Refactor AgentExecutor to support batch execution of native tool calls

- Updated the  method to process all tools from  in a single batch, enhancing efficiency and reducing the number of interactions with the LLM.
- Introduced a new utility function  to streamline the extraction of tool call details, improving compatibility with various tool formats.
- Removed the  parameter, simplifying the initialization of the .
- Enhanced logging and message handling to provide clearer insights during tool execution.
- This refactor improves the overall performance and usability of the agent execution flow.
This commit is contained in:
lorenzejay
2026-01-21 13:03:06 -08:00
parent e562a06836
commit 56dd2f82a4

View File

@@ -50,6 +50,7 @@ from crewai.utilities.agent_utils import (
is_context_length_exceeded,
is_inside_event_loop,
process_llm_response,
extract_tool_call_info,
)
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.i18n import I18N, get_i18n
@@ -124,7 +125,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
callbacks: list[Any] | None = None,
response_model: type[BaseModel] | None = None,
i18n: I18N | None = None,
max_tools_per_turn: int = 10,
) -> None:
"""Initialize the flow-based agent executor.
@@ -169,7 +169,6 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
self.respect_context_window = respect_context_window
self.request_within_rpm_limit = request_within_rpm_limit
self.response_model = response_model
self.max_tools_per_turn = max_tools_per_turn
self.log_error_after = 3
self._console: Console = Console()
@@ -482,6 +481,7 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
if isinstance(answer, list) and answer and self._is_tool_call_list(answer):
# Store tool calls for sequential processing
self.state.pending_tool_calls = list(answer)
iteration_elapsed = time.time() - iteration_start
print(
f"[{time.strftime('%H:%M:%S')}] -> Routing to native_tool_calls ({len(answer)} tools)"
@@ -608,55 +608,23 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
@listen("native_tool_calls")
def execute_native_tool(self) -> Literal["native_tool_completed"]:
"""Execute a SINGLE native tool call with reflection after.
"""Execute native tool calls in a batch.
Processes only the first tool from pending_tool_calls, then asks
the LLM if it can answer the task. Remaining tools stay in the queue
for potential execution on next iteration.
Processes all tools from pending_tool_calls, executes them,
and appends results to the conversation history.
"""
if not self.state.pending_tool_calls:
return "native_tool_completed"
# Pop just the first tool (leave the rest in queue for potential continuation)
tool_call = self.state.pending_tool_calls.pop(0)
print(
f"Executing 1 tool, {len(self.state.pending_tool_calls)} remaining in queue"
)
# Group all tool calls into a single assistant message
tool_calls_to_report = []
for tool_call in self.state.pending_tool_calls:
info = extract_tool_call_info(tool_call)
if not info:
continue
# Extract tool call info - handle OpenAI, Anthropic, and Gemini formats
if hasattr(tool_call, "function"):
# OpenAI format: has .function.name and .function.arguments
call_id = getattr(tool_call, "id", f"call_{id(tool_call)}")
func_name = tool_call.function.name
func_args = tool_call.function.arguments
elif hasattr(tool_call, "function_call") and tool_call.function_call:
# Gemini format: has .function_call.name and .function_call.args
call_id = f"call_{id(tool_call)}"
func_name = tool_call.function_call.name
func_args = (
dict(tool_call.function_call.args)
if tool_call.function_call.args
else {}
)
elif hasattr(tool_call, "name") and hasattr(tool_call, "input"):
# Anthropic format: has .name and .input (ToolUseBlock)
call_id = getattr(tool_call, "id", f"call_{id(tool_call)}")
func_name = tool_call.name
func_args = tool_call.input # Already a dict in Anthropic
elif isinstance(tool_call, dict):
call_id = tool_call.get("id", f"call_{id(tool_call)}")
func_info = tool_call.get("function", {})
func_name = func_info.get("name", "") or tool_call.get("name", "")
func_args = func_info.get("arguments", "{}") or tool_call.get("input", {})
else:
# Unrecognized format - skip and try next
return "native_tool_completed"
# Append assistant message with single tool call
assistant_message: LLMMessage = {
"role": "assistant",
"content": None,
"tool_calls": [
call_id, func_name, func_args = info
tool_calls_to_report.append(
{
"id": call_id,
"type": "function",
@@ -667,90 +635,97 @@ class AgentExecutor(Flow[AgentReActState], CrewAgentExecutorMixin):
else json.dumps(func_args),
},
}
],
}
self.state.messages.append(assistant_message)
# Parse arguments for the single tool call
if isinstance(func_args, str):
try:
args_dict = json.loads(func_args)
except json.JSONDecodeError:
args_dict = {}
else:
args_dict = func_args
# Emit tool usage started event
started_at = datetime.now()
crewai_event_bus.emit(
self,
event=ToolUsageStartedEvent(
tool_name=func_name,
tool_args=args_dict,
from_agent=self.agent,
from_task=self.task,
),
)
# Execute the tool
result = "Tool not found"
if func_name in self._available_functions:
try:
tool_func = self._available_functions[func_name]
result = tool_func(**args_dict)
if not isinstance(result, str):
result = str(result)
except Exception as e:
result = f"Error executing tool: {e}"
# Emit tool usage finished event
crewai_event_bus.emit(
self,
event=ToolUsageFinishedEvent(
output=result,
tool_name=func_name,
tool_args=args_dict,
from_agent=self.agent,
from_task=self.task,
started_at=started_at,
finished_at=datetime.now(),
),
)
# Append tool result message
tool_message: LLMMessage = {
"role": "tool",
"tool_call_id": call_id,
"content": result,
}
self.state.messages.append(tool_message)
# Log the tool execution
if self.agent and self.agent.verbose:
self._printer.print(
content=f"Tool {func_name} executed with result: {result[:200]}...",
color="green",
)
# Only add reflection prompt if there are still pending tools
# If no pending tools, skip reflection - LLM will naturally continue
if self.state.pending_tool_calls:
print("--------------------------------")
print(
f"REFLECTION: {len(self.state.pending_tool_calls)} tools pending - asking LLM to decide"
)
print("--------------------------------")
reasoning_prompt = self._i18n.slice("post_tool_reasoning")
reasoning_message: LLMMessage = {
"role": "user",
"content": reasoning_prompt,
if tool_calls_to_report:
assistant_message: LLMMessage = {
"role": "assistant",
"content": None,
"tool_calls": tool_calls_to_report,
}
self.state.messages.append(reasoning_message)
else:
print("--------------------------------")
print("SKIPPING REFLECTION: No pending tools - LLM will continue naturally")
print("--------------------------------")
self.state.messages.append(assistant_message)
# Now execute each tool
while self.state.pending_tool_calls:
tool_call = self.state.pending_tool_calls.pop(0)
info = extract_tool_call_info(tool_call)
if not info:
continue
call_id, func_name, func_args = info
# Parse arguments
if isinstance(func_args, str):
try:
args_dict = json.loads(func_args)
except json.JSONDecodeError:
args_dict = {}
else:
args_dict = func_args
# Emit tool usage started event
started_at = datetime.now()
crewai_event_bus.emit(
self,
event=ToolUsageStartedEvent(
tool_name=func_name,
tool_args=args_dict,
from_agent=self.agent,
from_task=self.task,
),
)
# Execute the tool
result = "Tool not found"
if func_name in self._available_functions:
try:
tool_func = self._available_functions[func_name]
result = tool_func(**args_dict)
if not isinstance(result, str):
result = str(result)
except Exception as e:
result = f"Error executing tool: {e}"
# Emit tool usage finished event
crewai_event_bus.emit(
self,
event=ToolUsageFinishedEvent(
output=result,
tool_name=func_name,
tool_args=args_dict,
from_agent=self.agent,
from_task=self.task,
started_at=started_at,
finished_at=datetime.now(),
),
)
# Append tool result message
tool_message: LLMMessage = {
"role": "tool",
"tool_call_id": call_id,
"content": result,
}
self.state.messages.append(tool_message)
# Log the tool execution
if self.agent and self.agent.verbose:
self._printer.print(
content=f"Tool {func_name} executed with result: {result[:200]}...",
color="green",
)
# Add reflection prompt once after all tools in the batch
print("--------------------------------")
print("BATCH COMPLETED: All pending tools executed - adding reflection prompt")
print("--------------------------------")
reasoning_prompt = self._i18n.slice("post_tool_reasoning")
reasoning_message: LLMMessage = {
"role": "user",
"content": reasoning_prompt,
}
self.state.messages.append(reasoning_message)
return "native_tool_completed"