mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 04:18:35 +00:00
Docs update/add truefoundry (#3245)
* Add TrueFoundry observability integration documentation - Added comprehensive TrueFoundry integration guide for CrewAI - Included AI Gateway overview with key features - Added technical architecture details for Traceloop SDK integration - Provided step-by-step setup instructions - Added advanced configuration examples - Included tracing dashboard screenshot - Added support contact and documentation links * Update TrueFoundry integration documentation Major improvements and fixes: - Fixed integration pattern to follow LLM provider approach (base_url + api_key) - Added technical architecture details showing LLM provider and observability flows - Updated model names to use correct TrueFoundry format (openai-main/gpt-4o, anthropic/claude-3.5-sonnet) - Added unified-code-tfy.png image for visual code example - Reorganized document structure with better section placement - Moved Additional Tracing section to better position - Added link to TrueFoundry quick start guide - Added comprehensive observability details and dashboard explanation - Removed complex tracing setup in favor of simpler LLM provider integration * Finalize TrueFoundry integration documentation Key improvements: - Updated base_url references to use placeholder from code snippet - Added gateway-metrics.png image for observability dashboard - Formatted metrics description with proper bullet points and bold headers - Added link to TrueFoundry tracing overview documentation - Improved readability and consistency throughout the documentation - Updated Portuguese translation (pt-BR) version * added truefoundry.mdx * updated tfy mdx * Update docs/en/observability/truefoundry.mdx Co-authored-by: Nikhil Popli <97437109+nikp1172@users.noreply.github.com> * Update truefoundry.mdx * Update truefoundry.mdx -minor updates * Update truefoundry.mdx * updated truefoundry.mdx PT-BR --------- Co-authored-by: Nikhil Popli <97437109+nikp1172@users.noreply.github.com>
This commit is contained in:
@@ -238,7 +238,8 @@
|
||||
"en/observability/opik",
|
||||
"en/observability/patronus-evaluation",
|
||||
"en/observability/portkey",
|
||||
"en/observability/weave"
|
||||
"en/observability/weave",
|
||||
"en/observability/truefoundry"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -575,7 +576,8 @@
|
||||
"pt-BR/observability/opik",
|
||||
"pt-BR/observability/patronus-evaluation",
|
||||
"pt-BR/observability/portkey",
|
||||
"pt-BR/observability/weave"
|
||||
"pt-BR/observability/weave",
|
||||
"pt-BR/observability/truefoundry"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
146
docs/en/observability/truefoundry.mdx
Normal file
146
docs/en/observability/truefoundry.mdx
Normal file
@@ -0,0 +1,146 @@
|
||||
---
|
||||
title: TrueFoundry Integration
|
||||
icon: chart-line
|
||||
---
|
||||
|
||||
TrueFoundry provides an enterprise-ready [AI Gateway](https://www.truefoundry.com/ai-gateway) which can integrate with agentic frameworks like CrewAI and provides governance and observability for your AI Applications. TrueFoundry AI Gateway serves as a unified interface for LLM access, providing:
|
||||
|
||||
- **Unified API Access**: Connect to 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) through one API
|
||||
- **Low Latency**: Sub-3ms internal latency with intelligent routing and load balancing
|
||||
- **Enterprise Security**: SOC 2, HIPAA, GDPR compliance with RBAC and audit logging
|
||||
- **Quota and cost management**: Token-based quotas, rate limiting, and comprehensive usage tracking
|
||||
- **Observability**: Full request/response logging, metrics, and traces with customizable retention
|
||||
|
||||
## How TrueFoundry Integrates with CrewAI
|
||||
|
||||
|
||||
### Installation & Setup
|
||||
|
||||
<Steps>
|
||||
<Step title="Install CrewAI">
|
||||
```bash
|
||||
pip install crewai
|
||||
```
|
||||
</Step>
|
||||
|
||||
<Step title="Get TrueFoundry Access Token">
|
||||
1. Sign up for a [TrueFoundry account](https://www.truefoundry.com/register)
|
||||
2. Follow the steps here in [Quick start](https://docs.truefoundry.com/gateway/quick-start)
|
||||
</Step>
|
||||
|
||||
<Step title="Configure CrewAI with TrueFoundry">
|
||||

|
||||
|
||||
```python
|
||||
from crewai import LLM
|
||||
|
||||
# Create an LLM instance with TrueFoundry AI Gateway
|
||||
truefoundry_llm = LLM(
|
||||
model="openai-main/gpt-4o", # Similarly, you can call any model from any provider
|
||||
base_url="your_truefoundry_gateway_base_url",
|
||||
api_key="your_truefoundry_api_key"
|
||||
)
|
||||
|
||||
# Use in your CrewAI agents
|
||||
from crewai import Agent
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
llm=truefoundry_llm,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Complete CrewAI Example
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew, LLM
|
||||
|
||||
# Configure LLM with TrueFoundry
|
||||
llm = LLM(
|
||||
model="openai-main/gpt-4o",
|
||||
base_url="your_truefoundry_gateway_base_url",
|
||||
api_key="your_truefoundry_api_key"
|
||||
)
|
||||
|
||||
# Create agents
|
||||
researcher = Agent(
|
||||
role='Research Analyst',
|
||||
goal='Conduct detailed market research',
|
||||
backstory='Expert market analyst with attention to detail',
|
||||
llm=llm,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role='Content Writer',
|
||||
goal='Create comprehensive reports',
|
||||
backstory='Experienced technical writer',
|
||||
llm=llm,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Create tasks
|
||||
research_task = Task(
|
||||
description='Research AI market trends for 2024',
|
||||
agent=researcher,
|
||||
expected_output='Comprehensive research summary'
|
||||
)
|
||||
|
||||
writing_task = Task(
|
||||
description='Create a market research report',
|
||||
agent=writer,
|
||||
expected_output='Well-structured report with insights',
|
||||
context=[research_task]
|
||||
)
|
||||
|
||||
# Create and execute crew
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[research_task, writing_task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Observability and Governance
|
||||
|
||||
Monitor your CrewAI agents through TrueFoundry's metrics tab:
|
||||

|
||||
|
||||
With Truefoundry's AI gateway, you can monitor and analyze:
|
||||
|
||||
- **Performance Metrics**: Track key latency metrics like Request Latency, Time to First Token (TTFS), and Inter-Token Latency (ITL) with P99, P90, and P50 percentiles
|
||||
- **Cost and Token Usage**: Gain visibility into your application's costs with detailed breakdowns of input/output tokens and the associated expenses for each model
|
||||
- **Usage Patterns**: Understand how your application is being used with detailed analytics on user activity, model distribution, and team-based usage
|
||||
- **Rate limit and Load balancing**: You can set up rate limiting, load balancing and fallback for your models
|
||||
|
||||
## Tracing
|
||||
|
||||
For a more detailed understanding on tracing, please see [getting-started-tracing](https://docs.truefoundry.com/docs/tracing/tracing-getting-started).For tracing, you can add the Traceloop SDK:
|
||||
For tracing, you can add the Traceloop SDK:
|
||||
|
||||
```bash
|
||||
pip install traceloop-sdk
|
||||
```
|
||||
|
||||
```python
|
||||
from traceloop.sdk import Traceloop
|
||||
|
||||
# Initialize enhanced tracing
|
||||
Traceloop.init(
|
||||
api_endpoint="https://your-truefoundry-endpoint/api/tracing",
|
||||
headers={
|
||||
"Authorization": f"Bearer {your_truefoundry_pat_token}",
|
||||
"TFY-Tracing-Project": "your_project_name",
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
This provides additional trace correlation across your entire CrewAI workflow.
|
||||

|
||||
BIN
docs/images/gateway-metrics.png
Normal file
BIN
docs/images/gateway-metrics.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 530 KiB |
BIN
docs/images/new-code-snippet.png
Normal file
BIN
docs/images/new-code-snippet.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 554 KiB |
BIN
docs/images/tracing_crewai.png
Normal file
BIN
docs/images/tracing_crewai.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 128 KiB |
145
docs/pt-BR/observability/truefoundry.mdx
Normal file
145
docs/pt-BR/observability/truefoundry.mdx
Normal file
@@ -0,0 +1,145 @@
|
||||
---
|
||||
title: Integração com a TrueFoundry
|
||||
icon: chart-line
|
||||
---
|
||||
|
||||
A TrueFoundry fornece um [AI Gateway](https://www.truefoundry.com/ai-gateway) pronto para uso empresarial, que pode ser usado para governança e observabilidade em frameworks agentivos como o CrewAI. O AI Gateway da TrueFoundry funciona como uma interface unificada para acesso a LLMs, oferecendo:
|
||||
|
||||
- **Acesso unificado à API**: Conecte-se a 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) por meio de uma única API
|
||||
- **Baixa latência**: Latência interna abaixo de 3 ms com roteamento inteligente e balanceamento de carga
|
||||
- **Segurança corporativa**: Conformidade com SOC 2, HIPAA e GDPR, com RBAC e auditoria de logs
|
||||
- **Gestão de cotas e custos**: Cotas baseadas em tokens, rate limiting e rastreamento abrangente de uso
|
||||
- **Observabilidade**: Registro completo de requisições/respostas, métricas e traces com retenção personalizável
|
||||
|
||||
## Como a TrueFoundry se integra ao CrewAI
|
||||
|
||||
|
||||
### Instalação e configuração
|
||||
|
||||
<Steps>
|
||||
<Step title="Instalar o CrewAI">
|
||||
```bash
|
||||
pip install crewai
|
||||
```
|
||||
</Step>
|
||||
|
||||
<Step title="Obter o token de acesso da TrueFoundry">
|
||||
1. Crie uma conta na [TrueFoundry](https://www.truefoundry.com/register)
|
||||
2. Siga os passos do [Início rápido](https://docs.truefoundry.com/gateway/quick-start)
|
||||
</Step>
|
||||
|
||||
<Step title="Configurar o CrewAI com a TrueFoundry">
|
||||

|
||||
|
||||
```python
|
||||
from crewai import LLM
|
||||
|
||||
# Criar uma instância de LLM com o AI Gateway da TrueFoundry
|
||||
truefoundry_llm = LLM(
|
||||
model="openai-main/gpt-4o", # Da mesma forma, você pode chamar qualquer modelo de qualquer provedor
|
||||
base_url="your_truefoundry_gateway_base_url",
|
||||
api_key="your_truefoundry_api_key"
|
||||
)
|
||||
|
||||
# Usar nos seus agentes do CrewAI
|
||||
from crewai import Agent
|
||||
|
||||
@agent
|
||||
def researcher(self) -> Agent:
|
||||
return Agent(
|
||||
config=self.agents_config['researcher'],
|
||||
llm=truefoundry_llm,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
</Step>
|
||||
</Steps>
|
||||
|
||||
### Exemplo completo do CrewAI
|
||||
|
||||
```python
|
||||
from crewai import Agent, Task, Crew, LLM
|
||||
|
||||
# Configurar o LLM com a TrueFoundry
|
||||
llm = LLM(
|
||||
model="openai-main/gpt-4o",
|
||||
base_url="your_truefoundry_gateway_base_url",
|
||||
api_key="your_truefoundry_api_key"
|
||||
)
|
||||
|
||||
# Criar agentes
|
||||
researcher = Agent(
|
||||
role='Analista de Pesquisa',
|
||||
goal='Conduzir pesquisa de mercado detalhada',
|
||||
backstory='Analista de mercado especialista com atenção aos detalhes',
|
||||
llm=llm,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
role='Redator de Conteúdo',
|
||||
goal='Criar relatórios abrangentes',
|
||||
backstory='Redator técnico experiente',
|
||||
llm=llm,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Criar tarefas
|
||||
research_task = Task(
|
||||
description='Pesquisar tendências do mercado de IA para 2024',
|
||||
agent=researcher,
|
||||
expected_output='Resumo de pesquisa abrangente'
|
||||
)
|
||||
|
||||
writing_task = Task(
|
||||
description='Criar um relatório de pesquisa de mercado',
|
||||
agent=writer,
|
||||
expected_output='Relatório bem estruturado com insights',
|
||||
context=[research_task]
|
||||
)
|
||||
|
||||
# Criar e executar a crew
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[research_task, writing_task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
```
|
||||
|
||||
### Observabilidade e governança
|
||||
|
||||
Monitore seus agentes do CrewAI pela aba de métricas da TrueFoundry:
|
||||

|
||||
|
||||
Com o AI Gateway da TrueFoundry, você pode monitorar e analisar:
|
||||
|
||||
- **Métricas de desempenho**: Acompanhe métricas-chave de latência como Latência da Requisição, Tempo até o Primeiro Token (TTFS) e Latência entre Tokens (ITL), com percentis P99, P90 e P50
|
||||
- **Custos e uso de tokens**: Tenha visibilidade dos custos da sua aplicação com detalhamento de tokens de entrada/saída e das despesas associadas a cada modelo
|
||||
- **Padrões de uso**: Entenda como sua aplicação está sendo utilizada com análises detalhadas sobre atividade de usuários, distribuição de modelos e uso por equipe
|
||||
- **Limite de taxa e balanceamento de carga**: Você pode configurar rate limiting, balanceamento de carga e fallback para seus modelos
|
||||
|
||||
## Rastreamento
|
||||
|
||||
Para uma compreensão mais detalhada sobre rastreamento, consulte [getting-started-tracing](https://docs.truefoundry.com/docs/tracing/tracing-getting-started). Para rastreamento, você pode adicionar o SDK do Traceloop:
|
||||
|
||||
```bash
|
||||
pip install traceloop-sdk
|
||||
```
|
||||
|
||||
```python
|
||||
from traceloop.sdk import Traceloop
|
||||
|
||||
# Inicializar rastreamento avançado
|
||||
Traceloop.init(
|
||||
api_endpoint="https://your-truefoundry-endpoint/api/tracing",
|
||||
headers={
|
||||
"Authorization": f"Bearer {your_truefoundry_pat_token}",
|
||||
"TFY-Tracing-Project": "your_project_name",
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
Isso oferece correlação adicional de rastreamentos em todo o seu fluxo de trabalho com o CrewAI.
|
||||

|
||||
Reference in New Issue
Block a user