mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-22 14:48:13 +00:00
Refactor AgentExecutor to support batch execution of native tool calls
- Updated the method to process all tools from in a single batch, enhancing efficiency and reducing the number of interactions with the LLM. - Introduced a new utility function to streamline the extraction of tool call details, improving compatibility with various tool formats. - Removed the parameter, simplifying the initialization of the . - Enhanced logging and message handling to provide clearer insights during tool execution. - This refactor improves the overall performance and usability of the agent execution flow.
This commit is contained in:
@@ -50,6 +50,7 @@ from crewai.utilities.agent_utils import (
|
||||
is_context_length_exceeded,
|
||||
is_inside_event_loop,
|
||||
process_llm_response,
|
||||
extract_tool_call_info,
|
||||
)
|
||||
from crewai.utilities.constants import TRAINING_DATA_FILE
|
||||
from crewai.utilities.i18n import I18N, get_i18n
|
||||
@@ -124,7 +125,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
callbacks: list[Any] | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
i18n: I18N | None = None,
|
||||
max_tools_per_turn: int = 10,
|
||||
) -> None:
|
||||
"""Initialize the flow-based agent executor.
|
||||
|
||||
@@ -169,7 +169,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
self.respect_context_window = respect_context_window
|
||||
self.request_within_rpm_limit = request_within_rpm_limit
|
||||
self.response_model = response_model
|
||||
self.max_tools_per_turn = max_tools_per_turn
|
||||
self.log_error_after = 3
|
||||
self._console: Console = Console()
|
||||
|
||||
@@ -482,6 +481,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
if isinstance(answer, list) and answer and self._is_tool_call_list(answer):
|
||||
# Store tool calls for sequential processing
|
||||
self.state.pending_tool_calls = list(answer)
|
||||
|
||||
iteration_elapsed = time.time() - iteration_start
|
||||
print(
|
||||
f"[{time.strftime('%H:%M:%S')}] -> Routing to native_tool_calls ({len(answer)} tools)"
|
||||
@@ -608,55 +608,23 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
|
||||
@listen("native_tool_calls")
|
||||
def execute_native_tool(self) -> Literal["native_tool_completed"]:
|
||||
"""Execute a SINGLE native tool call with reflection after.
|
||||
"""Execute native tool calls in a batch.
|
||||
|
||||
Processes only the first tool from pending_tool_calls, then asks
|
||||
the LLM if it can answer the task. Remaining tools stay in the queue
|
||||
for potential execution on next iteration.
|
||||
Processes all tools from pending_tool_calls, executes them,
|
||||
and appends results to the conversation history.
|
||||
"""
|
||||
if not self.state.pending_tool_calls:
|
||||
return "native_tool_completed"
|
||||
|
||||
# Pop just the first tool (leave the rest in queue for potential continuation)
|
||||
tool_call = self.state.pending_tool_calls.pop(0)
|
||||
print(
|
||||
f"Executing 1 tool, {len(self.state.pending_tool_calls)} remaining in queue"
|
||||
)
|
||||
# Group all tool calls into a single assistant message
|
||||
tool_calls_to_report = []
|
||||
for tool_call in self.state.pending_tool_calls:
|
||||
info = extract_tool_call_info(tool_call)
|
||||
if not info:
|
||||
continue
|
||||
|
||||
# Extract tool call info - handle OpenAI, Anthropic, and Gemini formats
|
||||
if hasattr(tool_call, "function"):
|
||||
# OpenAI format: has .function.name and .function.arguments
|
||||
call_id = getattr(tool_call, "id", f"call_{id(tool_call)}")
|
||||
func_name = tool_call.function.name
|
||||
func_args = tool_call.function.arguments
|
||||
elif hasattr(tool_call, "function_call") and tool_call.function_call:
|
||||
# Gemini format: has .function_call.name and .function_call.args
|
||||
call_id = f"call_{id(tool_call)}"
|
||||
func_name = tool_call.function_call.name
|
||||
func_args = (
|
||||
dict(tool_call.function_call.args)
|
||||
if tool_call.function_call.args
|
||||
else {}
|
||||
)
|
||||
elif hasattr(tool_call, "name") and hasattr(tool_call, "input"):
|
||||
# Anthropic format: has .name and .input (ToolUseBlock)
|
||||
call_id = getattr(tool_call, "id", f"call_{id(tool_call)}")
|
||||
func_name = tool_call.name
|
||||
func_args = tool_call.input # Already a dict in Anthropic
|
||||
elif isinstance(tool_call, dict):
|
||||
call_id = tool_call.get("id", f"call_{id(tool_call)}")
|
||||
func_info = tool_call.get("function", {})
|
||||
func_name = func_info.get("name", "") or tool_call.get("name", "")
|
||||
func_args = func_info.get("arguments", "{}") or tool_call.get("input", {})
|
||||
else:
|
||||
# Unrecognized format - skip and try next
|
||||
return "native_tool_completed"
|
||||
|
||||
# Append assistant message with single tool call
|
||||
assistant_message: LLMMessage = {
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": [
|
||||
call_id, func_name, func_args = info
|
||||
tool_calls_to_report.append(
|
||||
{
|
||||
"id": call_id,
|
||||
"type": "function",
|
||||
@@ -667,90 +635,97 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
|
||||
else json.dumps(func_args),
|
||||
},
|
||||
}
|
||||
],
|
||||
}
|
||||
self.state.messages.append(assistant_message)
|
||||
|
||||
# Parse arguments for the single tool call
|
||||
if isinstance(func_args, str):
|
||||
try:
|
||||
args_dict = json.loads(func_args)
|
||||
except json.JSONDecodeError:
|
||||
args_dict = {}
|
||||
else:
|
||||
args_dict = func_args
|
||||
|
||||
# Emit tool usage started event
|
||||
started_at = datetime.now()
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=ToolUsageStartedEvent(
|
||||
tool_name=func_name,
|
||||
tool_args=args_dict,
|
||||
from_agent=self.agent,
|
||||
from_task=self.task,
|
||||
),
|
||||
)
|
||||
|
||||
# Execute the tool
|
||||
result = "Tool not found"
|
||||
if func_name in self._available_functions:
|
||||
try:
|
||||
tool_func = self._available_functions[func_name]
|
||||
result = tool_func(**args_dict)
|
||||
if not isinstance(result, str):
|
||||
result = str(result)
|
||||
except Exception as e:
|
||||
result = f"Error executing tool: {e}"
|
||||
|
||||
# Emit tool usage finished event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=ToolUsageFinishedEvent(
|
||||
output=result,
|
||||
tool_name=func_name,
|
||||
tool_args=args_dict,
|
||||
from_agent=self.agent,
|
||||
from_task=self.task,
|
||||
started_at=started_at,
|
||||
finished_at=datetime.now(),
|
||||
),
|
||||
)
|
||||
|
||||
# Append tool result message
|
||||
tool_message: LLMMessage = {
|
||||
"role": "tool",
|
||||
"tool_call_id": call_id,
|
||||
"content": result,
|
||||
}
|
||||
self.state.messages.append(tool_message)
|
||||
|
||||
# Log the tool execution
|
||||
if self.agent and self.agent.verbose:
|
||||
self._printer.print(
|
||||
content=f"Tool {func_name} executed with result: {result[:200]}...",
|
||||
color="green",
|
||||
)
|
||||
|
||||
# Only add reflection prompt if there are still pending tools
|
||||
# If no pending tools, skip reflection - LLM will naturally continue
|
||||
if self.state.pending_tool_calls:
|
||||
print("--------------------------------")
|
||||
print(
|
||||
f"REFLECTION: {len(self.state.pending_tool_calls)} tools pending - asking LLM to decide"
|
||||
)
|
||||
print("--------------------------------")
|
||||
reasoning_prompt = self._i18n.slice("post_tool_reasoning")
|
||||
|
||||
reasoning_message: LLMMessage = {
|
||||
"role": "user",
|
||||
"content": reasoning_prompt,
|
||||
if tool_calls_to_report:
|
||||
assistant_message: LLMMessage = {
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": tool_calls_to_report,
|
||||
}
|
||||
self.state.messages.append(reasoning_message)
|
||||
else:
|
||||
print("--------------------------------")
|
||||
print("SKIPPING REFLECTION: No pending tools - LLM will continue naturally")
|
||||
print("--------------------------------")
|
||||
self.state.messages.append(assistant_message)
|
||||
|
||||
# Now execute each tool
|
||||
while self.state.pending_tool_calls:
|
||||
tool_call = self.state.pending_tool_calls.pop(0)
|
||||
info = extract_tool_call_info(tool_call)
|
||||
if not info:
|
||||
continue
|
||||
|
||||
call_id, func_name, func_args = info
|
||||
|
||||
# Parse arguments
|
||||
if isinstance(func_args, str):
|
||||
try:
|
||||
args_dict = json.loads(func_args)
|
||||
except json.JSONDecodeError:
|
||||
args_dict = {}
|
||||
else:
|
||||
args_dict = func_args
|
||||
|
||||
# Emit tool usage started event
|
||||
started_at = datetime.now()
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=ToolUsageStartedEvent(
|
||||
tool_name=func_name,
|
||||
tool_args=args_dict,
|
||||
from_agent=self.agent,
|
||||
from_task=self.task,
|
||||
),
|
||||
)
|
||||
|
||||
# Execute the tool
|
||||
result = "Tool not found"
|
||||
if func_name in self._available_functions:
|
||||
try:
|
||||
tool_func = self._available_functions[func_name]
|
||||
result = tool_func(**args_dict)
|
||||
if not isinstance(result, str):
|
||||
result = str(result)
|
||||
except Exception as e:
|
||||
result = f"Error executing tool: {e}"
|
||||
|
||||
# Emit tool usage finished event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=ToolUsageFinishedEvent(
|
||||
output=result,
|
||||
tool_name=func_name,
|
||||
tool_args=args_dict,
|
||||
from_agent=self.agent,
|
||||
from_task=self.task,
|
||||
started_at=started_at,
|
||||
finished_at=datetime.now(),
|
||||
),
|
||||
)
|
||||
|
||||
# Append tool result message
|
||||
tool_message: LLMMessage = {
|
||||
"role": "tool",
|
||||
"tool_call_id": call_id,
|
||||
"content": result,
|
||||
}
|
||||
self.state.messages.append(tool_message)
|
||||
|
||||
# Log the tool execution
|
||||
if self.agent and self.agent.verbose:
|
||||
self._printer.print(
|
||||
content=f"Tool {func_name} executed with result: {result[:200]}...",
|
||||
color="green",
|
||||
)
|
||||
|
||||
# Add reflection prompt once after all tools in the batch
|
||||
print("--------------------------------")
|
||||
print("BATCH COMPLETED: All pending tools executed - adding reflection prompt")
|
||||
print("--------------------------------")
|
||||
reasoning_prompt = self._i18n.slice("post_tool_reasoning")
|
||||
|
||||
reasoning_message: LLMMessage = {
|
||||
"role": "user",
|
||||
"content": reasoning_prompt,
|
||||
}
|
||||
self.state.messages.append(reasoning_message)
|
||||
|
||||
return "native_tool_completed"
|
||||
|
||||
|
||||
Reference in New Issue
Block a user