expert evaluator creating a comprehensive summary of agent performance feedback.
|
||||
Your job is to synthesize multiple feedback points about the same metric across different tasks.
|
||||
|
||||
Create a concise, insightful summary that captures the key patterns and themes from all feedback.
|
||||
{strategy_guidance}
|
||||
|
||||
Your summary should be:
|
||||
1. Specific and concrete (not vague or general)
|
||||
2. Focused on actionable insights
|
||||
3. Highlighting patterns across tasks
|
||||
4. 150-250 words in length
|
||||
|
||||
The summary should be directly usable as final feedback for the agent's performance on this metric."""},
|
||||
{"role": "user", "content": f"""I need a synthesized summary of the following feedback for:
|
||||
|
||||
Agent Role: {agent_role}
|
||||
Metric: {metric.title()}
|
||||
|
||||
{all_feedbacks}
|
||||
"""}
|
||||
]
|
||||
|
||||
response = llm.call(prompt)
|
||||
|
||||
return response
|
||||
|
||||
except Exception as e:
|
||||
return "Synthesized from multiple tasks: " + "\n\n".join([f"- {fb[:500]}..." for fb in feedbacks])
|
||||
188
src/crewai/evaluation/evaluation_listener.py
Normal file
188
src/crewai/evaluation/evaluation_listener.py
Normal file
@@ -0,0 +1,188 @@
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from crewai.agent import Agent
|
||||
from crewai.task import Task
|
||||
from crewai.utilities.events.base_event_listener import BaseEventListener
|
||||
from crewai.utilities.events.crewai_event_bus import CrewAIEventsBus
|
||||
from crewai.utilities.events.agent_events import (
|
||||
AgentExecutionStartedEvent,
|
||||
AgentExecutionCompletedEvent
|
||||
)
|
||||
from crewai.utilities.events.tool_usage_events import (
|
||||
ToolUsageFinishedEvent,
|
||||
ToolUsageErrorEvent,
|
||||
ToolExecutionErrorEvent,
|
||||
ToolSelectionErrorEvent,
|
||||
ToolValidateInputErrorEvent
|
||||
)
|
||||
from crewai.utilities.events.llm_events import (
|
||||
LLMCallStartedEvent,
|
||||
LLMCallCompletedEvent
|
||||
)
|
||||
|
||||
class EvaluationTraceCallback(BaseEventListener):
|
||||
"""Event listener for collecting execution traces for evaluation.
|
||||
|
||||
This listener attaches to the event bus to collect detailed information
|
||||
about the execution process, including agent steps, tool uses, knowledge
|
||||
retrievals, and final output - all for use in agent evaluation.
|
||||
"""
|
||||
|
||||
_instance = None
|
||||
|
||||
def __new__(cls):
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
cls._instance._initialized = False
|
||||
return cls._instance
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(self, "_initialized") or not self._initialized:
|
||||
super().__init__()
|
||||
self.traces: Dict[str, Dict[str, Any]] = {}
|
||||
self.current_agent_id = None
|
||||
self.current_task_id = None
|
||||
self._initialized = True
|
||||
|
||||
def setup_listeners(self, event_bus: CrewAIEventsBus):
|
||||
@event_bus.on(AgentExecutionStartedEvent)
|
||||
def on_agent_started(source, event: AgentExecutionStartedEvent):
|
||||
self.on_agent_start(event.agent, event.task)
|
||||
|
||||
@event_bus.on(AgentExecutionCompletedEvent)
|
||||
def on_agent_completed(source, event: AgentExecutionCompletedEvent):
|
||||
self.on_agent_finish(event.agent, event.task, event.output)
|
||||
|
||||
@event_bus.on(ToolUsageFinishedEvent)
|
||||
def on_tool_completed(source, event: ToolUsageFinishedEvent):
|
||||
self.on_tool_use(event.tool_name, event.tool_args, event.output, success=True)
|
||||
|
||||
@event_bus.on(ToolUsageErrorEvent)
|
||||
def on_tool_usage_error(source, event: ToolUsageErrorEvent):
|
||||
self.on_tool_use(event.tool_name, event.tool_args, event.error,
|
||||
success=False, error_type="usage_error")
|
||||
|
||||
@event_bus.on(ToolExecutionErrorEvent)
|
||||
def on_tool_execution_error(source, event: ToolExecutionErrorEvent):
|
||||
self.on_tool_use(event.tool_name, event.tool_args, event.error,
|
||||
success=False, error_type="execution_error")
|
||||
|
||||
@event_bus.on(ToolSelectionErrorEvent)
|
||||
def on_tool_selection_error(source, event: ToolSelectionErrorEvent):
|
||||
self.on_tool_use(event.tool_name, event.tool_args, event.error,
|
||||
success=False, error_type="selection_error")
|
||||
|
||||
@event_bus.on(ToolValidateInputErrorEvent)
|
||||
def on_tool_validate_input_error(source, event: ToolValidateInputErrorEvent):
|
||||
self.on_tool_use(event.tool_name, event.tool_args, event.error,
|
||||
success=False, error_type="validation_error")
|
||||
|
||||
@event_bus.on(LLMCallStartedEvent)
|
||||
def on_llm_call_started(source, event: LLMCallStartedEvent):
|
||||
self.on_llm_call_start(event.messages, event.tools)
|
||||
|
||||
@event_bus.on(LLMCallCompletedEvent)
|
||||
def on_llm_call_completed(source, event: LLMCallCompletedEvent):
|
||||
self.on_llm_call_end(event.messages, event.response)
|
||||
|
||||
def on_agent_start(self, agent: Agent, task: Task):
|
||||
self.current_agent_id = agent.id
|
||||
self.current_task_id = task.id
|
||||
|
||||
trace_key = f"{agent.id}_{task.id}"
|
||||
self.traces[trace_key] = {
|
||||
"agent_id": agent.id,
|
||||
"task_id": task.id,
|
||||
"tool_uses": [],
|
||||
"llm_calls": [],
|
||||
"start_time": datetime.now(),
|
||||
"final_output": None
|
||||
}
|
||||
|
||||
def on_agent_finish(self, agent: Agent, task: Task, output: Any):
|
||||
trace_key = f"{agent.id}_{task.id}"
|
||||
if trace_key in self.traces:
|
||||
self.traces[trace_key]["final_output"] = output
|
||||
self.traces[trace_key]["end_time"] = datetime.now()
|
||||
|
||||
self.current_agent_id = None
|
||||
self.current_task_id = None
|
||||
|
||||
def on_tool_use(self, tool_name: str, tool_args: Dict[str, Any], result: Any,
|
||||
success: bool = True, error_type: Optional[str] = None):
|
||||
if not self.current_agent_id or not self.current_task_id:
|
||||
return
|
||||
|
||||
trace_key = f"{self.current_agent_id}_{self.current_task_id}"
|
||||
if trace_key in self.traces:
|
||||
tool_use = {
|
||||
"tool": tool_name,
|
||||
"args": tool_args,
|
||||
"result": result,
|
||||
"success": success,
|
||||
"timestamp": datetime.now()
|
||||
}
|
||||
|
||||
# Add error information if applicable
|
||||
if not success and error_type:
|
||||
tool_use["error"] = True
|
||||
tool_use["error_type"] = error_type
|
||||
|
||||
self.traces[trace_key]["tool_uses"].append(tool_use)
|
||||
|
||||
def on_llm_call_start(self, messages: Union[str, List[Dict[str, Any]]], tools: Optional[List[Dict]] = None):
|
||||
if not self.current_agent_id or not self.current_task_id:
|
||||
return
|
||||
|
||||
trace_key = f"{self.current_agent_id}_{self.current_task_id}"
|
||||
if trace_key not in self.traces:
|
||||
return
|
||||
|
||||
self.current_llm_call = {
|
||||
"messages": messages,
|
||||
"tools": tools,
|
||||
"start_time": datetime.now(),
|
||||
"response": None,
|
||||
"end_time": None
|
||||
}
|
||||
|
||||
def on_llm_call_end(self, messages: Union[str, List[Dict[str, Any]]], response: Any):
|
||||
if not self.current_agent_id or not self.current_task_id:
|
||||
return
|
||||
|
||||
trace_key = f"{self.current_agent_id}_{self.current_task_id}"
|
||||
if trace_key not in self.traces:
|
||||
return
|
||||
|
||||
total_tokens = 0
|
||||
if hasattr(response, "usage") and hasattr(response.usage, "total_tokens"):
|
||||
total_tokens = response.usage.total_tokens
|
||||
|
||||
current_time = datetime.now()
|
||||
start_time = None
|
||||
if hasattr(self, "current_llm_call") and self.current_llm_call:
|
||||
start_time = self.current_llm_call.get("start_time")
|
||||
|
||||
if not start_time:
|
||||
start_time = current_time
|
||||
llm_call = {
|
||||
"messages": messages,
|
||||
"response": response,
|
||||
"start_time": start_time,
|
||||
"end_time": current_time,
|
||||
"total_tokens": total_tokens
|
||||
}
|
||||
|
||||
self.traces[trace_key]["llm_calls"].append(llm_call)
|
||||
|
||||
if hasattr(self, "current_llm_call"):
|
||||
self.current_llm_call = None
|
||||
|
||||
def get_trace(self, agent_id: str, task_id: str) -> Optional[Dict[str, Any]]:
|
||||
trace_key = f"{agent_id}_{task_id}"
|
||||
return self.traces.get(trace_key)
|
||||
|
||||
|
||||
def create_evaluation_callbacks() -> EvaluationTraceCallback:
|
||||
return EvaluationTraceCallback()
|
||||
30
src/crewai/evaluation/json_parser.py
Normal file
30
src/crewai/evaluation/json_parser.py
Normal file
@@ -0,0 +1,30 @@
|
||||
"""Robust JSON parsing utilities for evaluation responses."""
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import Dict, Any
|
||||
|
||||
|
||||
def extract_json_from_llm_response(text: str) -> Dict[str, Any]:
|
||||
try:
|
||||
return json.loads(text)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
json_patterns = [
|
||||
# Standard markdown code blocks with json
|
||||
r'```json\s*([\s\S]*?)\s*```',
|
||||
# Code blocks without language specifier
|
||||
r'```\s*([\s\S]*?)\s*```',
|
||||
# Inline code with JSON
|
||||
r'`([{\\[].*[}\]])`',
|
||||
]
|
||||
|
||||
for pattern in json_patterns:
|
||||
matches = re.findall(pattern, text, re.IGNORECASE | re.DOTALL)
|
||||
for match in matches:
|
||||
try:
|
||||
return json.loads(match.strip())
|
||||
except json.JSONDecodeError:
|
||||
continue
|
||||
return text
|
||||
Reference in New Issue
Block a user