diff --git a/docs/docs.json b/docs/docs.json
index 9b74755c0..4f9a0ee0a 100644
--- a/docs/docs.json
+++ b/docs/docs.json
@@ -238,7 +238,8 @@
"en/observability/opik",
"en/observability/patronus-evaluation",
"en/observability/portkey",
- "en/observability/weave"
+ "en/observability/weave",
+ "en/observability/truefoundry"
]
},
{
@@ -575,7 +576,8 @@
"pt-BR/observability/opik",
"pt-BR/observability/patronus-evaluation",
"pt-BR/observability/portkey",
- "pt-BR/observability/weave"
+ "pt-BR/observability/weave",
+ "pt-BR/observability/truefoundry"
]
},
{
diff --git a/docs/en/observability/truefoundry.mdx b/docs/en/observability/truefoundry.mdx
new file mode 100644
index 000000000..e83c47420
--- /dev/null
+++ b/docs/en/observability/truefoundry.mdx
@@ -0,0 +1,146 @@
+---
+title: TrueFoundry Integration
+icon: chart-line
+---
+
+TrueFoundry provides an enterprise-ready [AI Gateway](https://www.truefoundry.com/ai-gateway) which can integrate with agentic frameworks like CrewAI and provides governance and observability for your AI Applications. TrueFoundry AI Gateway serves as a unified interface for LLM access, providing:
+
+- **Unified API Access**: Connect to 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) through one API
+- **Low Latency**: Sub-3ms internal latency with intelligent routing and load balancing
+- **Enterprise Security**: SOC 2, HIPAA, GDPR compliance with RBAC and audit logging
+- **Quota and cost management**: Token-based quotas, rate limiting, and comprehensive usage tracking
+- **Observability**: Full request/response logging, metrics, and traces with customizable retention
+
+## How TrueFoundry Integrates with CrewAI
+
+
+### Installation & Setup
+
+
+
+```bash
+pip install crewai
+```
+
+
+
+1. Sign up for a [TrueFoundry account](https://www.truefoundry.com/register)
+2. Follow the steps here in [Quick start](https://docs.truefoundry.com/gateway/quick-start)
+
+
+
+
+
+```python
+from crewai import LLM
+
+# Create an LLM instance with TrueFoundry AI Gateway
+truefoundry_llm = LLM(
+ model="openai-main/gpt-4o", # Similarly, you can call any model from any provider
+ base_url="your_truefoundry_gateway_base_url",
+ api_key="your_truefoundry_api_key"
+)
+
+# Use in your CrewAI agents
+from crewai import Agent
+
+@agent
+def researcher(self) -> Agent:
+ return Agent(
+ config=self.agents_config['researcher'],
+ llm=truefoundry_llm,
+ verbose=True
+ )
+```
+
+
+
+### Complete CrewAI Example
+
+```python
+from crewai import Agent, Task, Crew, LLM
+
+# Configure LLM with TrueFoundry
+llm = LLM(
+ model="openai-main/gpt-4o",
+ base_url="your_truefoundry_gateway_base_url",
+ api_key="your_truefoundry_api_key"
+)
+
+# Create agents
+researcher = Agent(
+ role='Research Analyst',
+ goal='Conduct detailed market research',
+ backstory='Expert market analyst with attention to detail',
+ llm=llm,
+ verbose=True
+)
+
+writer = Agent(
+ role='Content Writer',
+ goal='Create comprehensive reports',
+ backstory='Experienced technical writer',
+ llm=llm,
+ verbose=True
+)
+
+# Create tasks
+research_task = Task(
+ description='Research AI market trends for 2024',
+ agent=researcher,
+ expected_output='Comprehensive research summary'
+)
+
+writing_task = Task(
+ description='Create a market research report',
+ agent=writer,
+ expected_output='Well-structured report with insights',
+ context=[research_task]
+)
+
+# Create and execute crew
+crew = Crew(
+ agents=[researcher, writer],
+ tasks=[research_task, writing_task],
+ verbose=True
+)
+
+result = crew.kickoff()
+```
+
+### Observability and Governance
+
+Monitor your CrewAI agents through TrueFoundry's metrics tab:
+
+
+With Truefoundry's AI gateway, you can monitor and analyze:
+
+- **Performance Metrics**: Track key latency metrics like Request Latency, Time to First Token (TTFS), and Inter-Token Latency (ITL) with P99, P90, and P50 percentiles
+- **Cost and Token Usage**: Gain visibility into your application's costs with detailed breakdowns of input/output tokens and the associated expenses for each model
+- **Usage Patterns**: Understand how your application is being used with detailed analytics on user activity, model distribution, and team-based usage
+- **Rate limit and Load balancing**: You can set up rate limiting, load balancing and fallback for your models
+
+## Tracing
+
+For a more detailed understanding on tracing, please see [getting-started-tracing](https://docs.truefoundry.com/docs/tracing/tracing-getting-started).For tracing, you can add the Traceloop SDK:
+For tracing, you can add the Traceloop SDK:
+
+```bash
+pip install traceloop-sdk
+```
+
+```python
+from traceloop.sdk import Traceloop
+
+# Initialize enhanced tracing
+Traceloop.init(
+ api_endpoint="https://your-truefoundry-endpoint/api/tracing",
+ headers={
+ "Authorization": f"Bearer {your_truefoundry_pat_token}",
+ "TFY-Tracing-Project": "your_project_name",
+ },
+)
+```
+
+This provides additional trace correlation across your entire CrewAI workflow.
+
\ No newline at end of file
diff --git a/docs/images/gateway-metrics.png b/docs/images/gateway-metrics.png
new file mode 100644
index 000000000..5c521c892
Binary files /dev/null and b/docs/images/gateway-metrics.png differ
diff --git a/docs/images/new-code-snippet.png b/docs/images/new-code-snippet.png
new file mode 100644
index 000000000..d70de2d3b
Binary files /dev/null and b/docs/images/new-code-snippet.png differ
diff --git a/docs/images/tracing_crewai.png b/docs/images/tracing_crewai.png
new file mode 100644
index 000000000..8abd69562
Binary files /dev/null and b/docs/images/tracing_crewai.png differ
diff --git a/docs/pt-BR/observability/truefoundry.mdx b/docs/pt-BR/observability/truefoundry.mdx
new file mode 100644
index 000000000..e7f6a88f3
--- /dev/null
+++ b/docs/pt-BR/observability/truefoundry.mdx
@@ -0,0 +1,145 @@
+---
+title: Integração com a TrueFoundry
+icon: chart-line
+---
+
+A TrueFoundry fornece um [AI Gateway](https://www.truefoundry.com/ai-gateway) pronto para uso empresarial, que pode ser usado para governança e observabilidade em frameworks agentivos como o CrewAI. O AI Gateway da TrueFoundry funciona como uma interface unificada para acesso a LLMs, oferecendo:
+
+- **Acesso unificado à API**: Conecte-se a 250+ LLMs (OpenAI, Claude, Gemini, Groq, Mistral) por meio de uma única API
+- **Baixa latência**: Latência interna abaixo de 3 ms com roteamento inteligente e balanceamento de carga
+- **Segurança corporativa**: Conformidade com SOC 2, HIPAA e GDPR, com RBAC e auditoria de logs
+- **Gestão de cotas e custos**: Cotas baseadas em tokens, rate limiting e rastreamento abrangente de uso
+- **Observabilidade**: Registro completo de requisições/respostas, métricas e traces com retenção personalizável
+
+## Como a TrueFoundry se integra ao CrewAI
+
+
+### Instalação e configuração
+
+
+
+```bash
+pip install crewai
+```
+
+
+
+1. Crie uma conta na [TrueFoundry](https://www.truefoundry.com/register)
+2. Siga os passos do [Início rápido](https://docs.truefoundry.com/gateway/quick-start)
+
+
+
+
+
+```python
+from crewai import LLM
+
+# Criar uma instância de LLM com o AI Gateway da TrueFoundry
+truefoundry_llm = LLM(
+ model="openai-main/gpt-4o", # Da mesma forma, você pode chamar qualquer modelo de qualquer provedor
+ base_url="your_truefoundry_gateway_base_url",
+ api_key="your_truefoundry_api_key"
+)
+
+# Usar nos seus agentes do CrewAI
+from crewai import Agent
+
+@agent
+def researcher(self) -> Agent:
+ return Agent(
+ config=self.agents_config['researcher'],
+ llm=truefoundry_llm,
+ verbose=True
+ )
+```
+
+
+
+### Exemplo completo do CrewAI
+
+```python
+from crewai import Agent, Task, Crew, LLM
+
+# Configurar o LLM com a TrueFoundry
+llm = LLM(
+ model="openai-main/gpt-4o",
+ base_url="your_truefoundry_gateway_base_url",
+ api_key="your_truefoundry_api_key"
+)
+
+# Criar agentes
+researcher = Agent(
+ role='Analista de Pesquisa',
+ goal='Conduzir pesquisa de mercado detalhada',
+ backstory='Analista de mercado especialista com atenção aos detalhes',
+ llm=llm,
+ verbose=True
+)
+
+writer = Agent(
+ role='Redator de Conteúdo',
+ goal='Criar relatórios abrangentes',
+ backstory='Redator técnico experiente',
+ llm=llm,
+ verbose=True
+)
+
+# Criar tarefas
+research_task = Task(
+ description='Pesquisar tendências do mercado de IA para 2024',
+ agent=researcher,
+ expected_output='Resumo de pesquisa abrangente'
+)
+
+writing_task = Task(
+ description='Criar um relatório de pesquisa de mercado',
+ agent=writer,
+ expected_output='Relatório bem estruturado com insights',
+ context=[research_task]
+)
+
+# Criar e executar a crew
+crew = Crew(
+ agents=[researcher, writer],
+ tasks=[research_task, writing_task],
+ verbose=True
+)
+
+result = crew.kickoff()
+```
+
+### Observabilidade e governança
+
+Monitore seus agentes do CrewAI pela aba de métricas da TrueFoundry:
+
+
+Com o AI Gateway da TrueFoundry, você pode monitorar e analisar:
+
+- **Métricas de desempenho**: Acompanhe métricas-chave de latência como Latência da Requisição, Tempo até o Primeiro Token (TTFS) e Latência entre Tokens (ITL), com percentis P99, P90 e P50
+- **Custos e uso de tokens**: Tenha visibilidade dos custos da sua aplicação com detalhamento de tokens de entrada/saída e das despesas associadas a cada modelo
+- **Padrões de uso**: Entenda como sua aplicação está sendo utilizada com análises detalhadas sobre atividade de usuários, distribuição de modelos e uso por equipe
+- **Limite de taxa e balanceamento de carga**: Você pode configurar rate limiting, balanceamento de carga e fallback para seus modelos
+
+## Rastreamento
+
+Para uma compreensão mais detalhada sobre rastreamento, consulte [getting-started-tracing](https://docs.truefoundry.com/docs/tracing/tracing-getting-started). Para rastreamento, você pode adicionar o SDK do Traceloop:
+
+```bash
+pip install traceloop-sdk
+```
+
+```python
+from traceloop.sdk import Traceloop
+
+# Inicializar rastreamento avançado
+Traceloop.init(
+ api_endpoint="https://your-truefoundry-endpoint/api/tracing",
+ headers={
+ "Authorization": f"Bearer {your_truefoundry_pat_token}",
+ "TFY-Tracing-Project": "your_project_name",
+ },
+)
+```
+
+Isso oferece correlação adicional de rastreamentos em todo o seu fluxo de trabalho com o CrewAI.
+
\ No newline at end of file