mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
Merge pull request #1 from DarshanDeshpande/feat/add-patronus-api-tool
Update Patronus AI evaluator tool and example
This commit is contained in:
@@ -1,34 +1,47 @@
|
||||
import os
|
||||
|
||||
from crewai import Agent, Crew, Task
|
||||
from patronus_eval_tool import PatronusEvalTool
|
||||
|
||||
|
||||
patronus_eval_tool = PatronusEvalTool(
|
||||
evaluators=[{
|
||||
"evaluator": "judge",
|
||||
"criteria": "patronus:is-code"
|
||||
}],
|
||||
tags={}
|
||||
from patronus_eval_tool import (
|
||||
PatronusEvalTool,
|
||||
PatronusPredifinedCriteriaEvalTool,
|
||||
PatronusLocalEvaluatorTool,
|
||||
)
|
||||
from patronus import Client, EvaluationResult
|
||||
|
||||
# Test the PatronusEvalTool where agent can pick the best evaluator and criteria
|
||||
patronus_eval_tool = PatronusEvalTool()
|
||||
|
||||
# Test the PatronusPredifinedCriteriaEvalTool where agent uses the defined evaluator and criteria
|
||||
patronus_eval_tool = PatronusPredifinedCriteriaEvalTool(
|
||||
evaluators=[{"evaluator": "judge", "criteria": "contains-code"}]
|
||||
)
|
||||
|
||||
# Test the PatronusLocalEvaluatorTool where agent uses the local evaluator
|
||||
client = Client()
|
||||
|
||||
@client.register_local_evaluator("local_evaluator_name")
|
||||
def my_evaluator(**kwargs):
|
||||
return EvaluationResult(pass_="PASS", score=0.5, explanation="Explanation test")
|
||||
|
||||
patronus_eval_tool = PatronusLocalEvaluatorTool(
|
||||
evaluator="local_evaluator_name", evaluated_model_gold_answer="test"
|
||||
)
|
||||
|
||||
|
||||
# Create a new agent
|
||||
coding_agent = Agent(
|
||||
role="Coding Agent",
|
||||
goal="Generate high quality code. Use the evaluation tool to score the agent outputs",
|
||||
backstory="Coding agent to generate high quality code. Use the evaluation tool to score the agent outputs",
|
||||
goal="Generate high quality code and verify that the output is code by using Patronus AI's evaluation tool.",
|
||||
backstory="You are an experienced coder who can generate high quality python code. You can follow complex instructions accurately and effectively.",
|
||||
tools=[patronus_eval_tool],
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# Define tasks
|
||||
generate_code = Task(
|
||||
description="Create a simple program to generate the first N numbers in the Fibonacci sequence.",
|
||||
description="Create a simple program to generate the first N numbers in the Fibonacci sequence. Select the most appropriate evaluator and criteria for evaluating your output.",
|
||||
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
|
||||
agent=coding_agent,
|
||||
)
|
||||
|
||||
|
||||
crew = Crew(agents=[coding_agent], tasks=[generate_code])
|
||||
|
||||
crew.kickoff()
|
||||
crew.kickoff()
|
||||
|
||||
@@ -1,45 +1,322 @@
|
||||
from typing import Any, Optional, Type, cast, ClassVar
|
||||
|
||||
from crewai.tools import BaseTool
|
||||
import json
|
||||
import os
|
||||
import json
|
||||
import requests
|
||||
import warnings
|
||||
from typing import Any, List, Dict, Optional, Type
|
||||
from crewai.tools import BaseTool
|
||||
from pydantic import BaseModel, Field
|
||||
from patronus import Client
|
||||
|
||||
|
||||
class FixedBaseToolSchema(BaseModel):
|
||||
evaluated_model_input: Dict = Field(
|
||||
..., description="The agent's task description in simple text"
|
||||
)
|
||||
evaluated_model_output: Dict = Field(
|
||||
..., description="The agent's output of the task"
|
||||
)
|
||||
evaluated_model_retrieved_context: Dict = Field(
|
||||
..., description="The agent's context"
|
||||
)
|
||||
evaluated_model_gold_answer: Dict = Field(
|
||||
..., description="The agent's gold answer only if available"
|
||||
)
|
||||
evaluators: List[Dict[str, str]] = Field(
|
||||
...,
|
||||
description="List of dictionaries containing the evaluator and criteria to evaluate the model input and output. An example input for this field: [{'evaluator': '[evaluator-from-user]', 'criteria': '[criteria-from-user]'}]",
|
||||
)
|
||||
|
||||
|
||||
class FixedLocalEvaluatorToolSchema(BaseModel):
|
||||
evaluated_model_input: Dict = Field(
|
||||
..., description="The agent's task description in simple text"
|
||||
)
|
||||
evaluated_model_output: Dict = Field(
|
||||
..., description="The agent's output of the task"
|
||||
)
|
||||
evaluated_model_retrieved_context: Dict = Field(
|
||||
..., description="The agent's context"
|
||||
)
|
||||
evaluated_model_gold_answer: Dict = Field(
|
||||
..., description="The agent's gold answer only if available"
|
||||
)
|
||||
evaluator: str = Field(..., description="The registered local evaluator")
|
||||
|
||||
|
||||
class PatronusEvalTool(BaseTool):
|
||||
"""
|
||||
PatronusEvalTool is a tool to automatically evaluate and score agent interactions.
|
||||
|
||||
Results are logged to the Patronus platform at app.patronus.ai
|
||||
"""
|
||||
|
||||
name: str = "Call Patronus API tool"
|
||||
description: str = (
|
||||
"This tool calls the Patronus Evaluation API. This function returns the response from the API."
|
||||
)
|
||||
name: str = "Patronus Evaluation Tool"
|
||||
evaluate_url: str = "https://api.patronus.ai/v1/evaluate"
|
||||
evaluators: List[Dict[str, str]] = []
|
||||
criteria: List[Dict[str, str]] = []
|
||||
description: str = ""
|
||||
|
||||
def __init__(self, **kwargs: Any):
|
||||
super().__init__(**kwargs)
|
||||
temp_evaluators, temp_criteria = self._init_run()
|
||||
self.evaluators = temp_evaluators
|
||||
self.criteria = temp_criteria
|
||||
self.description = self._generate_description()
|
||||
warnings.warn("You are allowing the agent to select the best evaluator and criteria when you use the `PatronusEvalTool`. If this is not intended then please use `PatronusPredifinedCriteriaEvalTool` instead.")
|
||||
|
||||
def _init_run(self):
|
||||
content = json.loads(
|
||||
requests.get(
|
||||
"https://api.patronus.ai/v1/evaluators",
|
||||
headers={
|
||||
"accept": "application/json",
|
||||
"X-API-KEY": os.environ["PATRONUS_API_KEY"],
|
||||
},
|
||||
).text
|
||||
)["evaluators"]
|
||||
ids, evaluators = set(), []
|
||||
for i in content:
|
||||
if not i["deprecated"] and i["id"] not in ids:
|
||||
evaluators.append(
|
||||
{
|
||||
"id": i["id"],
|
||||
"name": i["name"],
|
||||
"description": i["description"],
|
||||
"aliases": i["aliases"],
|
||||
}
|
||||
)
|
||||
ids.add(i["id"])
|
||||
|
||||
content = json.loads(
|
||||
requests.get(
|
||||
"https://api.patronus.ai/v1/evaluator-criteria",
|
||||
headers={
|
||||
"accept": "application/json",
|
||||
"X-API-KEY": os.environ["PATRONUS_API_KEY"],
|
||||
},
|
||||
).text
|
||||
)["evaluator_criteria"]
|
||||
criteria = []
|
||||
for i in content:
|
||||
if i["config"].get("pass_criteria", None):
|
||||
if i["config"].get("rubric", None):
|
||||
criteria.append(
|
||||
{
|
||||
"evaluator": i["evaluator_family"],
|
||||
"name": i["name"],
|
||||
"pass_criteria": i["config"]["pass_criteria"],
|
||||
"rubric": i["config"]["rubric"],
|
||||
}
|
||||
)
|
||||
else:
|
||||
criteria.append(
|
||||
{
|
||||
"evaluator": i["evaluator_family"],
|
||||
"name": i["name"],
|
||||
"pass_criteria": i["config"]["pass_criteria"],
|
||||
}
|
||||
)
|
||||
elif i["description"]:
|
||||
criteria.append(
|
||||
{
|
||||
"evaluator": i["evaluator_family"],
|
||||
"name": i["name"],
|
||||
"description": i["description"],
|
||||
}
|
||||
)
|
||||
|
||||
return evaluators, criteria
|
||||
|
||||
def _generate_description(self) -> str:
|
||||
criteria = "\n".join([json.dumps(i) for i in self.criteria])
|
||||
return f"""This tool calls the Patronus Evaluation API that takes the following arguments:
|
||||
1. evaluated_model_input: str: The agent's task description in simple text
|
||||
2. evaluated_model_output: str: The agent's output of the task
|
||||
3. evaluated_model_retrieved_context: str: The agent's context
|
||||
4. evaluators: This is a list of dictionaries containing one of the following evaluators and the corresponding criteria. An example input for this field: [{{"evaluator": "Judge", "criteria": "patronus:is-code"}}]
|
||||
|
||||
Evaluators:
|
||||
{criteria}
|
||||
|
||||
You must ONLY choose the most appropriate evaluator and criteria based on the "pass_criteria" or "description" fields for your evaluation task and nothing from outside of the options present."""
|
||||
|
||||
|
||||
def _run(
|
||||
self,
|
||||
evaluated_model_input: str,
|
||||
evaluated_model_output: str,
|
||||
evaluators: list,
|
||||
tags: dict
|
||||
evaluated_model_input: Optional[str],
|
||||
evaluated_model_output: Optional[str],
|
||||
evaluated_model_retrieved_context: Optional[str],
|
||||
evaluators: List[Dict[str, str]],
|
||||
) -> Any:
|
||||
|
||||
api_key = os.getenv("PATRONUS_API_KEY")
|
||||
headers = {
|
||||
"X-API-KEY": api_key,
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json"
|
||||
}
|
||||
|
||||
# Assert correct format of evaluators
|
||||
evals = []
|
||||
for e in evaluators:
|
||||
evals.append(
|
||||
{
|
||||
"evaluator": e["evaluator"].lower(),
|
||||
"criteria": e["name"] if "name" in e else e["criteria"],
|
||||
}
|
||||
)
|
||||
|
||||
data = {
|
||||
"evaluated_model_input": evaluated_model_input,
|
||||
"evaluated_model_output": evaluated_model_output,
|
||||
"evaluators": evaluators,
|
||||
"tags": tags
|
||||
"evaluated_model_retrieved_context": evaluated_model_retrieved_context,
|
||||
"evaluators": evals,
|
||||
}
|
||||
|
||||
# Make the POST request
|
||||
response = requests.post(self.evaluate_url, headers=headers, data=json.dumps(data))
|
||||
headers = {
|
||||
"X-API-KEY": os.getenv("PATRONUS_API_KEY"),
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
self.evaluate_url, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise Exception(
|
||||
f"Failed to evaluate model input and output. Response status code: {response.status_code}. Reason: {response.text}"
|
||||
)
|
||||
|
||||
return response.json()
|
||||
|
||||
|
||||
class PatronusLocalEvaluatorTool(BaseTool):
|
||||
name: str = "Patronus Local Evaluator Tool"
|
||||
evaluator: str = "The registered local evaluator"
|
||||
evaluated_model_gold_answer: str = "The agent's gold answer"
|
||||
description: str = (
|
||||
"This tool is used to evaluate the model input and output using custom function evaluators."
|
||||
)
|
||||
client: Any = None
|
||||
args_schema: Type[BaseModel] = FixedLocalEvaluatorToolSchema
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def __init__(self, evaluator: str, evaluated_model_gold_answer: str, **kwargs: Any):
|
||||
super().__init__(**kwargs)
|
||||
self.client = Client()
|
||||
if evaluator:
|
||||
self.evaluator = evaluator
|
||||
self.evaluated_model_gold_answer = evaluated_model_gold_answer
|
||||
self.description = f"This tool calls the Patronus Evaluation API that takes an additional argument in addition to the following new argument:\n evaluators={evaluator}, evaluated_model_gold_answer={evaluated_model_gold_answer}"
|
||||
self._generate_description()
|
||||
print(
|
||||
f"Updating judge evaluator, gold_answer to: {self.evaluator}, {self.evaluated_model_gold_answer}"
|
||||
)
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
evaluated_model_input = kwargs.get("evaluated_model_input")
|
||||
evaluated_model_output = kwargs.get("evaluated_model_output")
|
||||
evaluated_model_retrieved_context = kwargs.get(
|
||||
"evaluated_model_retrieved_context"
|
||||
)
|
||||
evaluated_model_gold_answer = self.evaluated_model_gold_answer
|
||||
evaluator = self.evaluator
|
||||
|
||||
result = self.client.evaluate(
|
||||
evaluator=evaluator,
|
||||
evaluated_model_input=(
|
||||
evaluated_model_input
|
||||
if isinstance(evaluated_model_input, str)
|
||||
else evaluated_model_input.get("description")
|
||||
),
|
||||
evaluated_model_output=(
|
||||
evaluated_model_output
|
||||
if isinstance(evaluated_model_output, str)
|
||||
else evaluated_model_output.get("description")
|
||||
),
|
||||
evaluated_model_retrieved_context=(
|
||||
evaluated_model_retrieved_context
|
||||
if isinstance(evaluated_model_retrieved_context, str)
|
||||
else evaluated_model_retrieved_context.get("description")
|
||||
),
|
||||
evaluated_model_gold_answer=(
|
||||
evaluated_model_gold_answer
|
||||
if isinstance(evaluated_model_gold_answer, str)
|
||||
else evaluated_model_gold_answer.get("description")
|
||||
),
|
||||
tags={},
|
||||
)
|
||||
output = f"Evaluation result: {result.pass_}, Explanation: {result.explanation}"
|
||||
return output
|
||||
|
||||
|
||||
class PatronusPredifinedCriteriaEvalTool(BaseTool):
|
||||
"""
|
||||
PatronusEvalTool is a tool to automatically evaluate and score agent interactions.
|
||||
|
||||
Results are logged to the Patronus platform at app.patronus.ai
|
||||
"""
|
||||
|
||||
name: str = "Call Patronus API tool for evaluation of model inputs and outputs"
|
||||
description: str = (
|
||||
"""This tool calls the Patronus Evaluation API that takes the following arguments:"""
|
||||
)
|
||||
evaluate_url: str = "https://api.patronus.ai/v1/evaluate"
|
||||
args_schema: Type[BaseModel] = FixedBaseToolSchema
|
||||
evaluators: List[Dict[str, str]] = []
|
||||
|
||||
def __init__(self, evaluators: List[Dict[str, str]], **kwargs: Any):
|
||||
super().__init__(**kwargs)
|
||||
if evaluators:
|
||||
self.evaluators = evaluators
|
||||
self.description = f"This tool calls the Patronus Evaluation API that takes an additional argument in addition to the following new argument:\n evaluators={evaluators}"
|
||||
self._generate_description()
|
||||
print(f"Updating judge criteria to: {self.evaluators}")
|
||||
|
||||
def _run(
|
||||
self,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
|
||||
evaluated_model_input = kwargs.get("evaluated_model_input")
|
||||
evaluated_model_output = kwargs.get("evaluated_model_output")
|
||||
evaluated_model_retrieved_context = kwargs.get(
|
||||
"evaluated_model_retrieved_context"
|
||||
)
|
||||
evaluated_model_gold_answer = kwargs.get("evaluated_model_gold_answer")
|
||||
evaluators = self.evaluators
|
||||
|
||||
headers = {
|
||||
"X-API-KEY": os.getenv("PATRONUS_API_KEY"),
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
|
||||
data = {
|
||||
"evaluated_model_input": (
|
||||
evaluated_model_input
|
||||
if isinstance(evaluated_model_input, str)
|
||||
else evaluated_model_input.get("description")
|
||||
),
|
||||
"evaluated_model_output": (
|
||||
evaluated_model_output
|
||||
if isinstance(evaluated_model_output, str)
|
||||
else evaluated_model_output.get("description")
|
||||
),
|
||||
"evaluated_model_retrieved_context": (
|
||||
evaluated_model_retrieved_context
|
||||
if isinstance(evaluated_model_retrieved_context, str)
|
||||
else evaluated_model_retrieved_context.get("description")
|
||||
),
|
||||
"evaluated_model_gold_answer": (
|
||||
evaluated_model_gold_answer
|
||||
if isinstance(evaluated_model_gold_answer, str)
|
||||
else evaluated_model_gold_answer.get("description")
|
||||
),
|
||||
"evaluators": (
|
||||
evaluators
|
||||
if isinstance(evaluators, list)
|
||||
else evaluators.get("description")
|
||||
),
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
self.evaluate_url, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise Exception(
|
||||
f"Failed to evaluate model input and output. Status code: {response.status_code}. Reason: {response.text}"
|
||||
)
|
||||
|
||||
return response.json()
|
||||
|
||||
Reference in New Issue
Block a user