Fix lint errors (B023, W293, B007, PERF102)

Co-Authored-By: João <joao@crewai.com>
This commit is contained in:
Devin AI
2026-01-03 17:31:49 +00:00
parent 5dc87c04af
commit 563e2eccbd

View File

@@ -951,23 +951,32 @@ class Crew(FlowTrackable, BaseModel):
if task.async_execution:
# Capture token usage before async task execution
tokens_before = self._get_agent_token_usage(exec_data.agent)
context = self._get_context(
task, [last_sync_output] if last_sync_output else []
)
# Wrap task execution to capture tokens immediately after completion
async def _wrapped_task_execution():
result = await task.aexecute_sync(
agent=exec_data.agent,
context=context,
tools=exec_data.tools,
# Use default arguments to bind loop variables at definition time (fixes B023)
agent = exec_data.agent
tools = exec_data.tools
async def _wrapped_task_execution(
_task=task,
_agent=agent,
_tools=tools,
_context=context,
):
result = await _task.aexecute_sync(
agent=_agent,
context=_context,
tools=_tools,
)
# Capture tokens immediately after task completes
# This reduces (but doesn't eliminate) race conditions
tokens_after = self._get_agent_token_usage(exec_data.agent)
tokens_after = self._get_agent_token_usage(_agent)
return result, tokens_after
async_task = asyncio.create_task(_wrapped_task_execution())
pending_tasks.append((task, async_task, task_index, exec_data.agent, tokens_before))
else:
@@ -979,20 +988,20 @@ class Crew(FlowTrackable, BaseModel):
# Capture token usage before task execution
tokens_before = self._get_agent_token_usage(exec_data.agent)
context = self._get_context(task, task_outputs)
task_output = await task.aexecute_sync(
agent=exec_data.agent,
context=context,
tools=exec_data.tools,
)
# Capture token usage after task execution and attach to task output
tokens_after = self._get_agent_token_usage(exec_data.agent)
task_output = self._attach_task_token_metrics(
task_output, task, exec_data.agent, tokens_before, tokens_after
)
task_outputs.append(task_output)
self._process_task_result(task, task_output)
self._store_execution_log(task, task_output, task_index, was_replayed)
@@ -1029,12 +1038,12 @@ class Crew(FlowTrackable, BaseModel):
for future_task, async_task, task_index, agent, tokens_before in pending_tasks:
# Unwrap the result which includes both output and tokens_after
task_output, tokens_after = await async_task
# Attach token metrics using the captured tokens_after
task_output = self._attach_task_token_metrics(
task_output, future_task, agent, tokens_before, tokens_after
)
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
self._store_execution_log(
@@ -1156,7 +1165,7 @@ class Crew(FlowTrackable, BaseModel):
task_outputs: list[TaskOutput] = []
futures: list[tuple[Task, Future[TaskOutput | tuple[TaskOutput, Any]], int, Any, Any]] = []
last_sync_output: TaskOutput | None = None
# Per-agent locks to serialize async task execution for accurate token tracking
# This ensures that when multiple async tasks from the same agent run,
# they execute one at a time so token deltas can be accurately attributed
@@ -1181,19 +1190,19 @@ class Crew(FlowTrackable, BaseModel):
context = self._get_context(
task, [last_sync_output] if last_sync_output else []
)
# Get or create a lock for this agent to serialize async task execution
# This ensures accurate per-task token tracking
agent_id = str(getattr(exec_data.agent, 'id', id(exec_data.agent)))
if agent_id not in agent_locks:
agent_locks[agent_id] = threading.Lock()
agent_lock = agent_locks[agent_id]
# Create a token capture callback that will be called inside the thread
# after task completion (while still holding the lock)
def create_token_callback(agent: Any = exec_data.agent) -> Any:
return self._get_agent_token_usage(agent)
future = task.execute_async(
agent=exec_data.agent,
context=context,
@@ -1211,20 +1220,20 @@ class Crew(FlowTrackable, BaseModel):
# Capture token usage before task execution
tokens_before = self._get_agent_token_usage(exec_data.agent)
context = self._get_context(task, task_outputs)
task_output = task.execute_sync(
agent=exec_data.agent,
context=context,
tools=exec_data.tools,
)
# Capture token usage after task execution and attach to task output
tokens_after = self._get_agent_token_usage(exec_data.agent)
task_output = self._attach_task_token_metrics(
task_output, task, exec_data.agent, tokens_before, tokens_after
)
task_outputs.append(task_output)
self._process_task_result(task, task_output)
self._store_execution_log(task, task_output, task_index, was_replayed)
@@ -1474,11 +1483,11 @@ class Crew(FlowTrackable, BaseModel):
was_replayed: bool = False,
) -> list[TaskOutput]:
"""Process completed async tasks and attach token metrics.
The futures contain either:
- TaskOutput (if no token tracking was enabled)
- tuple of (TaskOutput, tokens_before, tokens_after) (if token tracking was enabled)
Token tracking is enabled when the task was executed with a token_capture_callback
and agent_execution_lock, which ensures accurate per-task token attribution even
when multiple async tasks from the same agent run concurrently.
@@ -1486,7 +1495,7 @@ class Crew(FlowTrackable, BaseModel):
task_outputs: list[TaskOutput] = []
for future_task, future, task_index, agent, _ in futures:
result = future.result()
# Check if result is a tuple (token tracking enabled) or just TaskOutput
if isinstance(result, tuple) and len(result) == 3:
task_output, tokens_before, tokens_after = result
@@ -1496,7 +1505,7 @@ class Crew(FlowTrackable, BaseModel):
else:
# No token tracking - result is just TaskOutput
task_output = result
task_outputs.append(task_output)
self._process_task_result(future_task, task_output)
self._store_execution_log(
@@ -1706,9 +1715,9 @@ class Crew(FlowTrackable, BaseModel):
AgentTokenMetrics,
WorkflowTokenMetrics,
)
total_usage_metrics = UsageMetrics()
# Preserve existing workflow_token_metrics if it exists (has per_task data)
if hasattr(self, 'workflow_token_metrics') and self.workflow_token_metrics:
workflow_metrics = self.workflow_token_metrics
@@ -1720,23 +1729,23 @@ class Crew(FlowTrackable, BaseModel):
# Key by agent_id to handle multiple agents with the same role
agent_token_sums = {}
agent_info_map = {} # Map agent_id to (agent_name, agent_id)
# First, build a map of all agents by their ID
for agent in self.agents:
agent_role = getattr(agent, 'role', 'Unknown Agent')
agent_id = str(getattr(agent, 'id', ''))
agent_info_map[agent_id] = (agent_role, agent_id)
if workflow_metrics.per_task:
# Sum up tokens for each agent from their tasks
# We need to find which agent_id corresponds to each task's agent_name
for task_name, task_metrics in workflow_metrics.per_task.items():
for task_metrics in workflow_metrics.per_task.values():
agent_name = task_metrics.agent_name
# Find the agent_id for this agent_name from agent_info_map
# For now, we'll use the agent_name as a temporary key but this needs improvement
# TODO: Store agent_id in TaskTokenMetrics to avoid this lookup
matching_agent_ids = [aid for aid, (name, _) in agent_info_map.items() if name == agent_name]
# Use the first matching agent_id (limitation: can't distinguish between same-role agents)
# This is better than nothing but ideally we'd store agent_id in TaskTokenMetrics
for agent_id in matching_agent_ids:
@@ -1755,12 +1764,12 @@ class Crew(FlowTrackable, BaseModel):
agent_token_sums[agent_id]['completion_tokens'] += task_metrics.completion_tokens
agent_token_sums[agent_id]['successful_requests'] += task_metrics.successful_requests
break # Only add to first matching agent
# Create per-agent metrics from the summed task data, keyed by agent_id
for agent in self.agents:
agent_role = getattr(agent, 'role', 'Unknown Agent')
agent_id = str(getattr(agent, 'id', ''))
if agent_id in agent_token_sums:
# Use accurate per-task summed data
sums = agent_token_sums[agent_id]
@@ -1775,7 +1784,7 @@ class Crew(FlowTrackable, BaseModel):
)
# Key by agent_id to avoid collision for agents with same role
workflow_metrics.per_agent[agent_id] = agent_metrics
# Still get total usage for overall metrics
if isinstance(agent.llm, BaseLLM):
llm_usage = agent.llm.get_token_usage_summary()
@@ -1789,11 +1798,11 @@ class Crew(FlowTrackable, BaseModel):
if self.manager_agent:
manager_role = getattr(self.manager_agent, 'role', 'Manager Agent')
manager_id = str(getattr(self.manager_agent, 'id', ''))
if hasattr(self.manager_agent, "_token_process"):
token_sum = self.manager_agent._token_process.get_summary()
total_usage_metrics.add_usage_metrics(token_sum)
# Create per-agent metrics for manager
manager_metrics = AgentTokenMetrics(
agent_name=manager_role,
@@ -1816,7 +1825,7 @@ class Crew(FlowTrackable, BaseModel):
llm_usage = self.manager_agent.llm._token_process.get_summary()
total_usage_metrics.add_usage_metrics(llm_usage)
# Update or create manager metrics
if manager_role in workflow_metrics.per_agent:
workflow_metrics.per_agent[manager_role].total_tokens += llm_usage.total_tokens
@@ -1842,7 +1851,7 @@ class Crew(FlowTrackable, BaseModel):
workflow_metrics.cached_prompt_tokens = total_usage_metrics.cached_prompt_tokens
workflow_metrics.completion_tokens = total_usage_metrics.completion_tokens
workflow_metrics.successful_requests = total_usage_metrics.successful_requests
# Store workflow metrics (preserving per_task data)
self.workflow_token_metrics = workflow_metrics
self.usage_metrics = total_usage_metrics
@@ -2123,14 +2132,14 @@ To enable tracing, do any one of these:
"""Get current token usage for an agent."""
if not agent:
return UsageMetrics()
if isinstance(agent.llm, BaseLLM):
return agent.llm.get_token_usage_summary()
elif hasattr(agent, "_token_process"):
if hasattr(agent, "_token_process"):
return agent._token_process.get_summary()
return UsageMetrics()
def _attach_task_token_metrics(
self,
task_output: TaskOutput,
@@ -2141,10 +2150,10 @@ To enable tracing, do any one of these:
) -> TaskOutput:
"""Attach per-task token metrics to the task output."""
from crewai.types.usage_metrics import TaskTokenMetrics
if not agent:
return task_output
# Calculate the delta (tokens used by this specific task)
task_tokens = TaskTokenMetrics(
task_name=getattr(task, 'name', None) or task.description[:50],
@@ -2156,18 +2165,18 @@ To enable tracing, do any one of these:
completion_tokens=tokens_after.completion_tokens - tokens_before.completion_tokens,
successful_requests=tokens_after.successful_requests - tokens_before.successful_requests
)
# Attach to task output
task_output.usage_metrics = task_tokens
# Store in workflow metrics
if not hasattr(self, 'workflow_token_metrics') or self.workflow_token_metrics is None:
from crewai.types.usage_metrics import WorkflowTokenMetrics
self.workflow_token_metrics = WorkflowTokenMetrics()
# Use task_id in the key to prevent collision when multiple tasks have the same name
task_key = f"{task_tokens.task_id}_{task_tokens.task_name}_{task_tokens.agent_name}"
self.workflow_token_metrics.per_task[task_key] = task_tokens
return task_output