mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
Merge branch 'bugfix/restrict-python-version-compatibility' of https://github.com/joaomdmoura/crewAI into bugfix/restrict-python-version-compatibility
This commit is contained in:
@@ -8,8 +8,8 @@ icon: book
|
||||
|
||||
## What is Knowledge?
|
||||
|
||||
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
|
||||
Think of it as giving your agents a reference library they can consult while working.
|
||||
Knowledge in CrewAI is a powerful system that allows AI agents to access and utilize external information sources during their tasks.
|
||||
Think of it as giving your agents a reference library they can consult while working.
|
||||
|
||||
<Info>
|
||||
Key benefits of using Knowledge:
|
||||
@@ -47,7 +47,7 @@ from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSourc
|
||||
# Create a knowledge source
|
||||
content = "Users name is John. He is 30 years old and lives in San Francisco."
|
||||
string_source = StringKnowledgeSource(
|
||||
content=content,
|
||||
content=content,
|
||||
)
|
||||
|
||||
# Create an LLM with a temperature of 0 to ensure deterministic outputs
|
||||
@@ -122,7 +122,6 @@ crewai reset-memories --knowledge
|
||||
|
||||
This is useful when you've updated your knowledge sources and want to ensure that the agents are using the most recent information.
|
||||
|
||||
|
||||
## Custom Knowledge Sources
|
||||
|
||||
CrewAI allows you to create custom knowledge sources for any type of data by extending the `BaseKnowledgeSource` class. Let's create a practical example that fetches and processes space news articles.
|
||||
@@ -141,10 +140,10 @@ from pydantic import BaseModel, Field
|
||||
|
||||
class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
|
||||
"""Knowledge source that fetches data from Space News API."""
|
||||
|
||||
|
||||
api_endpoint: str = Field(description="API endpoint URL")
|
||||
limit: int = Field(default=10, description="Number of articles to fetch")
|
||||
|
||||
|
||||
def load_content(self) -> Dict[Any, str]:
|
||||
"""Fetch and format space news articles."""
|
||||
try:
|
||||
@@ -152,15 +151,15 @@ class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
|
||||
f"{self.api_endpoint}?limit={self.limit}"
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
|
||||
data = response.json()
|
||||
articles = data.get('results', [])
|
||||
|
||||
|
||||
formatted_data = self._format_articles(articles)
|
||||
return {self.api_endpoint: formatted_data}
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to fetch space news: {str(e)}")
|
||||
|
||||
|
||||
def _format_articles(self, articles: list) -> str:
|
||||
"""Format articles into readable text."""
|
||||
formatted = "Space News Articles:\n\n"
|
||||
@@ -180,7 +179,7 @@ class SpaceNewsKnowledgeSource(BaseKnowledgeSource):
|
||||
for _, text in content.items():
|
||||
chunks = self._chunk_text(text)
|
||||
self.chunks.extend(chunks)
|
||||
|
||||
|
||||
self._save_documents()
|
||||
|
||||
# Create knowledge source
|
||||
@@ -193,7 +192,7 @@ recent_news = SpaceNewsKnowledgeSource(
|
||||
space_analyst = Agent(
|
||||
role="Space News Analyst",
|
||||
goal="Answer questions about space news accurately and comprehensively",
|
||||
backstory="""You are a space industry analyst with expertise in space exploration,
|
||||
backstory="""You are a space industry analyst with expertise in space exploration,
|
||||
satellite technology, and space industry trends. You excel at answering questions
|
||||
about space news and providing detailed, accurate information.""",
|
||||
knowledge_sources=[recent_news],
|
||||
@@ -220,13 +219,14 @@ result = crew.kickoff(
|
||||
inputs={"user_question": "What are the latest developments in space exploration?"}
|
||||
)
|
||||
```
|
||||
|
||||
```output Output
|
||||
# Agent: Space News Analyst
|
||||
## Task: Answer this question about space news: What are the latest developments in space exploration?
|
||||
|
||||
|
||||
# Agent: Space News Analyst
|
||||
## Final Answer:
|
||||
## Final Answer:
|
||||
The latest developments in space exploration, based on recent space news articles, include the following:
|
||||
|
||||
1. SpaceX has received the final regulatory approvals to proceed with the second integrated Starship/Super Heavy launch, scheduled for as soon as the morning of Nov. 17, 2023. This is a significant step in SpaceX's ambitious plans for space exploration and colonization. [Source: SpaceNews](https://spacenews.com/starship-cleared-for-nov-17-launch/)
|
||||
@@ -242,11 +242,13 @@ The latest developments in space exploration, based on recent space news article
|
||||
6. The National Natural Science Foundation of China has outlined a five-year project for researchers to study the assembly of ultra-large spacecraft. This could lead to significant advancements in spacecraft technology and space exploration capabilities. [Source: SpaceNews](https://spacenews.com/china-researching-challenges-of-kilometer-scale-ultra-large-spacecraft/)
|
||||
|
||||
7. The Center for AEroSpace Autonomy Research (CAESAR) at Stanford University is focusing on spacecraft autonomy. The center held a kickoff event on May 22, 2024, to highlight the industry, academia, and government collaboration it seeks to foster. This could lead to significant advancements in autonomous spacecraft technology. [Source: SpaceNews](https://spacenews.com/stanford-center-focuses-on-spacecraft-autonomy/)
|
||||
```
|
||||
```
|
||||
|
||||
</CodeGroup>
|
||||
#### Key Components Explained
|
||||
|
||||
1. **Custom Knowledge Source (`SpaceNewsKnowledgeSource`)**:
|
||||
|
||||
- Extends `BaseKnowledgeSource` for integration with CrewAI
|
||||
- Configurable API endpoint and article limit
|
||||
- Implements three key methods:
|
||||
@@ -255,10 +257,12 @@ The latest developments in space exploration, based on recent space news article
|
||||
- `add()`: Processes and stores the content
|
||||
|
||||
2. **Agent Configuration**:
|
||||
|
||||
- Specialized role as a Space News Analyst
|
||||
- Uses the knowledge source to access space news
|
||||
|
||||
3. **Task Setup**:
|
||||
|
||||
- Takes a user question as input through `{user_question}`
|
||||
- Designed to provide detailed answers based on the knowledge source
|
||||
|
||||
@@ -267,6 +271,7 @@ The latest developments in space exploration, based on recent space news article
|
||||
- Handles input/output through the kickoff method
|
||||
|
||||
This example demonstrates how to:
|
||||
|
||||
- Create a custom knowledge source that fetches real-time data
|
||||
- Process and format external data for AI consumption
|
||||
- Use the knowledge source to answer specific user questions
|
||||
@@ -274,13 +279,15 @@ This example demonstrates how to:
|
||||
|
||||
#### About the Spaceflight News API
|
||||
|
||||
The example uses the [Spaceflight News API](https://api.spaceflightnewsapi.net/v4/documentation), which:
|
||||
The example uses the [Spaceflight News API](https://api.spaceflightnewsapi.net/v4/docs/), which:
|
||||
|
||||
- Provides free access to space-related news articles
|
||||
- Requires no authentication
|
||||
- Returns structured data about space news
|
||||
- Supports pagination and filtering
|
||||
|
||||
You can customize the API query by modifying the endpoint URL:
|
||||
|
||||
```python
|
||||
# Fetch more articles
|
||||
recent_news = SpaceNewsKnowledgeSource(
|
||||
@@ -303,9 +310,9 @@ recent_news = SpaceNewsKnowledgeSource(
|
||||
- Consider content overlap for context preservation
|
||||
- Organize related information into separate knowledge sources
|
||||
</Accordion>
|
||||
|
||||
|
||||
<Accordion title="Performance Tips">
|
||||
- Adjust chunk sizes based on content complexity
|
||||
- Adjust chunk sizes based on content complexity
|
||||
- Configure appropriate embedding models
|
||||
- Consider using local embedding providers for faster processing
|
||||
</Accordion>
|
||||
|
||||
@@ -172,6 +172,48 @@ def my_tool(question: str) -> str:
|
||||
return "Result from your custom tool"
|
||||
```
|
||||
|
||||
### Structured Tools
|
||||
|
||||
The `StructuredTool` class wraps functions as tools, providing flexibility and validation while reducing boilerplate. It supports custom schemas and dynamic logic for seamless integration of complex functionalities.
|
||||
|
||||
#### Example:
|
||||
Using `StructuredTool.from_function`, you can wrap a function that interacts with an external API or system, providing a structured interface. This enables robust validation and consistent execution, making it easier to integrate complex functionalities into your applications as demonstrated in the following example:
|
||||
|
||||
```python
|
||||
from crewai.tools.structured_tool import CrewStructuredTool
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Define the schema for the tool's input using Pydantic
|
||||
class APICallInput(BaseModel):
|
||||
endpoint: str
|
||||
parameters: dict
|
||||
|
||||
# Wrapper function to execute the API call
|
||||
def tool_wrapper(*args, **kwargs):
|
||||
# Here, you would typically call the API using the parameters
|
||||
# For demonstration, we'll return a placeholder string
|
||||
return f"Call the API at {kwargs['endpoint']} with parameters {kwargs['parameters']}"
|
||||
|
||||
# Create and return the structured tool
|
||||
def create_structured_tool():
|
||||
return CrewStructuredTool.from_function(
|
||||
name='Wrapper API',
|
||||
description="A tool to wrap API calls with structured input.",
|
||||
args_schema=APICallInput,
|
||||
func=tool_wrapper,
|
||||
)
|
||||
|
||||
# Example usage
|
||||
structured_tool = create_structured_tool()
|
||||
|
||||
# Execute the tool with structured input
|
||||
result = structured_tool._run(**{
|
||||
"endpoint": "https://example.com/api",
|
||||
"parameters": {"key1": "value1", "key2": "value2"}
|
||||
})
|
||||
print(result) # Output: Call the API at https://example.com/api with parameters {'key1': 'value1', 'key2': 'value2'}
|
||||
```
|
||||
|
||||
### Custom Caching Mechanism
|
||||
|
||||
<Tip>
|
||||
|
||||
@@ -143,6 +143,9 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
tool_result = self._execute_tool_and_check_finality(
|
||||
formatted_answer
|
||||
)
|
||||
if self.step_callback:
|
||||
self.step_callback(tool_result)
|
||||
|
||||
formatted_answer.text += f"\nObservation: {tool_result.result}"
|
||||
formatted_answer.result = tool_result.result
|
||||
if tool_result.result_as_answer:
|
||||
@@ -299,7 +302,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
|
||||
self._i18n.slice("summarizer_system_message"), role="system"
|
||||
),
|
||||
self._format_msg(
|
||||
self._i18n.slice("sumamrize_instruction").format(group=group),
|
||||
self._i18n.slice("summarize_instruction").format(group=group),
|
||||
),
|
||||
],
|
||||
callbacks=self.callbacks,
|
||||
|
||||
@@ -3,6 +3,7 @@ import hashlib
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
from typing import Any, Dict, List, Optional, Union, cast
|
||||
|
||||
import chromadb
|
||||
@@ -15,6 +16,7 @@ from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
from crewai.utilities.logger import Logger
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
@@ -105,15 +107,17 @@ class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
raise Exception("Failed to create or get collection")
|
||||
|
||||
def reset(self):
|
||||
if self.app:
|
||||
self.app.reset()
|
||||
else:
|
||||
base_path = os.path.join(db_storage_path(), "knowledge")
|
||||
base_path = os.path.join(db_storage_path(), KNOWLEDGE_DIRECTORY)
|
||||
if not self.app:
|
||||
self.app = chromadb.PersistentClient(
|
||||
path=base_path,
|
||||
settings=Settings(allow_reset=True),
|
||||
)
|
||||
self.app.reset()
|
||||
|
||||
self.app.reset()
|
||||
shutil.rmtree(base_path)
|
||||
self.app = None
|
||||
self.collection = None
|
||||
|
||||
def save(
|
||||
self,
|
||||
|
||||
@@ -150,9 +150,11 @@ class RAGStorage(BaseRAGStorage):
|
||||
|
||||
def reset(self) -> None:
|
||||
try:
|
||||
shutil.rmtree(f"{db_storage_path()}/{self.type}")
|
||||
if self.app:
|
||||
self.app.reset()
|
||||
shutil.rmtree(f"{db_storage_path()}/{self.type}")
|
||||
self.app = None
|
||||
self.collection = None
|
||||
except Exception as e:
|
||||
if "attempt to write a readonly database" in str(e):
|
||||
# Ignore this specific error
|
||||
|
||||
@@ -37,7 +37,7 @@ class UserMemory(Memory):
|
||||
limit: int = 3,
|
||||
score_threshold: float = 0.35,
|
||||
):
|
||||
results = super().search(
|
||||
results = self.storage.search(
|
||||
query=query,
|
||||
limit=limit,
|
||||
score_threshold=score_threshold,
|
||||
|
||||
@@ -66,6 +66,8 @@ def cache_handler(func):
|
||||
|
||||
|
||||
def crew(func) -> Callable[..., Crew]:
|
||||
|
||||
@wraps(func)
|
||||
def wrapper(self, *args, **kwargs) -> Crew:
|
||||
instantiated_tasks = []
|
||||
instantiated_agents = []
|
||||
|
||||
@@ -213,4 +213,8 @@ def CrewBase(cls: T) -> T:
|
||||
callback_functions[callback]() for callback in callbacks
|
||||
]
|
||||
|
||||
# Include base class (qual)name in the wrapper class (qual)name.
|
||||
WrappedClass.__name__ = CrewBase.__name__ + "(" + cls.__name__ + ")"
|
||||
WrappedClass.__qualname__ = CrewBase.__qualname__ + "(" + cls.__name__ + ")"
|
||||
|
||||
return cast(T, WrappedClass)
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
from functools import wraps
|
||||
|
||||
def memoize(func):
|
||||
cache = {}
|
||||
|
||||
@wraps(func)
|
||||
def memoized_func(*args, **kwargs):
|
||||
key = (args, tuple(kwargs.items()))
|
||||
if key not in cache:
|
||||
cache[key] = func(*args, **kwargs)
|
||||
return cache[key]
|
||||
|
||||
memoized_func.__dict__.update(func.__dict__)
|
||||
return memoized_func
|
||||
|
||||
@@ -19,7 +19,7 @@
|
||||
"human_feedback": "You got human feedback on your work, re-evaluate it and give a new Final Answer when ready.\n {human_feedback}",
|
||||
"getting_input": "This is the agent's final answer: {final_answer}\n\n",
|
||||
"summarizer_system_message": "You are a helpful assistant that summarizes text.",
|
||||
"sumamrize_instruction": "Summarize the following text, make sure to include all the important information: {group}",
|
||||
"summarize_instruction": "Summarize the following text, make sure to include all the important information: {group}",
|
||||
"summary": "This is a summary of our conversation so far:\n{merged_summary}",
|
||||
"manager_request": "Your best answer to your coworker asking you this, accounting for the context shared.",
|
||||
"formatted_task_instructions": "Ensure your final answer contains only the content in the following format: {output_format}\n\nEnsure the final output does not include any code block markers like ```json or ```python.",
|
||||
|
||||
Reference in New Issue
Block a user