mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-30 02:28:13 +00:00
bedrock works
This commit is contained in:
@@ -45,6 +45,78 @@ except ImportError:
|
||||
'AWS Bedrock native provider not available, to install: uv add "crewai[bedrock]"'
|
||||
) from None
|
||||
|
||||
|
||||
STRUCTURED_OUTPUT_TOOL_NAME = "structured_output"
|
||||
|
||||
|
||||
def _preprocess_structured_data(
|
||||
data: dict[str, Any], response_model: type[BaseModel]
|
||||
) -> dict[str, Any]:
|
||||
"""Preprocess structured data to handle common LLM output format issues.
|
||||
|
||||
Some models (especially Claude on Bedrock) may return array fields as
|
||||
markdown-formatted strings instead of proper JSON arrays. This function
|
||||
attempts to convert such strings to arrays before validation.
|
||||
|
||||
Args:
|
||||
data: The raw structured data from the tool response
|
||||
response_model: The Pydantic model class to validate against
|
||||
|
||||
Returns:
|
||||
Preprocessed data with string-to-array conversions where needed
|
||||
"""
|
||||
import re
|
||||
from typing import get_origin
|
||||
|
||||
# Get model field annotations
|
||||
model_fields = response_model.model_fields
|
||||
|
||||
processed_data = dict(data)
|
||||
|
||||
for field_name, field_info in model_fields.items():
|
||||
if field_name not in processed_data:
|
||||
continue
|
||||
|
||||
value = processed_data[field_name]
|
||||
|
||||
# Check if the field expects a list type
|
||||
annotation = field_info.annotation
|
||||
origin = get_origin(annotation)
|
||||
|
||||
# Handle list[X] or List[X] types
|
||||
is_list_type = origin is list or (
|
||||
origin is not None and str(origin).startswith("list")
|
||||
)
|
||||
|
||||
if is_list_type and isinstance(value, str):
|
||||
# Try to parse markdown-style bullet points or numbered lists
|
||||
lines = value.strip().split("\n")
|
||||
parsed_items = []
|
||||
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
|
||||
# Remove common bullet point prefixes
|
||||
# Matches: "- item", "* item", "• item", "1. item", "1) item"
|
||||
cleaned = re.sub(r"^[-*•]\s*", "", line)
|
||||
cleaned = re.sub(r"^\d+[.)]\s*", "", cleaned)
|
||||
cleaned = cleaned.strip()
|
||||
|
||||
if cleaned:
|
||||
parsed_items.append(cleaned)
|
||||
|
||||
if parsed_items:
|
||||
processed_data[field_name] = parsed_items
|
||||
logging.debug(
|
||||
f"Converted markdown-formatted string to list for field '{field_name}': "
|
||||
f"{len(parsed_items)} items"
|
||||
)
|
||||
|
||||
return processed_data
|
||||
|
||||
|
||||
try:
|
||||
from aiobotocore.session import ( # type: ignore[import-untyped]
|
||||
get_session as get_aiobotocore_session,
|
||||
@@ -545,27 +617,56 @@ class BedrockCompletion(BaseLLM):
|
||||
) -> str | Any:
|
||||
"""Handle non-streaming converse API call following AWS best practices."""
|
||||
if response_model:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
# Check if structured_output tool already exists (from a previous recursive call)
|
||||
existing_tool_config = body.get("toolConfig")
|
||||
existing_tools: list[Any] = []
|
||||
structured_output_already_exists = False
|
||||
|
||||
if existing_tool_config:
|
||||
existing_tools = list(existing_tool_config.get("tools", []))
|
||||
for tool in existing_tools:
|
||||
tool_spec = tool.get("toolSpec", {})
|
||||
if tool_spec.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_output_already_exists = True
|
||||
break
|
||||
|
||||
if not structured_output_already_exists:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": STRUCTURED_OUTPUT_TOOL_NAME,
|
||||
"description": (
|
||||
"Use this tool to provide your final structured response. "
|
||||
"Call this tool when you have gathered all necessary information "
|
||||
"and are ready to provide the final answer in the required format."
|
||||
),
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {"tool": {"name": "structured_output"}},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
if existing_tools:
|
||||
existing_tools.append(structured_tool)
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(object, {"tools": existing_tools}),
|
||||
)
|
||||
else:
|
||||
# No existing tools, use only structured_output with forced toolChoice
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {
|
||||
"tool": {"name": STRUCTURED_OUTPUT_TOOL_NAME}
|
||||
},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
if not messages:
|
||||
@@ -616,29 +717,46 @@ class BedrockCompletion(BaseLLM):
|
||||
# If there are tool uses but no available_functions, return them for the executor to handle
|
||||
tool_uses = [block["toolUse"] for block in content if "toolUse" in block]
|
||||
|
||||
# Check for structured_output tool call first
|
||||
if response_model and tool_uses:
|
||||
for tool_use in tool_uses:
|
||||
if tool_use.get("name") == "structured_output":
|
||||
if tool_use.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_data = tool_use.get("input", {})
|
||||
result = response_model.model_validate(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
structured_data = _preprocess_structured_data(
|
||||
structured_data, response_model
|
||||
)
|
||||
return result
|
||||
try:
|
||||
result = response_model.model_validate(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"Failed to validate {STRUCTURED_OUTPUT_TOOL_NAME} tool response "
|
||||
f"with model {response_model.__name__}: {e}"
|
||||
)
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
if tool_uses and not available_functions:
|
||||
# Filter out structured_output from tool_uses returned to executor
|
||||
non_structured_output_tool_uses = [
|
||||
tu for tu in tool_uses if tu.get("name") != STRUCTURED_OUTPUT_TOOL_NAME
|
||||
]
|
||||
|
||||
if non_structured_output_tool_uses and not available_functions:
|
||||
self._emit_call_completed_event(
|
||||
response=tool_uses,
|
||||
response=non_structured_output_tool_uses,
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return tool_uses
|
||||
return non_structured_output_tool_uses
|
||||
|
||||
# Process content blocks and handle tool use correctly
|
||||
text_content = ""
|
||||
@@ -655,6 +773,9 @@ class BedrockCompletion(BaseLLM):
|
||||
function_name = tool_use_block["name"]
|
||||
function_args = tool_use_block.get("input", {})
|
||||
|
||||
if function_name == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
continue
|
||||
|
||||
logging.debug(
|
||||
f"Tool use requested: {function_name} with ID {tool_use_id}"
|
||||
)
|
||||
@@ -691,7 +812,12 @@ class BedrockCompletion(BaseLLM):
|
||||
)
|
||||
|
||||
return self._handle_converse(
|
||||
messages, body, available_functions, from_task, from_agent
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
)
|
||||
|
||||
# Apply stop sequences if configured
|
||||
@@ -780,27 +906,58 @@ class BedrockCompletion(BaseLLM):
|
||||
) -> str:
|
||||
"""Handle streaming converse API call with comprehensive event handling."""
|
||||
if response_model:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
# Check if structured_output tool already exists (from a previous recursive call)
|
||||
existing_tool_config = body.get("toolConfig")
|
||||
existing_tools: list[Any] = []
|
||||
structured_output_already_exists = False
|
||||
|
||||
if existing_tool_config:
|
||||
existing_tools = list(existing_tool_config.get("tools", []))
|
||||
# Check if structured_output tool is already in the tools list
|
||||
for tool in existing_tools:
|
||||
tool_spec = tool.get("toolSpec", {})
|
||||
if tool_spec.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_output_already_exists = True
|
||||
break
|
||||
|
||||
if not structured_output_already_exists:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": STRUCTURED_OUTPUT_TOOL_NAME,
|
||||
"description": (
|
||||
"Use this tool to provide your final structured response. "
|
||||
"Call this tool when you have gathered all necessary information "
|
||||
"and are ready to provide the final answer in the required format."
|
||||
),
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {"tool": {"name": "structured_output"}},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
if existing_tools:
|
||||
# Append structured_output to existing tools, don't force toolChoice
|
||||
existing_tools.append(structured_tool)
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(object, {"tools": existing_tools}),
|
||||
)
|
||||
else:
|
||||
# No existing tools, use only structured_output with forced toolChoice
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {
|
||||
"tool": {"name": STRUCTURED_OUTPUT_TOOL_NAME}
|
||||
},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
full_response = ""
|
||||
current_tool_use: dict[str, Any] | None = None
|
||||
@@ -892,47 +1049,79 @@ class BedrockCompletion(BaseLLM):
|
||||
)
|
||||
elif "contentBlockStop" in event:
|
||||
logging.debug("Content block stopped in stream")
|
||||
if current_tool_use and available_functions:
|
||||
if current_tool_use:
|
||||
function_name = current_tool_use["name"]
|
||||
function_args = cast(
|
||||
dict[str, Any], current_tool_use.get("input", {})
|
||||
)
|
||||
tool_result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
if tool_result is not None and tool_use_id:
|
||||
messages.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"toolUse": current_tool_use}],
|
||||
}
|
||||
|
||||
# Check if this is the structured_output tool
|
||||
if (
|
||||
function_name == STRUCTURED_OUTPUT_TOOL_NAME
|
||||
and response_model
|
||||
):
|
||||
function_args = _preprocess_structured_data(
|
||||
function_args, response_model
|
||||
)
|
||||
messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"toolResult": {
|
||||
"toolUseId": tool_use_id,
|
||||
"content": [
|
||||
{"text": str(tool_result)}
|
||||
],
|
||||
try:
|
||||
result = response_model.model_validate(
|
||||
function_args
|
||||
)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result # type: ignore[return-value]
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"Failed to validate {STRUCTURED_OUTPUT_TOOL_NAME} tool response "
|
||||
f"with model {response_model.__name__}: {e}"
|
||||
)
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
# Handle regular tool execution
|
||||
if available_functions:
|
||||
tool_result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
if tool_result is not None and tool_use_id:
|
||||
messages.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"toolUse": current_tool_use}],
|
||||
}
|
||||
)
|
||||
messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"toolResult": {
|
||||
"toolUseId": tool_use_id,
|
||||
"content": [
|
||||
{"text": str(tool_result)}
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
return self._handle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
)
|
||||
],
|
||||
}
|
||||
)
|
||||
return self._handle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
)
|
||||
current_tool_use = None
|
||||
tool_use_id = None
|
||||
elif "messageStop" in event:
|
||||
@@ -1016,27 +1205,58 @@ class BedrockCompletion(BaseLLM):
|
||||
) -> str | Any:
|
||||
"""Handle async non-streaming converse API call."""
|
||||
if response_model:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
# Check if structured_output tool already exists (from a previous recursive call)
|
||||
existing_tool_config = body.get("toolConfig")
|
||||
existing_tools: list[Any] = []
|
||||
structured_output_already_exists = False
|
||||
|
||||
if existing_tool_config:
|
||||
existing_tools = list(existing_tool_config.get("tools", []))
|
||||
# Check if structured_output tool is already in the tools list
|
||||
for tool in existing_tools:
|
||||
tool_spec = tool.get("toolSpec", {})
|
||||
if tool_spec.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_output_already_exists = True
|
||||
break
|
||||
|
||||
if not structured_output_already_exists:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": STRUCTURED_OUTPUT_TOOL_NAME,
|
||||
"description": (
|
||||
"Use this tool to provide your final structured response. "
|
||||
"Call this tool when you have gathered all necessary information "
|
||||
"and are ready to provide the final answer in the required format."
|
||||
),
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {"tool": {"name": "structured_output"}},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
if existing_tools:
|
||||
# Append structured_output to existing tools, don't force toolChoice
|
||||
existing_tools.append(structured_tool)
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(object, {"tools": existing_tools}),
|
||||
)
|
||||
else:
|
||||
# No existing tools, use only structured_output with forced toolChoice
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {
|
||||
"tool": {"name": STRUCTURED_OUTPUT_TOOL_NAME}
|
||||
},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
if not messages:
|
||||
@@ -1084,29 +1304,46 @@ class BedrockCompletion(BaseLLM):
|
||||
# If there are tool uses but no available_functions, return them for the executor to handle
|
||||
tool_uses = [block["toolUse"] for block in content if "toolUse" in block]
|
||||
|
||||
# Check for structured_output tool call first
|
||||
if response_model and tool_uses:
|
||||
for tool_use in tool_uses:
|
||||
if tool_use.get("name") == "structured_output":
|
||||
if tool_use.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_data = tool_use.get("input", {})
|
||||
result = response_model.model_validate(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
structured_data = _preprocess_structured_data(
|
||||
structured_data, response_model
|
||||
)
|
||||
return result
|
||||
try:
|
||||
result = response_model.model_validate(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"Failed to validate {STRUCTURED_OUTPUT_TOOL_NAME} tool response "
|
||||
f"with model {response_model.__name__}: {e}"
|
||||
)
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
if tool_uses and not available_functions:
|
||||
# Filter out structured_output from tool_uses returned to executor
|
||||
non_structured_output_tool_uses = [
|
||||
tu for tu in tool_uses if tu.get("name") != STRUCTURED_OUTPUT_TOOL_NAME
|
||||
]
|
||||
|
||||
if non_structured_output_tool_uses and not available_functions:
|
||||
self._emit_call_completed_event(
|
||||
response=tool_uses,
|
||||
response=non_structured_output_tool_uses,
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return tool_uses
|
||||
return non_structured_output_tool_uses
|
||||
|
||||
text_content = ""
|
||||
|
||||
@@ -1120,6 +1357,10 @@ class BedrockCompletion(BaseLLM):
|
||||
function_name = tool_use_block["name"]
|
||||
function_args = tool_use_block.get("input", {})
|
||||
|
||||
# Skip structured_output - it's handled above
|
||||
if function_name == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
continue
|
||||
|
||||
logging.debug(
|
||||
f"Tool use requested: {function_name} with ID {tool_use_id}"
|
||||
)
|
||||
@@ -1155,7 +1396,12 @@ class BedrockCompletion(BaseLLM):
|
||||
)
|
||||
|
||||
return await self._ahandle_converse(
|
||||
messages, body, available_functions, from_task, from_agent
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
)
|
||||
|
||||
text_content = self._apply_stop_words(text_content)
|
||||
@@ -1232,27 +1478,58 @@ class BedrockCompletion(BaseLLM):
|
||||
) -> str:
|
||||
"""Handle async streaming converse API call."""
|
||||
if response_model:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
# Check if structured_output tool already exists (from a previous recursive call)
|
||||
existing_tool_config = body.get("toolConfig")
|
||||
existing_tools: list[Any] = []
|
||||
structured_output_already_exists = False
|
||||
|
||||
if existing_tool_config:
|
||||
existing_tools = list(existing_tool_config.get("tools", []))
|
||||
# Check if structured_output tool is already in the tools list
|
||||
for tool in existing_tools:
|
||||
tool_spec = tool.get("toolSpec", {})
|
||||
if tool_spec.get("name") == STRUCTURED_OUTPUT_TOOL_NAME:
|
||||
structured_output_already_exists = True
|
||||
break
|
||||
|
||||
if not structured_output_already_exists:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": STRUCTURED_OUTPUT_TOOL_NAME,
|
||||
"description": (
|
||||
"Use this tool to provide your final structured response. "
|
||||
"Call this tool when you have gathered all necessary information "
|
||||
"and are ready to provide the final answer in the required format."
|
||||
),
|
||||
"inputSchema": {
|
||||
"json": generate_model_description(response_model)
|
||||
.get("json_schema", {})
|
||||
.get("schema", {})
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {"tool": {"name": "structured_output"}},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
if existing_tools:
|
||||
# Append structured_output to existing tools, don't force toolChoice
|
||||
existing_tools.append(structured_tool)
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(object, {"tools": existing_tools}),
|
||||
)
|
||||
else:
|
||||
# No existing tools, use only structured_output with forced toolChoice
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {
|
||||
"tool": {"name": STRUCTURED_OUTPUT_TOOL_NAME}
|
||||
},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
full_response = ""
|
||||
current_tool_use: dict[str, Any] | None = None
|
||||
@@ -1346,54 +1623,84 @@ class BedrockCompletion(BaseLLM):
|
||||
|
||||
elif "contentBlockStop" in event:
|
||||
logging.debug("Content block stopped in stream")
|
||||
if current_tool_use and available_functions:
|
||||
if current_tool_use:
|
||||
function_name = current_tool_use["name"]
|
||||
function_args = cast(
|
||||
dict[str, Any], current_tool_use.get("input", {})
|
||||
)
|
||||
|
||||
tool_result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
# Check if this is the structured_output tool
|
||||
if (
|
||||
function_name == STRUCTURED_OUTPUT_TOOL_NAME
|
||||
and response_model
|
||||
):
|
||||
function_args = _preprocess_structured_data(
|
||||
function_args, response_model
|
||||
)
|
||||
try:
|
||||
result = response_model.model_validate(
|
||||
function_args
|
||||
)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result # type: ignore[return-value]
|
||||
except Exception as e:
|
||||
error_msg = (
|
||||
f"Failed to validate {STRUCTURED_OUTPUT_TOOL_NAME} tool response "
|
||||
f"with model {response_model.__name__}: {e}"
|
||||
)
|
||||
logging.error(error_msg)
|
||||
raise ValueError(error_msg) from e
|
||||
|
||||
if tool_result is not None and tool_use_id:
|
||||
messages.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"toolUse": current_tool_use}],
|
||||
}
|
||||
# Handle regular tool execution
|
||||
if available_functions:
|
||||
tool_result = self._handle_tool_execution(
|
||||
function_name=function_name,
|
||||
function_args=function_args,
|
||||
available_functions=available_functions,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
)
|
||||
|
||||
messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"toolResult": {
|
||||
"toolUseId": tool_use_id,
|
||||
"content": [
|
||||
{"text": str(tool_result)}
|
||||
],
|
||||
if tool_result is not None and tool_use_id:
|
||||
messages.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [{"toolUse": current_tool_use}],
|
||||
}
|
||||
)
|
||||
|
||||
messages.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"toolResult": {
|
||||
"toolUseId": tool_use_id,
|
||||
"content": [
|
||||
{"text": str(tool_result)}
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
],
|
||||
}
|
||||
)
|
||||
|
||||
return await self._ahandle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
)
|
||||
|
||||
current_tool_use = None
|
||||
tool_use_id = None
|
||||
return await self._ahandle_converse(
|
||||
messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
)
|
||||
current_tool_use = None
|
||||
tool_use_id = None
|
||||
|
||||
elif "messageStop" in event:
|
||||
stop_reason = event["messageStop"].get("stopReason")
|
||||
|
||||
@@ -925,7 +925,7 @@ def extract_tool_call_info(
|
||||
)
|
||||
func_info = tool_call.get("function", {})
|
||||
func_name = func_info.get("name", "") or tool_call.get("name", "")
|
||||
func_args = func_info.get("arguments", "{}") or tool_call.get("input", {})
|
||||
func_args = func_info.get("arguments") or tool_call.get("input") or {}
|
||||
return call_id, sanitize_tool_name(func_name), func_args
|
||||
return None
|
||||
|
||||
|
||||
Reference in New Issue
Block a user