mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-27 17:18:13 +00:00
feat: add structured outputs support to Bedrock and Anthropic providers
This commit is contained in:
@@ -3,9 +3,8 @@ from __future__ import annotations
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Any, Literal, cast
|
||||
from typing import TYPE_CHECKING, Any, Final, Literal, cast
|
||||
|
||||
from anthropic.types import ThinkingBlock
|
||||
from pydantic import BaseModel
|
||||
|
||||
from crewai.events.types.llm_events import LLMCallType
|
||||
@@ -24,6 +23,7 @@ if TYPE_CHECKING:
|
||||
try:
|
||||
from anthropic import Anthropic, AsyncAnthropic
|
||||
from anthropic.types import Message, TextBlock, ThinkingBlock, ToolUseBlock
|
||||
from anthropic.types.beta import BetaMessage
|
||||
import httpx
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
@@ -31,7 +31,36 @@ except ImportError:
|
||||
) from None
|
||||
|
||||
|
||||
ANTHROPIC_FILES_API_BETA = "files-api-2025-04-14"
|
||||
ANTHROPIC_FILES_API_BETA: Final = "files-api-2025-04-14"
|
||||
ANTHROPIC_STRUCTURED_OUTPUTS_BETA: Final = "structured-outputs-2025-11-13"
|
||||
|
||||
NATIVE_STRUCTURED_OUTPUT_MODELS: Final[
|
||||
tuple[
|
||||
Literal["claude-sonnet-4"],
|
||||
Literal["claude-opus-4"],
|
||||
Literal["claude-haiku-4"],
|
||||
]
|
||||
] = (
|
||||
"claude-sonnet-4",
|
||||
"claude-opus-4",
|
||||
"claude-haiku-4",
|
||||
)
|
||||
|
||||
|
||||
def _supports_native_structured_outputs(model: str) -> bool:
|
||||
"""Check if the model supports native structured outputs.
|
||||
|
||||
Native structured outputs are only available for Claude 4.x models.
|
||||
Claude 3.x models require the tool-based fallback approach.
|
||||
|
||||
Args:
|
||||
model: The model name/identifier.
|
||||
|
||||
Returns:
|
||||
True if the model supports native structured outputs.
|
||||
"""
|
||||
model_lower = model.lower()
|
||||
return any(prefix in model_lower for prefix in NATIVE_STRUCTURED_OUTPUT_MODELS)
|
||||
|
||||
|
||||
def _contains_file_id_reference(messages: list[dict[str, Any]]) -> bool:
|
||||
@@ -84,6 +113,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
client_params: dict[str, Any] | None = None,
|
||||
interceptor: BaseInterceptor[httpx.Request, httpx.Response] | None = None,
|
||||
thinking: AnthropicThinkingConfig | None = None,
|
||||
response_format: type[BaseModel] | None = None,
|
||||
**kwargs: Any,
|
||||
):
|
||||
"""Initialize Anthropic chat completion client.
|
||||
@@ -101,6 +131,8 @@ class AnthropicCompletion(BaseLLM):
|
||||
stream: Enable streaming responses
|
||||
client_params: Additional parameters for the Anthropic client
|
||||
interceptor: HTTP interceptor for modifying requests/responses at transport level.
|
||||
response_format: Pydantic model for structured output. When provided, responses
|
||||
will be validated against this model schema.
|
||||
**kwargs: Additional parameters
|
||||
"""
|
||||
super().__init__(
|
||||
@@ -131,6 +163,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
self.stop_sequences = stop_sequences or []
|
||||
self.thinking = thinking
|
||||
self.previous_thinking_blocks: list[ThinkingBlock] = []
|
||||
self.response_format = response_format
|
||||
# Model-specific settings
|
||||
self.is_claude_3 = "claude-3" in model.lower()
|
||||
self.supports_tools = True
|
||||
@@ -231,6 +264,8 @@ class AnthropicCompletion(BaseLLM):
|
||||
formatted_messages, system_message, tools
|
||||
)
|
||||
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
# Handle streaming vs non-streaming
|
||||
if self.stream:
|
||||
return self._handle_streaming_completion(
|
||||
@@ -238,7 +273,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
return self._handle_completion(
|
||||
@@ -246,7 +281,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -298,13 +333,15 @@ class AnthropicCompletion(BaseLLM):
|
||||
formatted_messages, system_message, tools
|
||||
)
|
||||
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
if self.stream:
|
||||
return await self._ahandle_streaming_completion(
|
||||
completion_params,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
return await self._ahandle_completion(
|
||||
@@ -312,7 +349,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
response_model,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -565,21 +602,33 @@ class AnthropicCompletion(BaseLLM):
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
"""Handle non-streaming message completion."""
|
||||
if response_model:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
uses_file_api = _contains_file_id_reference(params.get("messages", []))
|
||||
betas: list[str] = []
|
||||
use_native_structured_output = False
|
||||
|
||||
if uses_file_api:
|
||||
betas.append(ANTHROPIC_FILES_API_BETA)
|
||||
|
||||
if response_model:
|
||||
if _supports_native_structured_outputs(self.model):
|
||||
use_native_structured_output = True
|
||||
betas.append(ANTHROPIC_STRUCTURED_OUTPUTS_BETA)
|
||||
params["output_format"] = {
|
||||
"type": "json_schema",
|
||||
"schema": response_model.model_json_schema(),
|
||||
}
|
||||
else:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Output the structured response",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
try:
|
||||
if uses_file_api:
|
||||
params["betas"] = [ANTHROPIC_FILES_API_BETA]
|
||||
if betas:
|
||||
params["betas"] = betas
|
||||
response = self.client.beta.messages.create(**params)
|
||||
else:
|
||||
response = self.client.messages.create(**params)
|
||||
@@ -594,21 +643,33 @@ class AnthropicCompletion(BaseLLM):
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
if response_model and response.content:
|
||||
tool_uses = [
|
||||
block for block in response.content if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
if tool_uses and tool_uses[0].name == "structured_output":
|
||||
structured_data = tool_uses[0].input
|
||||
structured_json = json.dumps(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
|
||||
return structured_json
|
||||
if use_native_structured_output:
|
||||
for block in response.content:
|
||||
if isinstance(block, TextBlock):
|
||||
structured_json = block.text
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_json
|
||||
else:
|
||||
for block in response.content:
|
||||
if (
|
||||
isinstance(block, ToolUseBlock)
|
||||
and block.name == "structured_output"
|
||||
):
|
||||
structured_json = json.dumps(block.input)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_json
|
||||
|
||||
# Check if Claude wants to use tools
|
||||
if response.content:
|
||||
@@ -678,17 +739,27 @@ class AnthropicCompletion(BaseLLM):
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str:
|
||||
) -> str | Any:
|
||||
"""Handle streaming message completion."""
|
||||
if response_model:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
betas: list[str] = []
|
||||
use_native_structured_output = False
|
||||
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
if response_model:
|
||||
if _supports_native_structured_outputs(self.model):
|
||||
use_native_structured_output = True
|
||||
betas.append(ANTHROPIC_STRUCTURED_OUTPUTS_BETA)
|
||||
params["output_format"] = {
|
||||
"type": "json_schema",
|
||||
"schema": response_model.model_json_schema(),
|
||||
}
|
||||
else:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Output the structured response",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
full_response = ""
|
||||
|
||||
@@ -696,15 +767,22 @@ class AnthropicCompletion(BaseLLM):
|
||||
# (the SDK sets it internally)
|
||||
stream_params = {k: v for k, v in params.items() if k != "stream"}
|
||||
|
||||
if betas:
|
||||
stream_params["betas"] = betas
|
||||
|
||||
current_tool_calls: dict[int, dict[str, Any]] = {}
|
||||
|
||||
# Make streaming API call
|
||||
with self.client.messages.stream(**stream_params) as stream:
|
||||
stream_context = (
|
||||
self.client.beta.messages.stream(**stream_params)
|
||||
if betas
|
||||
else self.client.messages.stream(**stream_params)
|
||||
)
|
||||
with stream_context as stream:
|
||||
response_id = None
|
||||
for event in stream:
|
||||
if hasattr(event, "message") and hasattr(event.message, "id"):
|
||||
response_id = event.message.id
|
||||
|
||||
|
||||
if hasattr(event, "delta") and hasattr(event.delta, "text"):
|
||||
text_delta = event.delta.text
|
||||
full_response += text_delta
|
||||
@@ -712,7 +790,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
chunk=text_delta,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
if event.type == "content_block_start":
|
||||
@@ -739,7 +817,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
"index": block_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id
|
||||
response_id=response_id,
|
||||
)
|
||||
elif event.type == "content_block_delta":
|
||||
if event.delta.type == "input_json_delta":
|
||||
@@ -763,10 +841,10 @@ class AnthropicCompletion(BaseLLM):
|
||||
"index": block_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
final_message: Message = stream.get_final_message()
|
||||
final_message = stream.get_final_message()
|
||||
|
||||
thinking_blocks: list[ThinkingBlock] = []
|
||||
if final_message.content:
|
||||
@@ -781,25 +859,30 @@ class AnthropicCompletion(BaseLLM):
|
||||
usage = self._extract_anthropic_token_usage(final_message)
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
if response_model and final_message.content:
|
||||
tool_uses = [
|
||||
block
|
||||
for block in final_message.content
|
||||
if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
if tool_uses and tool_uses[0].name == "structured_output":
|
||||
structured_data = tool_uses[0].input
|
||||
structured_json = json.dumps(structured_data)
|
||||
|
||||
if response_model:
|
||||
if use_native_structured_output:
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
response=full_response,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
|
||||
return structured_json
|
||||
return full_response
|
||||
for block in final_message.content:
|
||||
if (
|
||||
isinstance(block, ToolUseBlock)
|
||||
and block.name == "structured_output"
|
||||
):
|
||||
structured_json = json.dumps(block.input)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_json
|
||||
|
||||
if final_message.content:
|
||||
tool_uses = [
|
||||
@@ -809,11 +892,9 @@ class AnthropicCompletion(BaseLLM):
|
||||
]
|
||||
|
||||
if tool_uses:
|
||||
# If no available_functions, return tool calls for executor to handle
|
||||
if not available_functions:
|
||||
return list(tool_uses)
|
||||
|
||||
# Handle tool use conversation flow internally
|
||||
return self._handle_tool_use_conversation(
|
||||
final_message,
|
||||
tool_uses,
|
||||
@@ -823,10 +904,8 @@ class AnthropicCompletion(BaseLLM):
|
||||
from_agent,
|
||||
)
|
||||
|
||||
# Apply stop words to full response
|
||||
full_response = self._apply_stop_words(full_response)
|
||||
|
||||
# Emit completion event and return full response
|
||||
self._emit_call_completed_event(
|
||||
response=full_response,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
@@ -884,7 +963,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
|
||||
def _handle_tool_use_conversation(
|
||||
self,
|
||||
initial_response: Message,
|
||||
initial_response: Message | BetaMessage,
|
||||
tool_uses: list[ToolUseBlock],
|
||||
params: dict[str, Any],
|
||||
available_functions: dict[str, Any],
|
||||
@@ -1002,21 +1081,33 @@ class AnthropicCompletion(BaseLLM):
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
"""Handle non-streaming async message completion."""
|
||||
if response_model:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
uses_file_api = _contains_file_id_reference(params.get("messages", []))
|
||||
betas: list[str] = []
|
||||
use_native_structured_output = False
|
||||
|
||||
if uses_file_api:
|
||||
betas.append(ANTHROPIC_FILES_API_BETA)
|
||||
|
||||
if response_model:
|
||||
if _supports_native_structured_outputs(self.model):
|
||||
use_native_structured_output = True
|
||||
betas.append(ANTHROPIC_STRUCTURED_OUTPUTS_BETA)
|
||||
params["output_format"] = {
|
||||
"type": "json_schema",
|
||||
"schema": response_model.model_json_schema(),
|
||||
}
|
||||
else:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Output the structured response",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
try:
|
||||
if uses_file_api:
|
||||
params["betas"] = [ANTHROPIC_FILES_API_BETA]
|
||||
if betas:
|
||||
params["betas"] = betas
|
||||
response = await self.async_client.beta.messages.create(**params)
|
||||
else:
|
||||
response = await self.async_client.messages.create(**params)
|
||||
@@ -1031,22 +1122,33 @@ class AnthropicCompletion(BaseLLM):
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
if response_model and response.content:
|
||||
tool_uses = [
|
||||
block for block in response.content if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
if tool_uses and tool_uses[0].name == "structured_output":
|
||||
structured_data = tool_uses[0].input
|
||||
structured_json = json.dumps(structured_data)
|
||||
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
|
||||
return structured_json
|
||||
if use_native_structured_output:
|
||||
for block in response.content:
|
||||
if isinstance(block, TextBlock):
|
||||
structured_json = block.text
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_json
|
||||
else:
|
||||
for block in response.content:
|
||||
if (
|
||||
isinstance(block, ToolUseBlock)
|
||||
and block.name == "structured_output"
|
||||
):
|
||||
structured_json = json.dumps(block.input)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_json
|
||||
|
||||
if response.content:
|
||||
tool_uses = [
|
||||
@@ -1102,25 +1204,43 @@ class AnthropicCompletion(BaseLLM):
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str:
|
||||
) -> str | Any:
|
||||
"""Handle async streaming message completion."""
|
||||
if response_model:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
betas: list[str] = []
|
||||
use_native_structured_output = False
|
||||
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
if response_model:
|
||||
if _supports_native_structured_outputs(self.model):
|
||||
use_native_structured_output = True
|
||||
betas.append(ANTHROPIC_STRUCTURED_OUTPUTS_BETA)
|
||||
params["output_format"] = {
|
||||
"type": "json_schema",
|
||||
"schema": response_model.model_json_schema(),
|
||||
}
|
||||
else:
|
||||
structured_tool = {
|
||||
"name": "structured_output",
|
||||
"description": "Output the structured response",
|
||||
"input_schema": response_model.model_json_schema(),
|
||||
}
|
||||
params["tools"] = [structured_tool]
|
||||
params["tool_choice"] = {"type": "tool", "name": "structured_output"}
|
||||
|
||||
full_response = ""
|
||||
|
||||
stream_params = {k: v for k, v in params.items() if k != "stream"}
|
||||
|
||||
if betas:
|
||||
stream_params["betas"] = betas
|
||||
|
||||
current_tool_calls: dict[int, dict[str, Any]] = {}
|
||||
|
||||
async with self.async_client.messages.stream(**stream_params) as stream:
|
||||
stream_context = (
|
||||
self.async_client.beta.messages.stream(**stream_params)
|
||||
if betas
|
||||
else self.async_client.messages.stream(**stream_params)
|
||||
)
|
||||
async with stream_context as stream:
|
||||
response_id = None
|
||||
async for event in stream:
|
||||
if hasattr(event, "message") and hasattr(event.message, "id"):
|
||||
@@ -1133,7 +1253,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
chunk=text_delta,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
if event.type == "content_block_start":
|
||||
@@ -1160,7 +1280,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
"index": block_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id
|
||||
response_id=response_id,
|
||||
)
|
||||
elif event.type == "content_block_delta":
|
||||
if event.delta.type == "input_json_delta":
|
||||
@@ -1184,33 +1304,38 @@ class AnthropicCompletion(BaseLLM):
|
||||
"index": block_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id
|
||||
response_id=response_id,
|
||||
)
|
||||
|
||||
final_message: Message = await stream.get_final_message()
|
||||
final_message = await stream.get_final_message()
|
||||
|
||||
usage = self._extract_anthropic_token_usage(final_message)
|
||||
self._track_token_usage_internal(usage)
|
||||
|
||||
if response_model and final_message.content:
|
||||
tool_uses = [
|
||||
block
|
||||
for block in final_message.content
|
||||
if isinstance(block, ToolUseBlock)
|
||||
]
|
||||
if tool_uses and tool_uses[0].name == "structured_output":
|
||||
structured_data = tool_uses[0].input
|
||||
structured_json = json.dumps(structured_data)
|
||||
|
||||
if response_model:
|
||||
if use_native_structured_output:
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
response=full_response,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
|
||||
return structured_json
|
||||
return full_response
|
||||
for block in final_message.content:
|
||||
if (
|
||||
isinstance(block, ToolUseBlock)
|
||||
and block.name == "structured_output"
|
||||
):
|
||||
structured_json = json.dumps(block.input)
|
||||
self._emit_call_completed_event(
|
||||
response=structured_json,
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=params["messages"],
|
||||
)
|
||||
return structured_json
|
||||
|
||||
if final_message.content:
|
||||
tool_uses = [
|
||||
@@ -1220,7 +1345,6 @@ class AnthropicCompletion(BaseLLM):
|
||||
]
|
||||
|
||||
if tool_uses:
|
||||
# If no available_functions, return tool calls for executor to handle
|
||||
if not available_functions:
|
||||
return list(tool_uses)
|
||||
|
||||
@@ -1247,7 +1371,7 @@ class AnthropicCompletion(BaseLLM):
|
||||
|
||||
async def _ahandle_tool_use_conversation(
|
||||
self,
|
||||
initial_response: Message,
|
||||
initial_response: Message | BetaMessage,
|
||||
tool_uses: list[ToolUseBlock],
|
||||
params: dict[str, Any],
|
||||
available_functions: dict[str, Any],
|
||||
@@ -1356,7 +1480,9 @@ class AnthropicCompletion(BaseLLM):
|
||||
return int(200000 * CONTEXT_WINDOW_USAGE_RATIO)
|
||||
|
||||
@staticmethod
|
||||
def _extract_anthropic_token_usage(response: Message) -> dict[str, Any]:
|
||||
def _extract_anthropic_token_usage(
|
||||
response: Message | BetaMessage,
|
||||
) -> dict[str, Any]:
|
||||
"""Extract token usage from Anthropic response."""
|
||||
if hasattr(response, "usage") and response.usage:
|
||||
usage = response.usage
|
||||
|
||||
@@ -172,6 +172,7 @@ class BedrockCompletion(BaseLLM):
|
||||
additional_model_request_fields: dict[str, Any] | None = None,
|
||||
additional_model_response_field_paths: list[str] | None = None,
|
||||
interceptor: BaseInterceptor[Any, Any] | None = None,
|
||||
response_format: type[BaseModel] | None = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""Initialize AWS Bedrock completion client.
|
||||
@@ -192,6 +193,8 @@ class BedrockCompletion(BaseLLM):
|
||||
additional_model_request_fields: Model-specific request parameters
|
||||
additional_model_response_field_paths: Custom response field paths
|
||||
interceptor: HTTP interceptor (not yet supported for Bedrock).
|
||||
response_format: Pydantic model for structured output. Used as default when
|
||||
response_model is not passed to call()/acall() methods.
|
||||
**kwargs: Additional parameters
|
||||
"""
|
||||
if interceptor is not None:
|
||||
@@ -248,6 +251,7 @@ class BedrockCompletion(BaseLLM):
|
||||
self.top_k = top_k
|
||||
self.stream = stream
|
||||
self.stop_sequences = stop_sequences
|
||||
self.response_format = response_format
|
||||
|
||||
# Store advanced features (optional)
|
||||
self.guardrail_config = guardrail_config
|
||||
@@ -299,6 +303,8 @@ class BedrockCompletion(BaseLLM):
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
"""Call AWS Bedrock Converse API."""
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
try:
|
||||
# Emit call started event
|
||||
self._emit_call_started_event(
|
||||
@@ -375,6 +381,7 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
return self._handle_converse(
|
||||
@@ -383,6 +390,7 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -425,6 +433,8 @@ class BedrockCompletion(BaseLLM):
|
||||
NotImplementedError: If aiobotocore is not installed.
|
||||
LLMContextLengthExceededError: If context window is exceeded.
|
||||
"""
|
||||
effective_response_model = response_model or self.response_format
|
||||
|
||||
if not AIOBOTOCORE_AVAILABLE:
|
||||
raise NotImplementedError(
|
||||
"Async support for AWS Bedrock requires aiobotocore. "
|
||||
@@ -494,11 +504,21 @@ class BedrockCompletion(BaseLLM):
|
||||
|
||||
if self.stream:
|
||||
return await self._ahandle_streaming_converse(
|
||||
formatted_messages, body, available_functions, from_task, from_agent
|
||||
formatted_messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
return await self._ahandle_converse(
|
||||
formatted_messages, body, available_functions, from_task, from_agent
|
||||
formatted_messages,
|
||||
body,
|
||||
available_functions,
|
||||
from_task,
|
||||
from_agent,
|
||||
effective_response_model,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
@@ -520,10 +540,29 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions: Mapping[str, Any] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
) -> str:
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
"""Handle non-streaming converse API call following AWS best practices."""
|
||||
if response_model:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"inputSchema": {"json": response_model.model_json_schema()},
|
||||
}
|
||||
}
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {"tool": {"name": "structured_output"}},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
# Validate messages format before API call
|
||||
if not messages:
|
||||
raise ValueError("Messages cannot be empty")
|
||||
|
||||
@@ -571,6 +610,21 @@ class BedrockCompletion(BaseLLM):
|
||||
|
||||
# If there are tool uses but no available_functions, return them for the executor to handle
|
||||
tool_uses = [block["toolUse"] for block in content if "toolUse" in block]
|
||||
|
||||
if response_model and tool_uses:
|
||||
for tool_use in tool_uses:
|
||||
if tool_use.get("name") == "structured_output":
|
||||
structured_data = tool_use.get("input", {})
|
||||
result = response_model.model_validate(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result
|
||||
|
||||
if tool_uses and not available_functions:
|
||||
self._emit_call_completed_event(
|
||||
response=tool_uses,
|
||||
@@ -717,8 +771,28 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions: dict[str, Any] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str:
|
||||
"""Handle streaming converse API call with comprehensive event handling."""
|
||||
if response_model:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"inputSchema": {"json": response_model.model_json_schema()},
|
||||
}
|
||||
}
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {"tool": {"name": "structured_output"}},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
full_response = ""
|
||||
current_tool_use: dict[str, Any] | None = None
|
||||
tool_use_id: str | None = None
|
||||
@@ -805,7 +879,7 @@ class BedrockCompletion(BaseLLM):
|
||||
"index": tool_use_index,
|
||||
},
|
||||
call_type=LLMCallType.TOOL_CALL,
|
||||
response_id=response_id
|
||||
response_id=response_id,
|
||||
)
|
||||
elif "contentBlockStop" in event:
|
||||
logging.debug("Content block stopped in stream")
|
||||
@@ -929,8 +1003,28 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions: Mapping[str, Any] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
) -> str:
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str | Any:
|
||||
"""Handle async non-streaming converse API call."""
|
||||
if response_model:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"inputSchema": {"json": response_model.model_json_schema()},
|
||||
}
|
||||
}
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {"tool": {"name": "structured_output"}},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
if not messages:
|
||||
raise ValueError("Messages cannot be empty")
|
||||
@@ -976,6 +1070,21 @@ class BedrockCompletion(BaseLLM):
|
||||
|
||||
# If there are tool uses but no available_functions, return them for the executor to handle
|
||||
tool_uses = [block["toolUse"] for block in content if "toolUse" in block]
|
||||
|
||||
if response_model and tool_uses:
|
||||
for tool_use in tool_uses:
|
||||
if tool_use.get("name") == "structured_output":
|
||||
structured_data = tool_use.get("input", {})
|
||||
result = response_model.model_validate(structured_data)
|
||||
self._emit_call_completed_event(
|
||||
response=result.model_dump_json(),
|
||||
call_type=LLMCallType.LLM_CALL,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
messages=messages,
|
||||
)
|
||||
return result
|
||||
|
||||
if tool_uses and not available_functions:
|
||||
self._emit_call_completed_event(
|
||||
response=tool_uses,
|
||||
@@ -1106,8 +1215,28 @@ class BedrockCompletion(BaseLLM):
|
||||
available_functions: dict[str, Any] | None = None,
|
||||
from_task: Any | None = None,
|
||||
from_agent: Any | None = None,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
) -> str:
|
||||
"""Handle async streaming converse API call."""
|
||||
if response_model:
|
||||
structured_tool: ConverseToolTypeDef = {
|
||||
"toolSpec": {
|
||||
"name": "structured_output",
|
||||
"description": "Returns structured data according to the schema",
|
||||
"inputSchema": {"json": response_model.model_json_schema()},
|
||||
}
|
||||
}
|
||||
body["toolConfig"] = cast(
|
||||
"ToolConfigurationTypeDef",
|
||||
cast(
|
||||
object,
|
||||
{
|
||||
"tools": [structured_tool],
|
||||
"toolChoice": {"tool": {"name": "structured_output"}},
|
||||
},
|
||||
),
|
||||
)
|
||||
|
||||
full_response = ""
|
||||
current_tool_use: dict[str, Any] | None = None
|
||||
tool_use_id: str | None = None
|
||||
@@ -1174,7 +1303,7 @@ class BedrockCompletion(BaseLLM):
|
||||
chunk=text_chunk,
|
||||
from_task=from_task,
|
||||
from_agent=from_agent,
|
||||
response_id=response_id
|
||||
response_id=response_id,
|
||||
)
|
||||
elif "toolUse" in delta and current_tool_use:
|
||||
tool_input = delta["toolUse"].get("input", "")
|
||||
|
||||
Reference in New Issue
Block a user