mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-15 02:58:30 +00:00
Improve code quality based on PR feedback
Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
from typing import Any, Optional, Type, Union, get_args, get_origin
|
||||
from typing import Any, ClassVar, Optional, Type, Union, get_args, get_origin
|
||||
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
@@ -17,8 +18,18 @@ class ConverterError(Exception):
|
||||
self.message = message
|
||||
|
||||
|
||||
class InstructorToolCallError(Exception):
|
||||
"""Error raised when Instructor does not support multiple tool calls."""
|
||||
|
||||
def __init__(self, message: str, *args: object) -> None:
|
||||
super().__init__(message, *args)
|
||||
self.message = message
|
||||
|
||||
|
||||
class Converter(OutputConverter):
|
||||
"""Class that converts text into either pydantic or json."""
|
||||
|
||||
logger: ClassVar[logging.Logger] = logging.getLogger(__name__)
|
||||
|
||||
def to_pydantic(self, current_attempt=1) -> BaseModel:
|
||||
"""Convert text to pydantic."""
|
||||
@@ -68,43 +79,71 @@ class Converter(OutputConverter):
|
||||
f"Failed to convert text into a Pydantic model due to error: {e}"
|
||||
)
|
||||
|
||||
def to_json(self, current_attempt=1):
|
||||
"""Convert text to json."""
|
||||
def to_json(self, current_attempt: int = 1) -> Union[str, ConverterError]:
|
||||
"""
|
||||
Convert text to JSON.
|
||||
|
||||
Args:
|
||||
current_attempt: The current attempt number for retries.
|
||||
|
||||
Returns:
|
||||
A JSON string or a ConverterError if conversion fails.
|
||||
"""
|
||||
try:
|
||||
if self.llm.supports_function_calling():
|
||||
try:
|
||||
self.logger.debug("Using Instructor for JSON conversion")
|
||||
return self._create_instructor().to_json()
|
||||
except Exception as e:
|
||||
# Check if this is the specific Instructor error for multiple tool calls
|
||||
if "Instructor does not support multiple tool calls, use List[Model] instead" in str(e):
|
||||
# Fall back to non-function calling approach for custom OpenAI backends
|
||||
return json.dumps(
|
||||
self.llm.call(
|
||||
[
|
||||
{"role": "system", "content": self.instructions},
|
||||
{"role": "user", "content": self.text},
|
||||
]
|
||||
)
|
||||
self.logger.warning(
|
||||
"Instructor does not support multiple tool calls, falling back to simple JSON conversion"
|
||||
)
|
||||
return self._fallback_json_conversion()
|
||||
raise e
|
||||
else:
|
||||
return json.dumps(
|
||||
self.llm.call(
|
||||
[
|
||||
{"role": "system", "content": self.instructions},
|
||||
{"role": "user", "content": self.text},
|
||||
]
|
||||
)
|
||||
)
|
||||
self.logger.debug("Using simple JSON conversion (no function calling support)")
|
||||
return self._fallback_json_conversion()
|
||||
except Exception as e:
|
||||
if current_attempt < self.max_attempts:
|
||||
self.logger.warning(f"JSON conversion failed, retrying (attempt {current_attempt})")
|
||||
return self.to_json(current_attempt + 1)
|
||||
self.logger.error(f"JSON conversion failed after {self.max_attempts} attempts: {e}")
|
||||
return ConverterError(f"Failed to convert text into JSON, error: {e}.")
|
||||
|
||||
def _fallback_json_conversion(self) -> str:
|
||||
"""Convert text to JSON using a simple approach without Instructor."""
|
||||
self.logger.debug("Using fallback JSON conversion method")
|
||||
response = self.llm.call(
|
||||
[
|
||||
{"role": "system", "content": self.instructions},
|
||||
{"role": "user", "content": self.text},
|
||||
]
|
||||
)
|
||||
|
||||
# Try to parse the response as JSON to ensure it's valid
|
||||
try:
|
||||
# If it's already a valid JSON string, just return it
|
||||
if isinstance(response, str):
|
||||
json.loads(response)
|
||||
return response
|
||||
# If it's a dict or other JSON-serializable object, convert it to a JSON string
|
||||
return json.dumps(response)
|
||||
except json.JSONDecodeError as e:
|
||||
self.logger.error(f"Invalid JSON in fallback conversion: {e}")
|
||||
raise ConverterError(f"Failed to convert text into JSON, error: {e}.")
|
||||
|
||||
def _create_instructor(self):
|
||||
"""Create an instructor."""
|
||||
"""
|
||||
Create an instructor instance for JSON conversion.
|
||||
|
||||
Returns:
|
||||
An InternalInstructor instance.
|
||||
"""
|
||||
from crewai.utilities import InternalInstructor
|
||||
|
||||
self.logger.debug("Creating InternalInstructor instance")
|
||||
inst = InternalInstructor(
|
||||
llm=self.llm,
|
||||
model=self.model,
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
import json
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.llm import LLM
|
||||
from crewai.utilities.converter import Converter
|
||||
from crewai.utilities.converter import Converter, ConverterError
|
||||
|
||||
|
||||
class SimpleModel(BaseModel):
|
||||
@@ -12,52 +13,72 @@ class SimpleModel(BaseModel):
|
||||
age: int
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_llm_with_function_calling():
|
||||
"""Create a mock LLM that supports function calling."""
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = True
|
||||
llm.call.return_value = '{"name": "John", "age": 30}'
|
||||
return llm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_instructor_with_error():
|
||||
"""Create a mock Instructor that raises the specific error."""
|
||||
mock_instructor = Mock()
|
||||
mock_instructor.to_json.side_effect = Exception(
|
||||
"Instructor does not support multiple tool calls, use List[Model] instead"
|
||||
)
|
||||
return mock_instructor
|
||||
|
||||
|
||||
class TestCustomOpenAIJson:
|
||||
def test_custom_openai_json_conversion_with_instructor_error(self):
|
||||
def test_custom_openai_json_conversion_with_instructor_error(self, mock_llm_with_function_calling, mock_instructor_with_error):
|
||||
"""Test that JSON conversion works with custom OpenAI backends when Instructor raises an error."""
|
||||
# Mock LLM that supports function calling
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = True
|
||||
llm.call.return_value = '{"name": "John", "age": 30}'
|
||||
|
||||
# Mock Instructor that raises the specific error
|
||||
mock_instructor = Mock()
|
||||
mock_instructor.to_json.side_effect = Exception(
|
||||
"Instructor does not support multiple tool calls, use List[Model] instead"
|
||||
)
|
||||
|
||||
# Create converter with mocked dependencies
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
llm=mock_llm_with_function_calling,
|
||||
text="Convert this to JSON",
|
||||
model=SimpleModel,
|
||||
instructions="Convert to JSON",
|
||||
)
|
||||
|
||||
# Mock the _create_instructor method to return our mocked instructor
|
||||
with patch.object(converter, '_create_instructor', return_value=mock_instructor):
|
||||
with patch.object(converter, '_create_instructor', return_value=mock_instructor_with_error):
|
||||
# Call to_json method
|
||||
result = converter.to_json()
|
||||
|
||||
# Verify that the fallback mechanism was used
|
||||
llm.call.assert_called_once()
|
||||
# The result is a JSON string, so we need to parse it
|
||||
parsed_result = json.loads(result)
|
||||
assert parsed_result == '{"name": "John", "age": 30}' or parsed_result == {"name": "John", "age": 30}
|
||||
mock_llm_with_function_calling.call.assert_called_once()
|
||||
|
||||
# The result should be a JSON string
|
||||
assert isinstance(result, str)
|
||||
|
||||
# The result might be a string representation of a JSON string
|
||||
# Try to parse it directly first, and if that fails, try to parse it as a string representation
|
||||
try:
|
||||
parsed_result = json.loads(result)
|
||||
except json.JSONDecodeError:
|
||||
# If it's a string representation of a JSON string, it will be surrounded by quotes
|
||||
# and have escaped quotes inside
|
||||
if result.startswith('"') and result.endswith('"'):
|
||||
# Remove the surrounding quotes and unescape the string
|
||||
unescaped = result[1:-1].replace('\\"', '"')
|
||||
parsed_result = json.loads(unescaped)
|
||||
|
||||
assert isinstance(parsed_result, dict)
|
||||
assert parsed_result.get("name") == "John"
|
||||
assert parsed_result.get("age") == 30
|
||||
|
||||
def test_custom_openai_json_conversion_without_error(self):
|
||||
def test_custom_openai_json_conversion_without_error(self, mock_llm_with_function_calling):
|
||||
"""Test that JSON conversion works normally when Instructor doesn't raise an error."""
|
||||
# Mock LLM that supports function calling
|
||||
llm = Mock(spec=LLM)
|
||||
llm.supports_function_calling.return_value = True
|
||||
|
||||
# Mock Instructor that returns JSON without error
|
||||
mock_instructor = Mock()
|
||||
mock_instructor.to_json.return_value = '{"name": "John", "age": 30}'
|
||||
|
||||
# Create converter with mocked dependencies
|
||||
converter = Converter(
|
||||
llm=llm,
|
||||
llm=mock_llm_with_function_calling,
|
||||
text="Convert this to JSON",
|
||||
model=SimpleModel,
|
||||
instructions="Convert to JSON",
|
||||
@@ -69,5 +90,36 @@ class TestCustomOpenAIJson:
|
||||
result = converter.to_json()
|
||||
|
||||
# Verify that the normal path was used (no fallback)
|
||||
llm.call.assert_not_called()
|
||||
assert json.loads(result) == {"name": "John", "age": 30}
|
||||
mock_llm_with_function_calling.call.assert_not_called()
|
||||
|
||||
# Verify the result matches the expected output
|
||||
assert result == '{"name": "John", "age": 30}'
|
||||
|
||||
def test_custom_openai_json_conversion_with_invalid_json(self, mock_llm_with_function_calling):
|
||||
"""Test that JSON conversion handles invalid JSON gracefully."""
|
||||
# Mock LLM to return invalid JSON
|
||||
mock_llm_with_function_calling.call.return_value = 'invalid json'
|
||||
|
||||
# Mock Instructor that raises the specific error
|
||||
mock_instructor = Mock()
|
||||
mock_instructor.to_json.side_effect = Exception(
|
||||
"Instructor does not support multiple tool calls, use List[Model] instead"
|
||||
)
|
||||
|
||||
# Create converter with mocked dependencies
|
||||
converter = Converter(
|
||||
llm=mock_llm_with_function_calling,
|
||||
text="Convert this to JSON",
|
||||
model=SimpleModel,
|
||||
instructions="Convert to JSON",
|
||||
max_attempts=1, # Set max_attempts to 1 to avoid retries
|
||||
)
|
||||
|
||||
# Mock the _create_instructor method to return our mocked instructor
|
||||
with patch.object(converter, '_create_instructor', return_value=mock_instructor):
|
||||
# Call to_json method
|
||||
result = converter.to_json()
|
||||
|
||||
# The result should be a ConverterError instance
|
||||
assert isinstance(result, ConverterError)
|
||||
assert "invalid json" in str(result).lower() or "expecting value" in str(result).lower()
|
||||
|
||||
Reference in New Issue
Block a user