mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-07 07:08:31 +00:00
Fix issue #2517: Use agent's LLM for function calling when no function_calling_llm is specified
Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
@@ -618,7 +618,10 @@ class Crew(BaseModel):
|
||||
agent.set_knowledge(crew_embedder=self.embedder)
|
||||
# TODO: Create an AgentFunctionCalling protocol for future refactoring
|
||||
if not agent.function_calling_llm: # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
if self.function_calling_llm:
|
||||
agent.function_calling_llm = self.function_calling_llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
else:
|
||||
agent.function_calling_llm = agent.llm # type: ignore # "BaseAgent" has no attribute "function_calling_llm"
|
||||
|
||||
if not agent.step_callback: # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
agent.step_callback = self.step_callback # type: ignore # "BaseAgent" has no attribute "step_callback"
|
||||
|
||||
@@ -1819,3 +1819,42 @@ def test_litellm_anthropic_error_handling():
|
||||
|
||||
# Verify the LLM call was only made once (no retries)
|
||||
mock_llm_call.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_agent_uses_own_llm_for_function_calling_when_not_specified():
|
||||
"""
|
||||
Test that an agent uses its own LLM for function calling when no function_calling_llm
|
||||
is specified, ensuring that non-OpenAI models like Gemini can be used without
|
||||
requiring OpenAI API keys.
|
||||
"""
|
||||
@tool
|
||||
def simple_tool(input_text: str) -> str:
|
||||
"""A simple tool that returns the input text."""
|
||||
return f"Tool processed: {input_text}"
|
||||
|
||||
agent = Agent(
|
||||
role="Gemini Agent",
|
||||
goal="Test Gemini model without OpenAI dependency",
|
||||
backstory="I am a test agent using Gemini model",
|
||||
llm="gemini/gemini-1.5-flash", # Using Gemini model
|
||||
verbose=True
|
||||
)
|
||||
|
||||
with patch.object(LLM, 'supports_function_calling', return_value=True):
|
||||
with patch('crewai.tools.tool_usage.ToolUsage') as mock_tool_usage:
|
||||
task = Task(
|
||||
description="Use the simple tool",
|
||||
expected_output="Tool result",
|
||||
agent=agent
|
||||
)
|
||||
|
||||
try:
|
||||
agent.execute_task(task, tools=[simple_tool])
|
||||
|
||||
args, kwargs = mock_tool_usage.call_args
|
||||
assert kwargs['function_calling_llm'] == agent.llm
|
||||
assert kwargs['function_calling_llm'].model.startswith("gemini")
|
||||
except Exception as e:
|
||||
if "OPENAI_API_KEY" in str(e):
|
||||
pytest.fail("Test failed with OpenAI API key error despite using Gemini model")
|
||||
|
||||
@@ -38,6 +38,7 @@ from crewai.utilities.events.crew_events import (
|
||||
from crewai.utilities.events.event_listener import EventListener
|
||||
from crewai.utilities.rpm_controller import RPMController
|
||||
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
|
||||
from crewai.tools import tool
|
||||
|
||||
# Skip streaming tests when running in CI/CD environments
|
||||
skip_streaming_in_ci = pytest.mark.skipif(
|
||||
@@ -4119,3 +4120,48 @@ def test_crew_kickoff_for_each_works_with_manager_agent_copy():
|
||||
assert crew_copy.manager_agent.backstory == crew.manager_agent.backstory
|
||||
assert isinstance(crew_copy.manager_agent.agent_executor, CrewAgentExecutor)
|
||||
assert isinstance(crew_copy.manager_agent.cache_handler, CacheHandler)
|
||||
|
||||
|
||||
@pytest.mark.vcr(filter_headers=["authorization"])
|
||||
def test_crew_agents_use_own_llm_for_function_calling():
|
||||
"""
|
||||
Test that agents in a crew use their own LLM for function calling when no
|
||||
function_calling_llm is specified for either the agent or the crew.
|
||||
"""
|
||||
@tool
|
||||
def simple_tool(input_text: str) -> str:
|
||||
"""A simple tool that returns the input text."""
|
||||
return f"Tool processed: {input_text}"
|
||||
|
||||
gemini_agent = Agent(
|
||||
role="Gemini Agent",
|
||||
goal="Test Gemini model without OpenAI dependency",
|
||||
backstory="I am a test agent using Gemini model",
|
||||
llm="gemini/gemini-1.5-flash", # Using Gemini model
|
||||
tools=[simple_tool],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[gemini_agent],
|
||||
tasks=[
|
||||
Task(
|
||||
description="Use the simple tool to process 'test input'",
|
||||
expected_output="Processed result",
|
||||
agent=gemini_agent
|
||||
)
|
||||
],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
with patch.object(LLM, 'supports_function_calling', return_value=True):
|
||||
with patch('crewai.tools.tool_usage.ToolUsage') as mock_tool_usage:
|
||||
try:
|
||||
crew.kickoff()
|
||||
|
||||
args, kwargs = mock_tool_usage.call_args
|
||||
assert kwargs['function_calling_llm'] == gemini_agent.llm
|
||||
assert kwargs['function_calling_llm'].model.startswith("gemini")
|
||||
except Exception as e:
|
||||
if "OPENAI_API_KEY" in str(e):
|
||||
pytest.fail("Test failed with OpenAI API key error despite using Gemini model")
|
||||
|
||||
Reference in New Issue
Block a user