Merge branch 'main' into gl/chore/use-base-model-for-llms

This commit is contained in:
Greyson LaLonde
2025-11-13 14:08:29 -05:00
committed by GitHub
71 changed files with 8056 additions and 1548 deletions

35
.github/workflows/docs-broken-links.yml vendored Normal file
View File

@@ -0,0 +1,35 @@
name: Check Documentation Broken Links
on:
pull_request:
paths:
- "docs/**"
- "docs.json"
push:
branches:
- main
paths:
- "docs/**"
- "docs.json"
workflow_dispatch:
jobs:
check-links:
name: Check broken links
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Node
uses: actions/setup-node@v4
with:
node-version: "latest"
- name: Install Mintlify CLI
run: npm i -g mintlify
- name: Run broken link checker
run: |
# Auto-answer the prompt with yes command
yes "" | mintlify broken-links || test $? -eq 141
working-directory: ./docs

View File

@@ -313,7 +313,10 @@
"en/learn/multimodal-agents", "en/learn/multimodal-agents",
"en/learn/replay-tasks-from-latest-crew-kickoff", "en/learn/replay-tasks-from-latest-crew-kickoff",
"en/learn/sequential-process", "en/learn/sequential-process",
"en/learn/using-annotations" "en/learn/using-annotations",
"en/learn/execution-hooks",
"en/learn/llm-hooks",
"en/learn/tool-hooks"
] ]
}, },
{ {
@@ -737,7 +740,10 @@
"pt-BR/learn/multimodal-agents", "pt-BR/learn/multimodal-agents",
"pt-BR/learn/replay-tasks-from-latest-crew-kickoff", "pt-BR/learn/replay-tasks-from-latest-crew-kickoff",
"pt-BR/learn/sequential-process", "pt-BR/learn/sequential-process",
"pt-BR/learn/using-annotations" "pt-BR/learn/using-annotations",
"pt-BR/learn/execution-hooks",
"pt-BR/learn/llm-hooks",
"pt-BR/learn/tool-hooks"
] ]
}, },
{ {
@@ -1170,7 +1176,10 @@
"ko/learn/multimodal-agents", "ko/learn/multimodal-agents",
"ko/learn/replay-tasks-from-latest-crew-kickoff", "ko/learn/replay-tasks-from-latest-crew-kickoff",
"ko/learn/sequential-process", "ko/learn/sequential-process",
"ko/learn/using-annotations" "ko/learn/using-annotations",
"ko/learn/execution-hooks",
"ko/learn/llm-hooks",
"ko/learn/tool-hooks"
] ]
}, },
{ {

View File

@@ -739,7 +739,7 @@ class KnowledgeMonitorListener(BaseEventListener):
knowledge_monitor = KnowledgeMonitorListener() knowledge_monitor = KnowledgeMonitorListener()
``` ```
For more information on using events, see the [Event Listeners](https://docs.crewai.com/concepts/event-listener) documentation. For more information on using events, see the [Event Listeners](/en/concepts/event-listener) documentation.
### Custom Knowledge Sources ### Custom Knowledge Sources

View File

@@ -1035,7 +1035,7 @@ CrewAI supports streaming responses from LLMs, allowing your application to rece
``` ```
<Tip> <Tip>
[Click here](https://docs.crewai.com/concepts/event-listener#event-listeners) for more details [Click here](/en/concepts/event-listener#event-listeners) for more details
</Tip> </Tip>
</Tab> </Tab>

View File

@@ -37,7 +37,7 @@ you can use them locally or refine them to your needs.
<Card title="Tools & Integrations" href="/en/enterprise/features/tools-and-integrations" icon="wrench"> <Card title="Tools & Integrations" href="/en/enterprise/features/tools-and-integrations" icon="wrench">
Connect external apps and manage internal tools your agents can use. Connect external apps and manage internal tools your agents can use.
</Card> </Card>
<Card title="Tool Repository" href="/en/enterprise/features/tool-repository" icon="toolbox"> <Card title="Tool Repository" href="/en/enterprise/guides/tool-repository#tool-repository" icon="toolbox">
Publish and install tools to enhance your crews' capabilities. Publish and install tools to enhance your crews' capabilities.
</Card> </Card>
<Card title="Agents Repository" href="/en/enterprise/features/agent-repositories" icon="people-group"> <Card title="Agents Repository" href="/en/enterprise/features/agent-repositories" icon="people-group">

View File

@@ -241,7 +241,7 @@ Tools & Integrations is the central hub for connecting thirdparty apps and ma
## Related ## Related
<CardGroup cols={2}> <CardGroup cols={2}>
<Card title="Tool Repository" href="/en/enterprise/features/tool-repository" icon="toolbox"> <Card title="Tool Repository" href="/en/enterprise/guides/tool-repository#tool-repository" icon="toolbox">
Create, publish, and version custom tools for your organization. Create, publish, and version custom tools for your organization.
</Card> </Card>
<Card title="Webhook Automation" href="/en/enterprise/guides/webhook-automation" icon="bolt"> <Card title="Webhook Automation" href="/en/enterprise/guides/webhook-automation" icon="bolt">

View File

@@ -21,7 +21,7 @@ The repository is not a version control system. Use Git to track code changes an
Before using the Tool Repository, ensure you have: Before using the Tool Repository, ensure you have:
- A [CrewAI AMP](https://app.crewai.com) account - A [CrewAI AMP](https://app.crewai.com) account
- [CrewAI CLI](https://docs.crewai.com/concepts/cli#cli) installed - [CrewAI CLI](/en/concepts/cli#cli) installed
- uv>=0.5.0 installed. Check out [how to upgrade](https://docs.astral.sh/uv/getting-started/installation/#upgrading-uv) - uv>=0.5.0 installed. Check out [how to upgrade](https://docs.astral.sh/uv/getting-started/installation/#upgrading-uv)
- [Git](https://git-scm.com) installed and configured - [Git](https://git-scm.com) installed and configured
- Access permissions to publish or install tools in your CrewAI AMP organization - Access permissions to publish or install tools in your CrewAI AMP organization
@@ -112,7 +112,7 @@ By default, tools are published as private. To make a tool public:
crewai tool publish --public crewai tool publish --public
``` ```
For more details on how to build tools, see [Creating your own tools](https://docs.crewai.com/concepts/tools#creating-your-own-tools). For more details on how to build tools, see [Creating your own tools](/en/concepts/tools#creating-your-own-tools).
## Updating Tools ## Updating Tools

View File

@@ -49,7 +49,7 @@ mode: "wide"
To integrate human input into agent execution, set the `human_input` flag in the task definition. When enabled, the agent prompts the user for input before delivering its final answer. This input can provide extra context, clarify ambiguities, or validate the agent's output. To integrate human input into agent execution, set the `human_input` flag in the task definition. When enabled, the agent prompts the user for input before delivering its final answer. This input can provide extra context, clarify ambiguities, or validate the agent's output.
For detailed implementation guidance, see our [Human-in-the-Loop guide](/en/how-to/human-in-the-loop). For detailed implementation guidance, see our [Human-in-the-Loop guide](/en/enterprise/guides/human-in-the-loop).
</Accordion> </Accordion>
<Accordion title="What advanced customization options are available for tailoring and enhancing agent behavior and capabilities in CrewAI?"> <Accordion title="What advanced customization options are available for tailoring and enhancing agent behavior and capabilities in CrewAI?">
@@ -142,7 +142,7 @@ mode: "wide"
<Accordion title="How can I create custom tools for my CrewAI agents?"> <Accordion title="How can I create custom tools for my CrewAI agents?">
You can create custom tools by subclassing the `BaseTool` class provided by CrewAI or by using the tool decorator. Subclassing involves defining a new class that inherits from `BaseTool`, specifying the name, description, and the `_run` method for operational logic. The tool decorator allows you to create a `Tool` object directly with the required attributes and a functional logic. You can create custom tools by subclassing the `BaseTool` class provided by CrewAI or by using the tool decorator. Subclassing involves defining a new class that inherits from `BaseTool`, specifying the name, description, and the `_run` method for operational logic. The tool decorator allows you to create a `Tool` object directly with the required attributes and a functional logic.
<Card href="https://docs.crewai.com/how-to/create-custom-tools" icon="code">CrewAI Tools Guide</Card> <Card href="/en/learn/create-custom-tools" icon="code">CrewAI Tools Guide</Card>
</Accordion> </Accordion>
<Accordion title="How can you control the maximum number of requests per minute that the entire crew can perform?"> <Accordion title="How can you control the maximum number of requests per minute that the entire crew can perform?">

View File

@@ -83,6 +83,10 @@ The `A2AConfig` class accepts the following parameters:
Whether to raise an error immediately if agent connection fails. When `False`, the agent continues with available agents and informs the LLM about unavailable ones. Whether to raise an error immediately if agent connection fails. When `False`, the agent continues with available agents and informs the LLM about unavailable ones.
</ParamField> </ParamField>
<ParamField path="trust_remote_completion_status" type="bool" default="False">
When `True`, returns the A2A agent's result directly when it signals completion. When `False`, allows the server agent to review the result and potentially continue the conversation.
</ParamField>
## Authentication ## Authentication
For A2A agents that require authentication, use one of the provided auth schemes: For A2A agents that require authentication, use one of the provided auth schemes:

View File

@@ -0,0 +1,522 @@
---
title: Execution Hooks Overview
description: Understanding and using execution hooks in CrewAI for fine-grained control over agent operations
mode: "wide"
---
Execution Hooks provide fine-grained control over the runtime behavior of your CrewAI agents. Unlike kickoff hooks that run before and after crew execution, execution hooks intercept specific operations during agent execution, allowing you to modify behavior, implement safety checks, and add comprehensive monitoring.
## Types of Execution Hooks
CrewAI provides two main categories of execution hooks:
### 1. [LLM Call Hooks](/learn/llm-hooks)
Control and monitor language model interactions:
- **Before LLM Call**: Modify prompts, validate inputs, implement approval gates
- **After LLM Call**: Transform responses, sanitize outputs, update conversation history
**Use Cases:**
- Iteration limiting
- Cost tracking and token usage monitoring
- Response sanitization and content filtering
- Human-in-the-loop approval for LLM calls
- Adding safety guidelines or context
- Debug logging and request/response inspection
[View LLM Hooks Documentation →](/learn/llm-hooks)
### 2. [Tool Call Hooks](/learn/tool-hooks)
Control and monitor tool execution:
- **Before Tool Call**: Modify inputs, validate parameters, block dangerous operations
- **After Tool Call**: Transform results, sanitize outputs, log execution details
**Use Cases:**
- Safety guardrails for destructive operations
- Human approval for sensitive actions
- Input validation and sanitization
- Result caching and rate limiting
- Tool usage analytics
- Debug logging and monitoring
[View Tool Hooks Documentation →](/learn/tool-hooks)
## Hook Registration Methods
### 1. Decorator-Based Hooks (Recommended)
The cleanest and most Pythonic way to register hooks:
```python
from crewai.hooks import before_llm_call, after_llm_call, before_tool_call, after_tool_call
@before_llm_call
def limit_iterations(context):
"""Prevent infinite loops by limiting iterations."""
if context.iterations > 10:
return False # Block execution
return None
@after_llm_call
def sanitize_response(context):
"""Remove sensitive data from LLM responses."""
if "API_KEY" in context.response:
return context.response.replace("API_KEY", "[REDACTED]")
return None
@before_tool_call
def block_dangerous_tools(context):
"""Block destructive operations."""
if context.tool_name == "delete_database":
return False # Block execution
return None
@after_tool_call
def log_tool_result(context):
"""Log tool execution."""
print(f"Tool {context.tool_name} completed")
return None
```
### 2. Crew-Scoped Hooks
Apply hooks only to specific crew instances:
```python
from crewai import CrewBase
from crewai.project import crew
from crewai.hooks import before_llm_call_crew, after_tool_call_crew
@CrewBase
class MyProjCrew:
@before_llm_call_crew
def validate_inputs(self, context):
# Only applies to this crew
print(f"LLM call in {self.__class__.__name__}")
return None
@after_tool_call_crew
def log_results(self, context):
# Crew-specific logging
print(f"Tool result: {context.tool_result[:50]}...")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential
)
```
## Hook Execution Flow
### LLM Call Flow
```
Agent needs to call LLM
[Before LLM Call Hooks Execute]
├→ Hook 1: Validate iteration count
├→ Hook 2: Add safety context
└→ Hook 3: Log request
If any hook returns False:
├→ Block LLM call
└→ Raise ValueError
If all hooks return True/None:
├→ LLM call proceeds
└→ Response generated
[After LLM Call Hooks Execute]
├→ Hook 1: Sanitize response
├→ Hook 2: Log response
└→ Hook 3: Update metrics
Final response returned
```
### Tool Call Flow
```
Agent needs to execute tool
[Before Tool Call Hooks Execute]
├→ Hook 1: Check if tool is allowed
├→ Hook 2: Validate inputs
└→ Hook 3: Request approval if needed
If any hook returns False:
├→ Block tool execution
└→ Return error message
If all hooks return True/None:
├→ Tool execution proceeds
└→ Result generated
[After Tool Call Hooks Execute]
├→ Hook 1: Sanitize result
├→ Hook 2: Cache result
└→ Hook 3: Log metrics
Final result returned
```
## Hook Context Objects
### LLMCallHookContext
Provides access to LLM execution state:
```python
class LLMCallHookContext:
executor: CrewAgentExecutor # Full executor access
messages: list # Mutable message list
agent: Agent # Current agent
task: Task # Current task
crew: Crew # Crew instance
llm: BaseLLM # LLM instance
iterations: int # Current iteration
response: str | None # LLM response (after hooks)
```
### ToolCallHookContext
Provides access to tool execution state:
```python
class ToolCallHookContext:
tool_name: str # Tool being called
tool_input: dict # Mutable input parameters
tool: CrewStructuredTool # Tool instance
agent: Agent | None # Agent executing
task: Task | None # Current task
crew: Crew | None # Crew instance
tool_result: str | None # Tool result (after hooks)
```
## Common Patterns
### Safety and Validation
```python
@before_tool_call
def safety_check(context):
"""Block destructive operations."""
dangerous = ['delete_file', 'drop_table', 'system_shutdown']
if context.tool_name in dangerous:
print(f"🛑 Blocked: {context.tool_name}")
return False
return None
@before_llm_call
def iteration_limit(context):
"""Prevent infinite loops."""
if context.iterations > 15:
print("⛔ Maximum iterations exceeded")
return False
return None
```
### Human-in-the-Loop
```python
@before_tool_call
def require_approval(context):
"""Require approval for sensitive operations."""
sensitive = ['send_email', 'make_payment', 'post_message']
if context.tool_name in sensitive:
response = context.request_human_input(
prompt=f"Approve {context.tool_name}?",
default_message="Type 'yes' to approve:"
)
if response.lower() != 'yes':
return False
return None
```
### Monitoring and Analytics
```python
from collections import defaultdict
import time
metrics = defaultdict(lambda: {'count': 0, 'total_time': 0})
@before_tool_call
def start_timer(context):
context.tool_input['_start'] = time.time()
return None
@after_tool_call
def track_metrics(context):
start = context.tool_input.get('_start', time.time())
duration = time.time() - start
metrics[context.tool_name]['count'] += 1
metrics[context.tool_name]['total_time'] += duration
return None
# View metrics
def print_metrics():
for tool, data in metrics.items():
avg = data['total_time'] / data['count']
print(f"{tool}: {data['count']} calls, {avg:.2f}s avg")
```
### Response Sanitization
```python
import re
@after_llm_call
def sanitize_llm_response(context):
"""Remove sensitive data from LLM responses."""
if not context.response:
return None
result = context.response
result = re.sub(r'(api[_-]?key)["\']?\s*[:=]\s*["\']?[\w-]+',
r'\1: [REDACTED]', result, flags=re.IGNORECASE)
return result
@after_tool_call
def sanitize_tool_result(context):
"""Remove sensitive data from tool results."""
if not context.tool_result:
return None
result = context.tool_result
result = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'[EMAIL-REDACTED]', result)
return result
```
## Hook Management
### Clearing All Hooks
```python
from crewai.hooks import clear_all_global_hooks
# Clear all hooks at once
result = clear_all_global_hooks()
print(f"Cleared {result['total']} hooks")
# Output: {'llm_hooks': (2, 1), 'tool_hooks': (1, 2), 'total': (3, 3)}
```
### Clearing Specific Hook Types
```python
from crewai.hooks import (
clear_before_llm_call_hooks,
clear_after_llm_call_hooks,
clear_before_tool_call_hooks,
clear_after_tool_call_hooks
)
# Clear specific types
llm_before_count = clear_before_llm_call_hooks()
tool_after_count = clear_after_tool_call_hooks()
```
### Unregistering Individual Hooks
```python
from crewai.hooks import (
unregister_before_llm_call_hook,
unregister_after_tool_call_hook
)
def my_hook(context):
...
# Register
register_before_llm_call_hook(my_hook)
# Later, unregister
success = unregister_before_llm_call_hook(my_hook)
print(f"Unregistered: {success}")
```
## Best Practices
### 1. Keep Hooks Focused
Each hook should have a single, clear responsibility:
```python
# ✅ Good - focused responsibility
@before_tool_call
def validate_file_path(context):
if context.tool_name == 'read_file':
if '..' in context.tool_input.get('path', ''):
return False
return None
# ❌ Bad - too many responsibilities
@before_tool_call
def do_everything(context):
# Validation + logging + metrics + approval...
...
```
### 2. Handle Errors Gracefully
```python
@before_llm_call
def safe_hook(context):
try:
# Your logic
if some_condition:
return False
except Exception as e:
print(f"Hook error: {e}")
return None # Allow execution despite error
```
### 3. Modify Context In-Place
```python
# ✅ Correct - modify in-place
@before_llm_call
def add_context(context):
context.messages.append({"role": "system", "content": "Be concise"})
# ❌ Wrong - replaces reference
@before_llm_call
def wrong_approach(context):
context.messages = [{"role": "system", "content": "Be concise"}]
```
### 4. Use Type Hints
```python
from crewai.hooks import LLMCallHookContext, ToolCallHookContext
def my_llm_hook(context: LLMCallHookContext) -> bool | None:
# IDE autocomplete and type checking
return None
def my_tool_hook(context: ToolCallHookContext) -> str | None:
return None
```
### 5. Clean Up in Tests
```python
import pytest
from crewai.hooks import clear_all_global_hooks
@pytest.fixture(autouse=True)
def clean_hooks():
"""Reset hooks before each test."""
yield
clear_all_global_hooks()
```
## When to Use Which Hook
### Use LLM Hooks When:
- Implementing iteration limits
- Adding context or safety guidelines to prompts
- Tracking token usage and costs
- Sanitizing or transforming responses
- Implementing approval gates for LLM calls
- Debugging prompt/response interactions
### Use Tool Hooks When:
- Blocking dangerous or destructive operations
- Validating tool inputs before execution
- Implementing approval gates for sensitive actions
- Caching tool results
- Tracking tool usage and performance
- Sanitizing tool outputs
- Rate limiting tool calls
### Use Both When:
Building comprehensive observability, safety, or approval systems that need to monitor all agent operations.
## Alternative Registration Methods
### Programmatic Registration (Advanced)
For dynamic hook registration or when you need to register hooks programmatically:
```python
from crewai.hooks import (
register_before_llm_call_hook,
register_after_tool_call_hook
)
def my_hook(context):
return None
# Register programmatically
register_before_llm_call_hook(my_hook)
# Useful for:
# - Loading hooks from configuration
# - Conditional hook registration
# - Plugin systems
```
**Note:** For most use cases, decorators are cleaner and more maintainable.
## Performance Considerations
1. **Keep Hooks Fast**: Hooks execute on every call - avoid heavy computation
2. **Cache When Possible**: Store expensive validations or lookups
3. **Be Selective**: Use crew-scoped hooks when global hooks aren't needed
4. **Monitor Hook Overhead**: Profile hook execution time in production
5. **Lazy Import**: Import heavy dependencies only when needed
## Debugging Hooks
### Enable Debug Logging
```python
import logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
@before_llm_call
def debug_hook(context):
logger.debug(f"LLM call: {context.agent.role}, iteration {context.iterations}")
return None
```
### Hook Execution Order
Hooks execute in registration order. If a before hook returns `False`, subsequent hooks don't execute:
```python
# Register order matters!
register_before_tool_call_hook(hook1) # Executes first
register_before_tool_call_hook(hook2) # Executes second
register_before_tool_call_hook(hook3) # Executes third
# If hook2 returns False:
# - hook1 executed
# - hook2 executed and returned False
# - hook3 NOT executed
# - Tool call blocked
```
## Related Documentation
- [LLM Call Hooks →](/learn/llm-hooks) - Detailed LLM hook documentation
- [Tool Call Hooks →](/learn/tool-hooks) - Detailed tool hook documentation
- [Before and After Kickoff Hooks →](/learn/before-and-after-kickoff-hooks) - Crew lifecycle hooks
- [Human-in-the-Loop →](/learn/human-in-the-loop) - Human input patterns
## Conclusion
Execution hooks provide powerful control over agent runtime behavior. Use them to implement safety guardrails, approval workflows, comprehensive monitoring, and custom business logic. Combined with proper error handling, type safety, and performance considerations, hooks enable production-ready, secure, and observable agent systems.

View File

@@ -97,7 +97,7 @@ project_crew = Crew(
``` ```
<Tip> <Tip>
For more details on creating and customizing a manager agent, check out the [Custom Manager Agent documentation](https://docs.crewai.com/how-to/custom-manager-agent#custom-manager-agent). For more details on creating and customizing a manager agent, check out the [Custom Manager Agent documentation](/en/learn/custom-manager-agent).
</Tip> </Tip>

427
docs/en/learn/llm-hooks.mdx Normal file
View File

@@ -0,0 +1,427 @@
---
title: LLM Call Hooks
description: Learn how to use LLM call hooks to intercept, modify, and control language model interactions in CrewAI
mode: "wide"
---
LLM Call Hooks provide fine-grained control over language model interactions during agent execution. These hooks allow you to intercept LLM calls, modify prompts, transform responses, implement approval gates, and add custom logging or monitoring.
## Overview
LLM hooks are executed at two critical points:
- **Before LLM Call**: Modify messages, validate inputs, or block execution
- **After LLM Call**: Transform responses, sanitize outputs, or modify conversation history
## Hook Types
### Before LLM Call Hooks
Executed before every LLM call, these hooks can:
- Inspect and modify messages sent to the LLM
- Block LLM execution based on conditions
- Implement rate limiting or approval gates
- Add context or system messages
- Log request details
**Signature:**
```python
def before_hook(context: LLMCallHookContext) -> bool | None:
# Return False to block execution
# Return True or None to allow execution
...
```
### After LLM Call Hooks
Executed after every LLM call, these hooks can:
- Modify or sanitize LLM responses
- Add metadata or formatting
- Log response details
- Update conversation history
- Implement content filtering
**Signature:**
```python
def after_hook(context: LLMCallHookContext) -> str | None:
# Return modified response string
# Return None to keep original response
...
```
## LLM Hook Context
The `LLMCallHookContext` object provides comprehensive access to execution state:
```python
class LLMCallHookContext:
executor: CrewAgentExecutor # Full executor reference
messages: list # Mutable message list
agent: Agent # Current agent
task: Task # Current task
crew: Crew # Crew instance
llm: BaseLLM # LLM instance
iterations: int # Current iteration count
response: str | None # LLM response (after hooks only)
```
### Modifying Messages
**Important:** Always modify messages in-place:
```python
# ✅ Correct - modify in-place
def add_context(context: LLMCallHookContext) -> None:
context.messages.append({"role": "system", "content": "Be concise"})
# ❌ Wrong - replaces list reference
def wrong_approach(context: LLMCallHookContext) -> None:
context.messages = [{"role": "system", "content": "Be concise"}]
```
## Registration Methods
### 1. Global Hook Registration
Register hooks that apply to all LLM calls across all crews:
```python
from crewai.hooks import register_before_llm_call_hook, register_after_llm_call_hook
def log_llm_call(context):
print(f"LLM call by {context.agent.role} at iteration {context.iterations}")
return None # Allow execution
register_before_llm_call_hook(log_llm_call)
```
### 2. Decorator-Based Registration
Use decorators for cleaner syntax:
```python
from crewai.hooks import before_llm_call, after_llm_call
@before_llm_call
def validate_iteration_count(context):
if context.iterations > 10:
print("⚠️ Exceeded maximum iterations")
return False # Block execution
return None
@after_llm_call
def sanitize_response(context):
if context.response and "API_KEY" in context.response:
return context.response.replace("API_KEY", "[REDACTED]")
return None
```
### 3. Crew-Scoped Hooks
Register hooks for a specific crew instance:
```python
@CrewBase
class MyProjCrew:
@before_llm_call_crew
def validate_inputs(self, context):
# Only applies to this crew
if context.iterations == 0:
print(f"Starting task: {context.task.description}")
return None
@after_llm_call_crew
def log_responses(self, context):
# Crew-specific response logging
print(f"Response length: {len(context.response)}")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True
)
```
## Common Use Cases
### 1. Iteration Limiting
```python
@before_llm_call
def limit_iterations(context: LLMCallHookContext) -> bool | None:
max_iterations = 15
if context.iterations > max_iterations:
print(f"⛔ Blocked: Exceeded {max_iterations} iterations")
return False # Block execution
return None
```
### 2. Human Approval Gate
```python
@before_llm_call
def require_approval(context: LLMCallHookContext) -> bool | None:
if context.iterations > 5:
response = context.request_human_input(
prompt=f"Iteration {context.iterations}: Approve LLM call?",
default_message="Press Enter to approve, or type 'no' to block:"
)
if response.lower() == "no":
print("🚫 LLM call blocked by user")
return False
return None
```
### 3. Adding System Context
```python
@before_llm_call
def add_guardrails(context: LLMCallHookContext) -> None:
# Add safety guidelines to every LLM call
context.messages.append({
"role": "system",
"content": "Ensure responses are factual and cite sources when possible."
})
return None
```
### 4. Response Sanitization
```python
@after_llm_call
def sanitize_sensitive_data(context: LLMCallHookContext) -> str | None:
if not context.response:
return None
# Remove sensitive patterns
import re
sanitized = context.response
sanitized = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[SSN-REDACTED]', sanitized)
sanitized = re.sub(r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b', '[CARD-REDACTED]', sanitized)
return sanitized
```
### 5. Cost Tracking
```python
import tiktoken
@before_llm_call
def track_token_usage(context: LLMCallHookContext) -> None:
encoding = tiktoken.get_encoding("cl100k_base")
total_tokens = sum(
len(encoding.encode(msg.get("content", "")))
for msg in context.messages
)
print(f"📊 Input tokens: ~{total_tokens}")
return None
@after_llm_call
def track_response_tokens(context: LLMCallHookContext) -> None:
if context.response:
encoding = tiktoken.get_encoding("cl100k_base")
tokens = len(encoding.encode(context.response))
print(f"📊 Response tokens: ~{tokens}")
return None
```
### 6. Debug Logging
```python
@before_llm_call
def debug_request(context: LLMCallHookContext) -> None:
print(f"""
🔍 LLM Call Debug:
- Agent: {context.agent.role}
- Task: {context.task.description[:50]}...
- Iteration: {context.iterations}
- Message Count: {len(context.messages)}
- Last Message: {context.messages[-1] if context.messages else 'None'}
""")
return None
@after_llm_call
def debug_response(context: LLMCallHookContext) -> None:
if context.response:
print(f"✅ Response Preview: {context.response[:100]}...")
return None
```
## Hook Management
### Unregistering Hooks
```python
from crewai.hooks import (
unregister_before_llm_call_hook,
unregister_after_llm_call_hook
)
# Unregister specific hook
def my_hook(context):
...
register_before_llm_call_hook(my_hook)
# Later...
unregister_before_llm_call_hook(my_hook) # Returns True if found
```
### Clearing Hooks
```python
from crewai.hooks import (
clear_before_llm_call_hooks,
clear_after_llm_call_hooks,
clear_all_llm_call_hooks
)
# Clear specific hook type
count = clear_before_llm_call_hooks()
print(f"Cleared {count} before hooks")
# Clear all LLM hooks
before_count, after_count = clear_all_llm_call_hooks()
print(f"Cleared {before_count} before and {after_count} after hooks")
```
### Listing Registered Hooks
```python
from crewai.hooks import (
get_before_llm_call_hooks,
get_after_llm_call_hooks
)
# Get current hooks
before_hooks = get_before_llm_call_hooks()
after_hooks = get_after_llm_call_hooks()
print(f"Registered: {len(before_hooks)} before, {len(after_hooks)} after")
```
## Advanced Patterns
### Conditional Hook Execution
```python
@before_llm_call
def conditional_blocking(context: LLMCallHookContext) -> bool | None:
# Only block for specific agents
if context.agent.role == "researcher" and context.iterations > 10:
return False
# Only block for specific tasks
if "sensitive" in context.task.description.lower() and context.iterations > 5:
return False
return None
```
### Context-Aware Modifications
```python
@before_llm_call
def adaptive_prompting(context: LLMCallHookContext) -> None:
# Add different context based on iteration
if context.iterations == 0:
context.messages.append({
"role": "system",
"content": "Start with a high-level overview."
})
elif context.iterations > 3:
context.messages.append({
"role": "system",
"content": "Focus on specific details and provide examples."
})
return None
```
### Chaining Hooks
```python
# Multiple hooks execute in registration order
@before_llm_call
def first_hook(context):
print("1. First hook executed")
return None
@before_llm_call
def second_hook(context):
print("2. Second hook executed")
return None
@before_llm_call
def blocking_hook(context):
if context.iterations > 10:
print("3. Blocking hook - execution stopped")
return False # Subsequent hooks won't execute
print("3. Blocking hook - execution allowed")
return None
```
## Best Practices
1. **Keep Hooks Focused**: Each hook should have a single responsibility
2. **Avoid Heavy Computation**: Hooks execute on every LLM call
3. **Handle Errors Gracefully**: Use try-except to prevent hook failures from breaking execution
4. **Use Type Hints**: Leverage `LLMCallHookContext` for better IDE support
5. **Document Hook Behavior**: Especially for blocking conditions
6. **Test Hooks Independently**: Unit test hooks before using in production
7. **Clear Hooks in Tests**: Use `clear_all_llm_call_hooks()` between test runs
8. **Modify In-Place**: Always modify `context.messages` in-place, never replace
## Error Handling
```python
@before_llm_call
def safe_hook(context: LLMCallHookContext) -> bool | None:
try:
# Your hook logic
if some_condition:
return False
except Exception as e:
print(f"⚠️ Hook error: {e}")
# Decide: allow or block on error
return None # Allow execution despite error
```
## Type Safety
```python
from crewai.hooks import LLMCallHookContext, BeforeLLMCallHookType, AfterLLMCallHookType
# Explicit type annotations
def my_before_hook(context: LLMCallHookContext) -> bool | None:
return None
def my_after_hook(context: LLMCallHookContext) -> str | None:
return None
# Type-safe registration
register_before_llm_call_hook(my_before_hook)
register_after_llm_call_hook(my_after_hook)
```
## Troubleshooting
### Hook Not Executing
- Verify hook is registered before crew execution
- Check if previous hook returned `False` (blocks subsequent hooks)
- Ensure hook signature matches expected type
### Message Modifications Not Persisting
- Use in-place modifications: `context.messages.append()`
- Don't replace the list: `context.messages = []`
### Response Modifications Not Working
- Return the modified string from after hooks
- Returning `None` keeps the original response
## Conclusion
LLM Call Hooks provide powerful capabilities for controlling and monitoring language model interactions in CrewAI. Use them to implement safety guardrails, approval gates, logging, cost tracking, and response sanitization. Combined with proper error handling and type safety, hooks enable robust and production-ready agent systems.

View File

@@ -0,0 +1,600 @@
---
title: Tool Call Hooks
description: Learn how to use tool call hooks to intercept, modify, and control tool execution in CrewAI
mode: "wide"
---
Tool Call Hooks provide fine-grained control over tool execution during agent operations. These hooks allow you to intercept tool calls, modify inputs, transform outputs, implement safety checks, and add comprehensive logging or monitoring.
## Overview
Tool hooks are executed at two critical points:
- **Before Tool Call**: Modify inputs, validate parameters, or block execution
- **After Tool Call**: Transform results, sanitize outputs, or log execution details
## Hook Types
### Before Tool Call Hooks
Executed before every tool execution, these hooks can:
- Inspect and modify tool inputs
- Block tool execution based on conditions
- Implement approval gates for dangerous operations
- Validate parameters
- Log tool invocations
**Signature:**
```python
def before_hook(context: ToolCallHookContext) -> bool | None:
# Return False to block execution
# Return True or None to allow execution
...
```
### After Tool Call Hooks
Executed after every tool execution, these hooks can:
- Modify or sanitize tool results
- Add metadata or formatting
- Log execution results
- Implement result validation
- Transform output formats
**Signature:**
```python
def after_hook(context: ToolCallHookContext) -> str | None:
# Return modified result string
# Return None to keep original result
...
```
## Tool Hook Context
The `ToolCallHookContext` object provides comprehensive access to tool execution state:
```python
class ToolCallHookContext:
tool_name: str # Name of the tool being called
tool_input: dict[str, Any] # Mutable tool input parameters
tool: CrewStructuredTool # Tool instance reference
agent: Agent | BaseAgent | None # Agent executing the tool
task: Task | None # Current task
crew: Crew | None # Crew instance
tool_result: str | None # Tool result (after hooks only)
```
### Modifying Tool Inputs
**Important:** Always modify tool inputs in-place:
```python
# ✅ Correct - modify in-place
def sanitize_input(context: ToolCallHookContext) -> None:
context.tool_input['query'] = context.tool_input['query'].lower()
# ❌ Wrong - replaces dict reference
def wrong_approach(context: ToolCallHookContext) -> None:
context.tool_input = {'query': 'new query'}
```
## Registration Methods
### 1. Global Hook Registration
Register hooks that apply to all tool calls across all crews:
```python
from crewai.hooks import register_before_tool_call_hook, register_after_tool_call_hook
def log_tool_call(context):
print(f"Tool: {context.tool_name}")
print(f"Input: {context.tool_input}")
return None # Allow execution
register_before_tool_call_hook(log_tool_call)
```
### 2. Decorator-Based Registration
Use decorators for cleaner syntax:
```python
from crewai.hooks import before_tool_call, after_tool_call
@before_tool_call
def block_dangerous_tools(context):
dangerous_tools = ['delete_database', 'drop_table', 'rm_rf']
if context.tool_name in dangerous_tools:
print(f"⛔ Blocked dangerous tool: {context.tool_name}")
return False # Block execution
return None
@after_tool_call
def sanitize_results(context):
if context.tool_result and "password" in context.tool_result.lower():
return context.tool_result.replace("password", "[REDACTED]")
return None
```
### 3. Crew-Scoped Hooks
Register hooks for a specific crew instance:
```python
@CrewBase
class MyProjCrew:
@before_tool_call_crew
def validate_tool_inputs(self, context):
# Only applies to this crew
if context.tool_name == "web_search":
if not context.tool_input.get('query'):
print("❌ Invalid search query")
return False
return None
@after_tool_call_crew
def log_tool_results(self, context):
# Crew-specific tool logging
print(f"✅ {context.tool_name} completed")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True
)
```
## Common Use Cases
### 1. Safety Guardrails
```python
@before_tool_call
def safety_check(context: ToolCallHookContext) -> bool | None:
# Block tools that could cause harm
destructive_tools = [
'delete_file',
'drop_table',
'remove_user',
'system_shutdown'
]
if context.tool_name in destructive_tools:
print(f"🛑 Blocked destructive tool: {context.tool_name}")
return False
# Warn on sensitive operations
sensitive_tools = ['send_email', 'post_to_social_media', 'charge_payment']
if context.tool_name in sensitive_tools:
print(f"⚠️ Executing sensitive tool: {context.tool_name}")
return None
```
### 2. Human Approval Gate
```python
@before_tool_call
def require_approval_for_actions(context: ToolCallHookContext) -> bool | None:
approval_required = [
'send_email',
'make_purchase',
'delete_file',
'post_message'
]
if context.tool_name in approval_required:
response = context.request_human_input(
prompt=f"Approve {context.tool_name}?",
default_message=f"Input: {context.tool_input}\nType 'yes' to approve:"
)
if response.lower() != 'yes':
print(f"❌ Tool execution denied: {context.tool_name}")
return False
return None
```
### 3. Input Validation and Sanitization
```python
@before_tool_call
def validate_and_sanitize_inputs(context: ToolCallHookContext) -> bool | None:
# Validate search queries
if context.tool_name == 'web_search':
query = context.tool_input.get('query', '')
if len(query) < 3:
print("❌ Search query too short")
return False
# Sanitize query
context.tool_input['query'] = query.strip().lower()
# Validate file paths
if context.tool_name == 'read_file':
path = context.tool_input.get('path', '')
if '..' in path or path.startswith('/'):
print("❌ Invalid file path")
return False
return None
```
### 4. Result Sanitization
```python
@after_tool_call
def sanitize_sensitive_data(context: ToolCallHookContext) -> str | None:
if not context.tool_result:
return None
import re
result = context.tool_result
# Remove API keys
result = re.sub(
r'(api[_-]?key|token)["\']?\s*[:=]\s*["\']?[\w-]+',
r'\1: [REDACTED]',
result,
flags=re.IGNORECASE
)
# Remove email addresses
result = re.sub(
r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'[EMAIL-REDACTED]',
result
)
# Remove credit card numbers
result = re.sub(
r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b',
'[CARD-REDACTED]',
result
)
return result
```
### 5. Tool Usage Analytics
```python
import time
from collections import defaultdict
tool_stats = defaultdict(lambda: {'count': 0, 'total_time': 0, 'failures': 0})
@before_tool_call
def start_timer(context: ToolCallHookContext) -> None:
context.tool_input['_start_time'] = time.time()
return None
@after_tool_call
def track_tool_usage(context: ToolCallHookContext) -> None:
start_time = context.tool_input.get('_start_time', time.time())
duration = time.time() - start_time
tool_stats[context.tool_name]['count'] += 1
tool_stats[context.tool_name]['total_time'] += duration
if not context.tool_result or 'error' in context.tool_result.lower():
tool_stats[context.tool_name]['failures'] += 1
print(f"""
📊 Tool Stats for {context.tool_name}:
- Executions: {tool_stats[context.tool_name]['count']}
- Avg Time: {tool_stats[context.tool_name]['total_time'] / tool_stats[context.tool_name]['count']:.2f}s
- Failures: {tool_stats[context.tool_name]['failures']}
""")
return None
```
### 6. Rate Limiting
```python
from collections import defaultdict
from datetime import datetime, timedelta
tool_call_history = defaultdict(list)
@before_tool_call
def rate_limit_tools(context: ToolCallHookContext) -> bool | None:
tool_name = context.tool_name
now = datetime.now()
# Clean old entries (older than 1 minute)
tool_call_history[tool_name] = [
call_time for call_time in tool_call_history[tool_name]
if now - call_time < timedelta(minutes=1)
]
# Check rate limit (max 10 calls per minute)
if len(tool_call_history[tool_name]) >= 10:
print(f"🚫 Rate limit exceeded for {tool_name}")
return False
# Record this call
tool_call_history[tool_name].append(now)
return None
```
### 7. Caching Tool Results
```python
import hashlib
import json
tool_cache = {}
def cache_key(tool_name: str, tool_input: dict) -> str:
"""Generate cache key from tool name and input."""
input_str = json.dumps(tool_input, sort_keys=True)
return hashlib.md5(f"{tool_name}:{input_str}".encode()).hexdigest()
@before_tool_call
def check_cache(context: ToolCallHookContext) -> bool | None:
key = cache_key(context.tool_name, context.tool_input)
if key in tool_cache:
print(f"💾 Cache hit for {context.tool_name}")
# Note: Can't return cached result from before hook
# Would need to implement this differently
return None
@after_tool_call
def cache_result(context: ToolCallHookContext) -> None:
if context.tool_result:
key = cache_key(context.tool_name, context.tool_input)
tool_cache[key] = context.tool_result
print(f"💾 Cached result for {context.tool_name}")
return None
```
### 8. Debug Logging
```python
@before_tool_call
def debug_tool_call(context: ToolCallHookContext) -> None:
print(f"""
🔍 Tool Call Debug:
- Tool: {context.tool_name}
- Agent: {context.agent.role if context.agent else 'Unknown'}
- Task: {context.task.description[:50] if context.task else 'Unknown'}...
- Input: {context.tool_input}
""")
return None
@after_tool_call
def debug_tool_result(context: ToolCallHookContext) -> None:
if context.tool_result:
result_preview = context.tool_result[:200]
print(f"✅ Result Preview: {result_preview}...")
else:
print("⚠️ No result returned")
return None
```
## Hook Management
### Unregistering Hooks
```python
from crewai.hooks import (
unregister_before_tool_call_hook,
unregister_after_tool_call_hook
)
# Unregister specific hook
def my_hook(context):
...
register_before_tool_call_hook(my_hook)
# Later...
success = unregister_before_tool_call_hook(my_hook)
print(f"Unregistered: {success}")
```
### Clearing Hooks
```python
from crewai.hooks import (
clear_before_tool_call_hooks,
clear_after_tool_call_hooks,
clear_all_tool_call_hooks
)
# Clear specific hook type
count = clear_before_tool_call_hooks()
print(f"Cleared {count} before hooks")
# Clear all tool hooks
before_count, after_count = clear_all_tool_call_hooks()
print(f"Cleared {before_count} before and {after_count} after hooks")
```
### Listing Registered Hooks
```python
from crewai.hooks import (
get_before_tool_call_hooks,
get_after_tool_call_hooks
)
# Get current hooks
before_hooks = get_before_tool_call_hooks()
after_hooks = get_after_tool_call_hooks()
print(f"Registered: {len(before_hooks)} before, {len(after_hooks)} after")
```
## Advanced Patterns
### Conditional Hook Execution
```python
@before_tool_call
def conditional_blocking(context: ToolCallHookContext) -> bool | None:
# Only block for specific agents
if context.agent and context.agent.role == "junior_agent":
if context.tool_name in ['delete_file', 'send_email']:
print(f"❌ Junior agents cannot use {context.tool_name}")
return False
# Only block during specific tasks
if context.task and "sensitive" in context.task.description.lower():
if context.tool_name == 'web_search':
print("❌ Web search blocked for sensitive tasks")
return False
return None
```
### Context-Aware Input Modification
```python
@before_tool_call
def enhance_tool_inputs(context: ToolCallHookContext) -> None:
# Add context based on agent role
if context.agent and context.agent.role == "researcher":
if context.tool_name == 'web_search':
# Add domain restrictions for researchers
context.tool_input['domains'] = ['edu', 'gov', 'org']
# Add context based on task
if context.task and "urgent" in context.task.description.lower():
if context.tool_name == 'send_email':
context.tool_input['priority'] = 'high'
return None
```
### Tool Chain Monitoring
```python
tool_call_chain = []
@before_tool_call
def track_tool_chain(context: ToolCallHookContext) -> None:
tool_call_chain.append({
'tool': context.tool_name,
'timestamp': time.time(),
'agent': context.agent.role if context.agent else 'Unknown'
})
# Detect potential infinite loops
recent_calls = tool_call_chain[-5:]
if len(recent_calls) == 5 and all(c['tool'] == context.tool_name for c in recent_calls):
print(f"⚠️ Warning: {context.tool_name} called 5 times in a row")
return None
```
## Best Practices
1. **Keep Hooks Focused**: Each hook should have a single responsibility
2. **Avoid Heavy Computation**: Hooks execute on every tool call
3. **Handle Errors Gracefully**: Use try-except to prevent hook failures
4. **Use Type Hints**: Leverage `ToolCallHookContext` for better IDE support
5. **Document Blocking Conditions**: Make it clear when/why tools are blocked
6. **Test Hooks Independently**: Unit test hooks before using in production
7. **Clear Hooks in Tests**: Use `clear_all_tool_call_hooks()` between test runs
8. **Modify In-Place**: Always modify `context.tool_input` in-place, never replace
9. **Log Important Decisions**: Especially when blocking tool execution
10. **Consider Performance**: Cache expensive validations when possible
## Error Handling
```python
@before_tool_call
def safe_validation(context: ToolCallHookContext) -> bool | None:
try:
# Your validation logic
if not validate_input(context.tool_input):
return False
except Exception as e:
print(f"⚠️ Hook error: {e}")
# Decide: allow or block on error
return None # Allow execution despite error
```
## Type Safety
```python
from crewai.hooks import ToolCallHookContext, BeforeToolCallHookType, AfterToolCallHookType
# Explicit type annotations
def my_before_hook(context: ToolCallHookContext) -> bool | None:
return None
def my_after_hook(context: ToolCallHookContext) -> str | None:
return None
# Type-safe registration
register_before_tool_call_hook(my_before_hook)
register_after_tool_call_hook(my_after_hook)
```
## Integration with Existing Tools
### Wrapping Existing Validation
```python
def existing_validator(tool_name: str, inputs: dict) -> bool:
"""Your existing validation function."""
# Your validation logic
return True
@before_tool_call
def integrate_validator(context: ToolCallHookContext) -> bool | None:
if not existing_validator(context.tool_name, context.tool_input):
print(f"❌ Validation failed for {context.tool_name}")
return False
return None
```
### Logging to External Systems
```python
import logging
logger = logging.getLogger(__name__)
@before_tool_call
def log_to_external_system(context: ToolCallHookContext) -> None:
logger.info(f"Tool call: {context.tool_name}", extra={
'tool_name': context.tool_name,
'tool_input': context.tool_input,
'agent': context.agent.role if context.agent else None
})
return None
```
## Troubleshooting
### Hook Not Executing
- Verify hook is registered before crew execution
- Check if previous hook returned `False` (blocks execution and subsequent hooks)
- Ensure hook signature matches expected type
### Input Modifications Not Working
- Use in-place modifications: `context.tool_input['key'] = value`
- Don't replace the dict: `context.tool_input = {}`
### Result Modifications Not Working
- Return the modified string from after hooks
- Returning `None` keeps the original result
- Ensure the tool actually returned a result
### Tool Blocked Unexpectedly
- Check all before hooks for blocking conditions
- Verify hook execution order
- Add debug logging to identify which hook is blocking
## Conclusion
Tool Call Hooks provide powerful capabilities for controlling and monitoring tool execution in CrewAI. Use them to implement safety guardrails, approval gates, input validation, result sanitization, logging, and analytics. Combined with proper error handling and type safety, hooks enable secure and production-ready agent systems with comprehensive observability.

View File

@@ -733,9 +733,7 @@ Here's a basic configuration to route requests to OpenAI, specifically using GPT
- Collect relevant metadata to filter logs - Collect relevant metadata to filter logs
- Enforce access permissions - Enforce access permissions
Create API keys through: Create API keys through the [Portkey App](https://app.portkey.ai/)
- [Portkey App](https://app.portkey.ai/)
- [API Key Management API](/en/api-reference/admin-api/control-plane/api-keys/create-api-key)
Example using Python SDK: Example using Python SDK:
```python ```python
@@ -758,7 +756,7 @@ Here's a basic configuration to route requests to OpenAI, specifically using GPT
) )
``` ```
For detailed key management instructions, see our [API Keys documentation](/en/api-reference/admin-api/control-plane/api-keys/create-api-key). For detailed key management instructions, see the [Portkey documentation](https://portkey.ai/docs).
</Accordion> </Accordion>
<Accordion title="Step 4: Deploy & Monitor"> <Accordion title="Step 4: Deploy & Monitor">

View File

@@ -18,7 +18,7 @@ These tools enable your agents to interact with cloud services, access cloud sto
Write and upload files to Amazon S3 storage. Write and upload files to Amazon S3 storage.
</Card> </Card>
<Card title="Bedrock Invoke Agent" icon="aws" href="/en/tools/cloud-storage/bedrockinvokeagenttool"> <Card title="Bedrock Invoke Agent" icon="aws" href="/en/tools/integration/bedrockinvokeagenttool">
Invoke Amazon Bedrock agents for AI-powered tasks. Invoke Amazon Bedrock agents for AI-powered tasks.
</Card> </Card>

View File

@@ -632,11 +632,11 @@ mode: "wide"
## 기여 ## 기여
기여를 원하시면, [기여 가이드](CONTRIBUTING.md)를 참조하세요. 기여를 원하시면, [기여 가이드](https://github.com/crewAIInc/crewAI/blob/main/CONTRIBUTING.md)를 참조하세요.
## 라이센스 ## 라이센스
이 프로젝트는 MIT 라이센스 하에 배포됩니다. 자세한 내용은 [LICENSE](LICENSE) 파일을 확인하세요. 이 프로젝트는 MIT 라이센스 하에 배포됩니다. 자세한 내용은 [LICENSE](https://github.com/crewAIInc/crewAI/blob/main/LICENSE) 파일을 확인하세요.
</Update> </Update>
<Update label="2025년 5월 22일"> <Update label="2025년 5월 22일">

View File

@@ -706,7 +706,7 @@ class KnowledgeMonitorListener(BaseEventListener):
knowledge_monitor = KnowledgeMonitorListener() knowledge_monitor = KnowledgeMonitorListener()
``` ```
이벤트 사용에 대한 자세한 내용은 [이벤트 리스너](https://docs.crewai.com/concepts/event-listener) 문서를 참고하세요. 이벤트 사용에 대한 자세한 내용은 [이벤트 리스너](/ko/concepts/event-listener) 문서를 참고하세요.
### 맞춤형 지식 소스 ### 맞춤형 지식 소스

View File

@@ -748,7 +748,7 @@ CrewAI는 LLM의 스트리밍 응답을 지원하여, 애플리케이션이 출
``` ```
<Tip> <Tip>
[자세한 내용은 여기를 클릭하세요](https://docs.crewai.com/concepts/event-listener#event-listeners) [자세한 내용은 여기를 클릭하세요](/ko/concepts/event-listener#event-listeners)
</Tip> </Tip>
</Tab> </Tab>

View File

@@ -36,7 +36,7 @@ mode: "wide"
<Card title="도구 & 통합" href="/ko/enterprise/features/tools-and-integrations" icon="wrench"> <Card title="도구 & 통합" href="/ko/enterprise/features/tools-and-integrations" icon="wrench">
에이전트가 사용할 외부 앱 연결 및 내부 도구 관리. 에이전트가 사용할 외부 앱 연결 및 내부 도구 관리.
</Card> </Card>
<Card title="도구 저장소" href="/ko/enterprise/features/tool-repository" icon="toolbox"> <Card title="도구 저장소" href="/ko/enterprise/guides/tool-repository" icon="toolbox">
크루 기능을 확장할 수 있도록 도구를 게시하고 설치. 크루 기능을 확장할 수 있도록 도구를 게시하고 설치.
</Card> </Card>
<Card title="에이전트 저장소" href="/ko/enterprise/features/agent-repositories" icon="people-group"> <Card title="에이전트 저장소" href="/ko/enterprise/features/agent-repositories" icon="people-group">

View File

@@ -231,7 +231,7 @@ mode: "wide"
## 관련 문서 ## 관련 문서
<CardGroup cols={2}> <CardGroup cols={2}>
<Card title="도구 저장소" href="/ko/enterprise/features/tool-repository" icon="toolbox"> <Card title="도구 저장소" href="/ko/enterprise/guides/tool-repository" icon="toolbox">
크루 기능을 확장할 수 있도록 도구를 게시하고 설치하세요. 크루 기능을 확장할 수 있도록 도구를 게시하고 설치하세요.
</Card> </Card>
<Card title="Webhook 자동화" href="/ko/enterprise/guides/webhook-automation" icon="bolt"> <Card title="Webhook 자동화" href="/ko/enterprise/guides/webhook-automation" icon="bolt">

View File

@@ -21,7 +21,7 @@ Tool Repository는 CrewAI 도구를 위한 패키지 관리자입니다. 사용
Tool Repository를 사용하기 전에 다음이 준비되어 있어야 합니다: Tool Repository를 사용하기 전에 다음이 준비되어 있어야 합니다:
- [CrewAI AMP](https://app.crewai.com) 계정 - [CrewAI AMP](https://app.crewai.com) 계정
- [CrewAI CLI](https://docs.crewai.com/concepts/cli#cli) 설치됨 - [CrewAI CLI](/ko/concepts/cli#cli) 설치됨
- uv>=0.5.0 이 설치되어 있어야 합니다. [업그레이드 방법](https://docs.astral.sh/uv/getting-started/installation/#upgrading-uv)을 참고하세요. - uv>=0.5.0 이 설치되어 있어야 합니다. [업그레이드 방법](https://docs.astral.sh/uv/getting-started/installation/#upgrading-uv)을 참고하세요.
- [Git](https://git-scm.com) 설치 및 구성 완료 - [Git](https://git-scm.com) 설치 및 구성 완료
- CrewAI AMP 조직에서 도구를 게시하거나 설치할 수 있는 액세스 권한 - CrewAI AMP 조직에서 도구를 게시하거나 설치할 수 있는 액세스 권한
@@ -66,7 +66,7 @@ crewai tool publish
crewai tool publish --public crewai tool publish --public
``` ```
도구 빌드에 대한 자세한 내용은 [나만의 도구 만들기](https://docs.crewai.com/concepts/tools#creating-your-own-tools)를 참고하세요. 도구 빌드에 대한 자세한 내용은 [나만의 도구 만들기](/ko/concepts/tools#creating-your-own-tools)를 참고하세요.
## 도구 업데이트 ## 도구 업데이트

View File

@@ -49,7 +49,7 @@ mode: "wide"
에이전트 실행에 인간 입력을 통합하려면 작업 정의에서 `human_input` 플래그를 설정하세요. 활성화하면, 에이전트가 최종 답변을 제공하기 전에 사용자에게 입력을 요청합니다. 이 입력은 추가 맥락을 제공하거나, 애매함을 해소하거나, 에이전트의 출력을 검증해야 할 때 활용될 수 있습니다. 에이전트 실행에 인간 입력을 통합하려면 작업 정의에서 `human_input` 플래그를 설정하세요. 활성화하면, 에이전트가 최종 답변을 제공하기 전에 사용자에게 입력을 요청합니다. 이 입력은 추가 맥락을 제공하거나, 애매함을 해소하거나, 에이전트의 출력을 검증해야 할 때 활용될 수 있습니다.
자세한 구현 방법은 [Human-in-the-Loop 가이드](/ko/how-to/human-in-the-loop)를 참고해 주세요. 자세한 구현 방법은 [Human-in-the-Loop 가이드](/ko/enterprise/guides/human-in-the-loop)를 참고해 주세요.
</Accordion> </Accordion>
<Accordion title="CrewAI에서 에이전트의 행동과 역량을 맞춤화하고 향상시키기 위한 고급 커스터마이징 옵션에는 어떤 것이 있나요?"> <Accordion title="CrewAI에서 에이전트의 행동과 역량을 맞춤화하고 향상시키기 위한 고급 커스터마이징 옵션에는 어떤 것이 있나요?">
@@ -142,7 +142,7 @@ mode: "wide"
<Accordion title="CrewAI 에이전트를 위한 커스텀 도구는 어떻게 만들 수 있습니까?"> <Accordion title="CrewAI 에이전트를 위한 커스텀 도구는 어떻게 만들 수 있습니까?">
CrewAI에서 제공하는 `BaseTool` 클래스를 상속받아 커스텀 도구를 직접 만들거나, tool 데코레이터를 활용할 수 있습니다. 상속 방식은 `BaseTool`을 상속하는 새로운 클래스를 정의해 이름, 설명, 그리고 실제 논리를 처리하는 `_run` 메서드를 작성합니다. tool 데코레이터를 사용하면 필수 속성과 운영 로직만 정의해 바로 `Tool` 객체를 만들 수 있습니다. CrewAI에서 제공하는 `BaseTool` 클래스를 상속받아 커스텀 도구를 직접 만들거나, tool 데코레이터를 활용할 수 있습니다. 상속 방식은 `BaseTool`을 상속하는 새로운 클래스를 정의해 이름, 설명, 그리고 실제 논리를 처리하는 `_run` 메서드를 작성합니다. tool 데코레이터를 사용하면 필수 속성과 운영 로직만 정의해 바로 `Tool` 객체를 만들 수 있습니다.
<Card href="https://docs.crewai.com/how-to/create-custom-tools" icon="code">CrewAI 도구 가이드</Card> <Card href="/ko/learn/create-custom-tools" icon="code">CrewAI 도구 가이드</Card>
</Accordion> </Accordion>
<Accordion title="전체 crew가 수행할 수 있는 분당 최대 요청 수는 어떻게 제한할 수 있나요?"> <Accordion title="전체 crew가 수행할 수 있는 분당 최대 요청 수는 어떻게 제한할 수 있나요?">

View File

@@ -0,0 +1,379 @@
---
title: 실행 훅 개요
description: 에이전트 작업에 대한 세밀한 제어를 위한 CrewAI 실행 훅 이해 및 사용
mode: "wide"
---
실행 훅(Execution Hooks)은 CrewAI 에이전트의 런타임 동작을 세밀하게 제어할 수 있게 해줍니다. 크루 실행 전후에 실행되는 킥오프 훅과 달리, 실행 훅은 에이전트 실행 중 특정 작업을 가로채서 동작을 수정하고, 안전성 검사를 구현하며, 포괄적인 모니터링을 추가할 수 있습니다.
## 실행 훅의 유형
CrewAI는 두 가지 주요 범주의 실행 훅을 제공합니다:
### 1. [LLM 호출 훅](/learn/llm-hooks)
언어 모델 상호작용을 제어하고 모니터링합니다:
- **LLM 호출 전**: 프롬프트 수정, 입력 검증, 승인 게이트 구현
- **LLM 호출 후**: 응답 변환, 출력 정제, 대화 기록 업데이트
**사용 사례:**
- 반복 제한
- 비용 추적 및 토큰 사용량 모니터링
- 응답 정제 및 콘텐츠 필터링
- LLM 호출에 대한 사람의 승인
- 안전 가이드라인 또는 컨텍스트 추가
- 디버그 로깅 및 요청/응답 검사
[LLM 훅 문서 보기 →](/learn/llm-hooks)
### 2. [도구 호출 훅](/learn/tool-hooks)
도구 실행을 제어하고 모니터링합니다:
- **도구 호출 전**: 입력 수정, 매개변수 검증, 위험한 작업 차단
- **도구 호출 후**: 결과 변환, 출력 정제, 실행 세부사항 로깅
**사용 사례:**
- 파괴적인 작업에 대한 안전 가드레일
- 민감한 작업에 대한 사람의 승인
- 입력 검증 및 정제
- 결과 캐싱 및 속도 제한
- 도구 사용 분석
- 디버그 로깅 및 모니터링
[도구 훅 문서 보기 →](/learn/tool-hooks)
## 훅 등록 방법
### 1. 데코레이터 기반 훅 (권장)
훅을 등록하는 가장 깔끔하고 파이썬스러운 방법:
```python
from crewai.hooks import before_llm_call, after_llm_call, before_tool_call, after_tool_call
@before_llm_call
def limit_iterations(context):
"""반복 횟수를 제한하여 무한 루프를 방지합니다."""
if context.iterations > 10:
return False # 실행 차단
return None
@after_llm_call
def sanitize_response(context):
"""LLM 응답에서 민감한 데이터를 제거합니다."""
if "API_KEY" in context.response:
return context.response.replace("API_KEY", "[수정됨]")
return None
@before_tool_call
def block_dangerous_tools(context):
"""파괴적인 작업을 차단합니다."""
if context.tool_name == "delete_database":
return False # 실행 차단
return None
@after_tool_call
def log_tool_result(context):
"""도구 실행을 로깅합니다."""
print(f"도구 {context.tool_name} 완료")
return None
```
### 2. 크루 범위 훅
특정 크루 인스턴스에만 훅을 적용합니다:
```python
from crewai import CrewBase
from crewai.project import crew
from crewai.hooks import before_llm_call_crew, after_tool_call_crew
@CrewBase
class MyProjCrew:
@before_llm_call_crew
def validate_inputs(self, context):
# 이 크루에만 적용됩니다
print(f"{self.__class__.__name__}에서 LLM 호출")
return None
@after_tool_call_crew
def log_results(self, context):
# 크루별 로깅
print(f"도구 결과: {context.tool_result[:50]}...")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential
)
```
## 훅 실행 흐름
### LLM 호출 흐름
```
에이전트가 LLM을 호출해야 함
[LLM 호출 전 훅 실행]
├→ 훅 1: 반복 횟수 검증
├→ 훅 2: 안전 컨텍스트 추가
└→ 훅 3: 요청 로깅
훅이 False를 반환하는 경우:
├→ LLM 호출 차단
└→ ValueError 발생
모든 훅이 True/None을 반환하는 경우:
├→ LLM 호출 진행
└→ 응답 생성
[LLM 호출 후 훅 실행]
├→ 훅 1: 응답 정제
├→ 훅 2: 응답 로깅
└→ 훅 3: 메트릭 업데이트
최종 응답 반환
```
### 도구 호출 흐름
```
에이전트가 도구를 실행해야 함
[도구 호출 전 훅 실행]
├→ 훅 1: 도구 허용 여부 확인
├→ 훅 2: 입력 검증
└→ 훅 3: 필요시 승인 요청
훅이 False를 반환하는 경우:
├→ 도구 실행 차단
└→ 오류 메시지 반환
모든 훅이 True/None을 반환하는 경우:
├→ 도구 실행 진행
└→ 결과 생성
[도구 호출 후 훅 실행]
├→ 훅 1: 결과 정제
├→ 훅 2: 결과 캐싱
└→ 훅 3: 메트릭 로깅
최종 결과 반환
```
## 훅 컨텍스트 객체
### LLMCallHookContext
LLM 실행 상태에 대한 액세스를 제공합니다:
```python
class LLMCallHookContext:
executor: CrewAgentExecutor # 전체 실행자 액세스
messages: list # 변경 가능한 메시지 목록
agent: Agent # 현재 에이전트
task: Task # 현재 작업
crew: Crew # 크루 인스턴스
llm: BaseLLM # LLM 인스턴스
iterations: int # 현재 반복 횟수
response: str | None # LLM 응답 (후 훅용)
```
### ToolCallHookContext
도구 실행 상태에 대한 액세스를 제공합니다:
```python
class ToolCallHookContext:
tool_name: str # 호출되는 도구
tool_input: dict # 변경 가능한 입력 매개변수
tool: CrewStructuredTool # 도구 인스턴스
agent: Agent | None # 실행 중인 에이전트
task: Task | None # 현재 작업
crew: Crew | None # 크루 인스턴스
tool_result: str | None # 도구 결과 (후 훅용)
```
## 일반적인 패턴
### 안전 및 검증
```python
@before_tool_call
def safety_check(context):
"""파괴적인 작업을 차단합니다."""
dangerous = ['delete_file', 'drop_table', 'system_shutdown']
if context.tool_name in dangerous:
print(f"🛑 차단됨: {context.tool_name}")
return False
return None
@before_llm_call
def iteration_limit(context):
"""무한 루프를 방지합니다."""
if context.iterations > 15:
print("⛔ 최대 반복 횟수 초과")
return False
return None
```
### 사람의 개입
```python
@before_tool_call
def require_approval(context):
"""민감한 작업에 대한 승인을 요구합니다."""
sensitive = ['send_email', 'make_payment', 'post_message']
if context.tool_name in sensitive:
response = context.request_human_input(
prompt=f"{context.tool_name} 승인하시겠습니까?",
default_message="승인하려면 'yes'를 입력하세요:"
)
if response.lower() != 'yes':
return False
return None
```
### 모니터링 및 분석
```python
from collections import defaultdict
import time
metrics = defaultdict(lambda: {'count': 0, 'total_time': 0})
@before_tool_call
def start_timer(context):
context.tool_input['_start'] = time.time()
return None
@after_tool_call
def track_metrics(context):
start = context.tool_input.get('_start', time.time())
duration = time.time() - start
metrics[context.tool_name]['count'] += 1
metrics[context.tool_name]['total_time'] += duration
return None
```
## 훅 관리
### 모든 훅 지우기
```python
from crewai.hooks import clear_all_global_hooks
# 모든 훅을 한 번에 지웁니다
result = clear_all_global_hooks()
print(f"{result['total']} 훅이 지워졌습니다")
```
### 특정 훅 유형 지우기
```python
from crewai.hooks import (
clear_before_llm_call_hooks,
clear_after_llm_call_hooks,
clear_before_tool_call_hooks,
clear_after_tool_call_hooks
)
# 특정 유형 지우기
llm_before_count = clear_before_llm_call_hooks()
tool_after_count = clear_after_tool_call_hooks()
```
## 모범 사례
### 1. 훅을 집중적으로 유지
각 훅은 단일하고 명확한 책임을 가져야 합니다.
### 2. 오류를 우아하게 처리
```python
@before_llm_call
def safe_hook(context):
try:
if some_condition:
return False
except Exception as e:
print(f"훅 오류: {e}")
return None # 오류에도 불구하고 실행 허용
```
### 3. 컨텍스트를 제자리에서 수정
```python
# ✅ 올바름 - 제자리에서 수정
@before_llm_call
def add_context(context):
context.messages.append({"role": "system", "content": "간결하게"})
# ❌ 잘못됨 - 참조를 교체
@before_llm_call
def wrong_approach(context):
context.messages = [{"role": "system", "content": "간결하게"}]
```
### 4. 타입 힌트 사용
```python
from crewai.hooks import LLMCallHookContext, ToolCallHookContext
def my_llm_hook(context: LLMCallHookContext) -> bool | None:
return None
def my_tool_hook(context: ToolCallHookContext) -> str | None:
return None
```
### 5. 테스트에서 정리
```python
import pytest
from crewai.hooks import clear_all_global_hooks
@pytest.fixture(autouse=True)
def clean_hooks():
"""각 테스트 전에 훅을 재설정합니다."""
yield
clear_all_global_hooks()
```
## 어떤 훅을 사용해야 할까요
### LLM 훅을 사용하는 경우:
- 반복 제한 구현
- 프롬프트에 컨텍스트 또는 안전 가이드라인 추가
- 토큰 사용량 및 비용 추적
- 응답 정제 또는 변환
- LLM 호출에 대한 승인 게이트 구현
- 프롬프트/응답 상호작용 디버깅
### 도구 훅을 사용하는 경우:
- 위험하거나 파괴적인 작업 차단
- 실행 전 도구 입력 검증
- 민감한 작업에 대한 승인 게이트 구현
- 도구 결과 캐싱
- 도구 사용 및 성능 추적
- 도구 출력 정제
- 도구 호출 속도 제한
### 둘 다 사용하는 경우:
모든 에이전트 작업을 모니터링해야 하는 포괄적인 관찰성, 안전 또는 승인 시스템을 구축하는 경우.
## 관련 문서
- [LLM 호출 훅 →](/learn/llm-hooks) - 상세한 LLM 훅 문서
- [도구 호출 훅 →](/learn/tool-hooks) - 상세한 도구 훅 문서
- [킥오프 전후 훅 →](/learn/before-and-after-kickoff-hooks) - 크루 생명주기 훅
- [사람의 개입 →](/learn/human-in-the-loop) - 사람 입력 패턴
## 결론
실행 훅은 에이전트 런타임 동작에 대한 강력한 제어를 제공합니다. 이를 사용하여 안전 가드레일, 승인 워크플로우, 포괄적인 모니터링 및 사용자 정의 비즈니스 로직을 구현하세요. 적절한 오류 처리, 타입 안전성 및 성능 고려사항과 결합하면, 훅을 통해 프로덕션 준비가 된 안전하고 관찰 가능한 에이전트 시스템을 구축할 수 있습니다.

View File

@@ -95,7 +95,7 @@ project_crew = Crew(
``` ```
<Tip> <Tip>
매니저 에이전트 생성 및 맞춤화에 대한 자세한 내용은 [커스텀 매니저 에이전트 문서](https://docs.crewai.com/how-to/custom-manager-agent#custom-manager-agent)를 참고하세요. 매니저 에이전트 생성 및 맞춤화에 대한 자세한 내용은 [커스텀 매니저 에이전트 문서](/ko/learn/custom-manager-agent)를 참고하세요.
</Tip> </Tip>
### 워크플로우 실행 ### 워크플로우 실행

412
docs/ko/learn/llm-hooks.mdx Normal file
View File

@@ -0,0 +1,412 @@
---
title: LLM 호출 훅
description: CrewAI에서 언어 모델 상호작용을 가로채고, 수정하고, 제어하는 LLM 호출 훅 사용 방법 배우기
mode: "wide"
---
LLM 호출 훅(LLM Call Hooks)은 에이전트 실행 중 언어 모델 상호작용에 대한 세밀한 제어를 제공합니다. 이러한 훅을 사용하면 LLM 호출을 가로채고, 프롬프트를 수정하고, 응답을 변환하고, 승인 게이트를 구현하고, 사용자 정의 로깅 또는 모니터링을 추가할 수 있습니다.
## 개요
LLM 훅은 두 가지 중요한 시점에 실행됩니다:
- **LLM 호출 전**: 메시지 수정, 입력 검증 또는 실행 차단
- **LLM 호출 후**: 응답 변환, 출력 정제 또는 대화 기록 수정
## 훅 타입
### LLM 호출 전 훅
모든 LLM 호출 전에 실행되며, 다음을 수행할 수 있습니다:
- LLM에 전송되는 메시지 검사 및 수정
- 조건에 따라 LLM 실행 차단
- 속도 제한 또는 승인 게이트 구현
- 컨텍스트 또는 시스템 메시지 추가
- 요청 세부사항 로깅
**시그니처:**
```python
def before_hook(context: LLMCallHookContext) -> bool | None:
# 실행을 차단하려면 False 반환
# 실행을 허용하려면 True 또는 None 반환
...
```
### LLM 호출 후 훅
모든 LLM 호출 후에 실행되며, 다음을 수행할 수 있습니다:
- LLM 응답 수정 또는 정제
- 메타데이터 또는 서식 추가
- 응답 세부사항 로깅
- 대화 기록 업데이트
- 콘텐츠 필터링 구현
**시그니처:**
```python
def after_hook(context: LLMCallHookContext) -> str | None:
# 수정된 응답 문자열 반환
# 원본 응답을 유지하려면 None 반환
...
```
## LLM 훅 컨텍스트
`LLMCallHookContext` 객체는 실행 상태에 대한 포괄적인 액세스를 제공합니다:
```python
class LLMCallHookContext:
executor: CrewAgentExecutor # 전체 실행자 참조
messages: list # 변경 가능한 메시지 목록
agent: Agent # 현재 에이전트
task: Task # 현재 작업
crew: Crew # 크루 인스턴스
llm: BaseLLM # LLM 인스턴스
iterations: int # 현재 반복 횟수
response: str | None # LLM 응답 (후 훅용)
```
### 메시지 수정
**중요:** 항상 메시지를 제자리에서 수정하세요:
```python
# ✅ 올바름 - 제자리에서 수정
def add_context(context: LLMCallHookContext) -> None:
context.messages.append({"role": "system", "content": "간결하게 작성하세요"})
# ❌ 잘못됨 - 리스트 참조를 교체
def wrong_approach(context: LLMCallHookContext) -> None:
context.messages = [{"role": "system", "content": "간결하게 작성하세요"}]
```
## 등록 방법
### 1. 데코레이터 기반 등록 (권장)
더 깔끔한 구문을 위해 데코레이터를 사용합니다:
```python
from crewai.hooks import before_llm_call, after_llm_call
@before_llm_call
def validate_iteration_count(context):
"""반복 횟수를 검증합니다."""
if context.iterations > 10:
print("⚠️ 최대 반복 횟수 초과")
return False # 실행 차단
return None
@after_llm_call
def sanitize_response(context):
"""민감한 데이터를 제거합니다."""
if context.response and "API_KEY" in context.response:
return context.response.replace("API_KEY", "[수정됨]")
return None
```
### 2. 크루 범위 훅
특정 크루 인스턴스에 대한 훅을 등록합니다:
```python
from crewai import CrewBase
from crewai.project import crew
from crewai.hooks import before_llm_call_crew, after_llm_call_crew
@CrewBase
class MyProjCrew:
@before_llm_call_crew
def validate_inputs(self, context):
# 이 크루에만 적용됩니다
if context.iterations == 0:
print(f"작업 시작: {context.task.description}")
return None
@after_llm_call_crew
def log_responses(self, context):
# 크루별 응답 로깅
print(f"응답 길이: {len(context.response)}")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True
)
```
## 일반적인 사용 사례
### 1. 반복 제한
```python
@before_llm_call
def limit_iterations(context: LLMCallHookContext) -> bool | None:
"""무한 루프를 방지하기 위해 반복을 제한합니다."""
max_iterations = 15
if context.iterations > max_iterations:
print(f"⛔ 차단됨: {max_iterations}회 반복 초과")
return False # 실행 차단
return None
```
### 2. 사람의 승인 게이트
```python
@before_llm_call
def require_approval(context: LLMCallHookContext) -> bool | None:
"""특정 반복 후 승인을 요구합니다."""
if context.iterations > 5:
response = context.request_human_input(
prompt=f"반복 {context.iterations}: LLM 호출을 승인하시겠습니까?",
default_message="승인하려면 Enter를 누르고, 차단하려면 'no'를 입력하세요:"
)
if response.lower() == "no":
print("🚫 사용자에 의해 LLM 호출이 차단되었습니다")
return False
return None
```
### 3. 시스템 컨텍스트 추가
```python
@before_llm_call
def add_guardrails(context: LLMCallHookContext) -> None:
"""모든 LLM 호출에 안전 가이드라인을 추가합니다."""
context.messages.append({
"role": "system",
"content": "응답이 사실에 기반하고 가능한 경우 출처를 인용하도록 하세요."
})
return None
```
### 4. 응답 정제
```python
@after_llm_call
def sanitize_sensitive_data(context: LLMCallHookContext) -> str | None:
"""민감한 데이터 패턴을 제거합니다."""
if not context.response:
return None
import re
sanitized = context.response
sanitized = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[주민번호-수정됨]', sanitized)
sanitized = re.sub(r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b', '[카드번호-수정됨]', sanitized)
return sanitized
```
### 5. 비용 추적
```python
import tiktoken
@before_llm_call
def track_token_usage(context: LLMCallHookContext) -> None:
"""입력 토큰을 추적합니다."""
encoding = tiktoken.get_encoding("cl100k_base")
total_tokens = sum(
len(encoding.encode(msg.get("content", "")))
for msg in context.messages
)
print(f"📊 입력 토큰: ~{total_tokens}")
return None
@after_llm_call
def track_response_tokens(context: LLMCallHookContext) -> None:
"""응답 토큰을 추적합니다."""
if context.response:
encoding = tiktoken.get_encoding("cl100k_base")
tokens = len(encoding.encode(context.response))
print(f"📊 응답 토큰: ~{tokens}")
return None
```
### 6. 디버그 로깅
```python
@before_llm_call
def debug_request(context: LLMCallHookContext) -> None:
"""LLM 요청을 디버그합니다."""
print(f"""
🔍 LLM 호출 디버그:
- 에이전트: {context.agent.role}
- 작업: {context.task.description[:50]}...
- 반복: {context.iterations}
- 메시지 수: {len(context.messages)}
- 마지막 메시지: {context.messages[-1] if context.messages else 'None'}
""")
return None
@after_llm_call
def debug_response(context: LLMCallHookContext) -> None:
"""LLM 응답을 디버그합니다."""
if context.response:
print(f"✅ 응답 미리보기: {context.response[:100]}...")
return None
```
## 훅 관리
### 훅 등록 해제
```python
from crewai.hooks import (
unregister_before_llm_call_hook,
unregister_after_llm_call_hook
)
# 특정 훅 등록 해제
def my_hook(context):
...
register_before_llm_call_hook(my_hook)
# 나중에...
unregister_before_llm_call_hook(my_hook) # 찾으면 True 반환
```
### 훅 지우기
```python
from crewai.hooks import (
clear_before_llm_call_hooks,
clear_after_llm_call_hooks,
clear_all_llm_call_hooks
)
# 특정 훅 타입 지우기
count = clear_before_llm_call_hooks()
print(f"{count}개의 전(before) 훅이 지워졌습니다")
# 모든 LLM 훅 지우기
before_count, after_count = clear_all_llm_call_hooks()
print(f"{before_count}개의 전(before) 훅과 {after_count}개의 후(after) 훅이 지워졌습니다")
```
## 고급 패턴
### 조건부 훅 실행
```python
@before_llm_call
def conditional_blocking(context: LLMCallHookContext) -> bool | None:
"""특정 조건에서만 차단합니다."""
# 특정 에이전트에 대해서만 차단
if context.agent.role == "researcher" and context.iterations > 10:
return False
# 특정 작업에 대해서만 차단
if "민감한" in context.task.description.lower() and context.iterations > 5:
return False
return None
```
### 컨텍스트 인식 수정
```python
@before_llm_call
def adaptive_prompting(context: LLMCallHookContext) -> None:
"""반복에 따라 다른 컨텍스트를 추가합니다."""
if context.iterations == 0:
context.messages.append({
"role": "system",
"content": "높은 수준의 개요부터 시작하세요."
})
elif context.iterations > 3:
context.messages.append({
"role": "system",
"content": "구체적인 세부사항에 집중하고 예제를 제공하세요."
})
return None
```
### 훅 체이닝
```python
# 여러 훅은 등록 순서대로 실행됩니다
@before_llm_call
def first_hook(context):
print("1. 첫 번째 훅 실행됨")
return None
@before_llm_call
def second_hook(context):
print("2. 두 번째 훅 실행됨")
return None
@before_llm_call
def blocking_hook(context):
if context.iterations > 10:
print("3. 차단 훅 - 실행 중지")
return False # 후속 훅은 실행되지 않습니다
print("3. 차단 훅 - 실행 허용")
return None
```
## 모범 사례
1. **훅을 집중적으로 유지**: 각 훅은 단일 책임을 가져야 합니다
2. **무거운 계산 피하기**: 훅은 모든 LLM 호출마다 실행됩니다
3. **오류를 우아하게 처리**: try-except를 사용하여 훅 실패로 인한 실행 중단 방지
4. **타입 힌트 사용**: 더 나은 IDE 지원을 위해 `LLMCallHookContext` 활용
5. **훅 동작 문서화**: 특히 차단 조건에 대해
6. **훅을 독립적으로 테스트**: 프로덕션에서 사용하기 전에 단위 테스트
7. **테스트에서 훅 지우기**: 테스트 실행 간 `clear_all_llm_call_hooks()` 사용
8. **제자리에서 수정**: 항상 `context.messages`를 제자리에서 수정하고 교체하지 마세요
## 오류 처리
```python
@before_llm_call
def safe_hook(context: LLMCallHookContext) -> bool | None:
try:
# 훅 로직
if some_condition:
return False
except Exception as e:
print(f"⚠️ 훅 오류: {e}")
# 결정: 오류 발생 시 허용 또는 차단
return None # 오류에도 불구하고 실행 허용
```
## 타입 안전성
```python
from crewai.hooks import LLMCallHookContext, BeforeLLMCallHookType, AfterLLMCallHookType
# 명시적 타입 주석
def my_before_hook(context: LLMCallHookContext) -> bool | None:
return None
def my_after_hook(context: LLMCallHookContext) -> str | None:
return None
# 타입 안전 등록
register_before_llm_call_hook(my_before_hook)
register_after_llm_call_hook(my_after_hook)
```
## 문제 해결
### 훅이 실행되지 않음
- 크루 실행 전에 훅이 등록되었는지 확인
- 이전 훅이 `False`를 반환했는지 확인 (후속 훅 차단)
- 훅 시그니처가 예상 타입과 일치하는지 확인
### 메시지 수정이 지속되지 않음
- 제자리 수정 사용: `context.messages.append()`
- 리스트를 교체하지 마세요: `context.messages = []`
### 응답 수정이 작동하지 않음
- 후 훅에서 수정된 문자열을 반환
- `None`을 반환하면 원본 응답이 유지됩니다
## 결론
LLM 호출 훅은 CrewAI에서 언어 모델 상호작용을 제어하고 모니터링하는 강력한 기능을 제공합니다. 이를 사용하여 안전 가드레일, 승인 게이트, 로깅, 비용 추적 및 응답 정제를 구현하세요. 적절한 오류 처리 및 타입 안전성과 결합하면, 훅을 통해 강력하고 프로덕션 준비가 된 에이전트 시스템을 구축할 수 있습니다.

View File

@@ -0,0 +1,498 @@
---
title: 도구 호출 훅
description: CrewAI에서 도구 실행을 가로채고, 수정하고, 제어하는 도구 호출 훅 사용 방법 배우기
mode: "wide"
---
도구 호출 훅(Tool Call Hooks)은 에이전트 작업 중 도구 실행에 대한 세밀한 제어를 제공합니다. 이러한 훅을 사용하면 도구 호출을 가로채고, 입력을 수정하고, 출력을 변환하고, 안전 검사를 구현하고, 포괄적인 로깅 또는 모니터링을 추가할 수 있습니다.
## 개요
도구 훅은 두 가지 중요한 시점에 실행됩니다:
- **도구 호출 전**: 입력 수정, 매개변수 검증 또는 실행 차단
- **도구 호출 후**: 결과 변환, 출력 정제 또는 실행 세부사항 로깅
## 훅 타입
### 도구 호출 전 훅
모든 도구 실행 전에 실행되며, 다음을 수행할 수 있습니다:
- 도구 입력 검사 및 수정
- 조건에 따라 도구 실행 차단
- 위험한 작업에 대한 승인 게이트 구현
- 매개변수 검증
- 도구 호출 로깅
**시그니처:**
```python
def before_hook(context: ToolCallHookContext) -> bool | None:
# 실행을 차단하려면 False 반환
# 실행을 허용하려면 True 또는 None 반환
...
```
### 도구 호출 후 훅
모든 도구 실행 후에 실행되며, 다음을 수행할 수 있습니다:
- 도구 결과 수정 또는 정제
- 메타데이터 또는 서식 추가
- 실행 결과 로깅
- 결과 검증 구현
- 출력 형식 변환
**시그니처:**
```python
def after_hook(context: ToolCallHookContext) -> str | None:
# 수정된 결과 문자열 반환
# 원본 결과를 유지하려면 None 반환
...
```
## 도구 훅 컨텍스트
`ToolCallHookContext` 객체는 도구 실행 상태에 대한 포괄적인 액세스를 제공합니다:
```python
class ToolCallHookContext:
tool_name: str # 호출되는 도구의 이름
tool_input: dict[str, Any] # 변경 가능한 도구 입력 매개변수
tool: CrewStructuredTool # 도구 인스턴스 참조
agent: Agent | BaseAgent | None # 도구를 실행하는 에이전트
task: Task | None # 현재 작업
crew: Crew | None # 크루 인스턴스
tool_result: str | None # 도구 결과 (후 훅용)
```
### 도구 입력 수정
**중요:** 항상 도구 입력을 제자리에서 수정하세요:
```python
# ✅ 올바름 - 제자리에서 수정
def sanitize_input(context: ToolCallHookContext) -> None:
context.tool_input['query'] = context.tool_input['query'].lower()
# ❌ 잘못됨 - 딕셔너리 참조를 교체
def wrong_approach(context: ToolCallHookContext) -> None:
context.tool_input = {'query': 'new query'}
```
## 등록 방법
### 1. 데코레이터 기반 등록 (권장)
더 깔끔한 구문을 위해 데코레이터를 사용합니다:
```python
from crewai.hooks import before_tool_call, after_tool_call
@before_tool_call
def block_dangerous_tools(context):
"""위험한 도구를 차단합니다."""
dangerous_tools = ['delete_database', 'drop_table', 'rm_rf']
if context.tool_name in dangerous_tools:
print(f"⛔ 위험한 도구 차단됨: {context.tool_name}")
return False # 실행 차단
return None
@after_tool_call
def sanitize_results(context):
"""결과를 정제합니다."""
if context.tool_result and "password" in context.tool_result.lower():
return context.tool_result.replace("password", "[수정됨]")
return None
```
### 2. 크루 범위 훅
특정 크루 인스턴스에 대한 훅을 등록합니다:
```python
from crewai import CrewBase
from crewai.project import crew
from crewai.hooks import before_tool_call_crew, after_tool_call_crew
@CrewBase
class MyProjCrew:
@before_tool_call_crew
def validate_tool_inputs(self, context):
# 이 크루에만 적용됩니다
if context.tool_name == "web_search":
if not context.tool_input.get('query'):
print("❌ 잘못된 검색 쿼리")
return False
return None
@after_tool_call_crew
def log_tool_results(self, context):
# 크루별 도구 로깅
print(f"✅ {context.tool_name} 완료됨")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True
)
```
## 일반적인 사용 사례
### 1. 안전 가드레일
```python
@before_tool_call
def safety_check(context: ToolCallHookContext) -> bool | None:
"""해를 끼칠 수 있는 도구를 차단합니다."""
destructive_tools = [
'delete_file',
'drop_table',
'remove_user',
'system_shutdown'
]
if context.tool_name in destructive_tools:
print(f"🛑 파괴적인 도구 차단됨: {context.tool_name}")
return False
# 민감한 작업에 대해 경고
sensitive_tools = ['send_email', 'post_to_social_media', 'charge_payment']
if context.tool_name in sensitive_tools:
print(f"⚠️ 민감한 도구 실행 중: {context.tool_name}")
return None
```
### 2. 사람의 승인 게이트
```python
@before_tool_call
def require_approval_for_actions(context: ToolCallHookContext) -> bool | None:
"""특정 작업에 대한 승인을 요구합니다."""
approval_required = [
'send_email',
'make_purchase',
'delete_file',
'post_message'
]
if context.tool_name in approval_required:
response = context.request_human_input(
prompt=f"{context.tool_name}을(를) 승인하시겠습니까?",
default_message=f"입력: {context.tool_input}\n승인하려면 'yes'를 입력하세요:"
)
if response.lower() != 'yes':
print(f"❌ 도구 실행 거부됨: {context.tool_name}")
return False
return None
```
### 3. 입력 검증 및 정제
```python
@before_tool_call
def validate_and_sanitize_inputs(context: ToolCallHookContext) -> bool | None:
"""입력을 검증하고 정제합니다."""
# 검색 쿼리 검증
if context.tool_name == 'web_search':
query = context.tool_input.get('query', '')
if len(query) < 3:
print("❌ 검색 쿼리가 너무 짧습니다")
return False
# 쿼리 정제
context.tool_input['query'] = query.strip().lower()
# 파일 경로 검증
if context.tool_name == 'read_file':
path = context.tool_input.get('path', '')
if '..' in path or path.startswith('/'):
print("❌ 잘못된 파일 경로")
return False
return None
```
### 4. 결과 정제
```python
@after_tool_call
def sanitize_sensitive_data(context: ToolCallHookContext) -> str | None:
"""민감한 데이터를 정제합니다."""
if not context.tool_result:
return None
import re
result = context.tool_result
# API 키 제거
result = re.sub(
r'(api[_-]?key|token)["\']?\s*[:=]\s*["\']?[\w-]+',
r'\1: [수정됨]',
result,
flags=re.IGNORECASE
)
# 이메일 주소 제거
result = re.sub(
r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'[이메일-수정됨]',
result
)
# 신용카드 번호 제거
result = re.sub(
r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b',
'[카드-수정됨]',
result
)
return result
```
### 5. 도구 사용 분석
```python
import time
from collections import defaultdict
tool_stats = defaultdict(lambda: {'count': 0, 'total_time': 0, 'failures': 0})
@before_tool_call
def start_timer(context: ToolCallHookContext) -> None:
context.tool_input['_start_time'] = time.time()
return None
@after_tool_call
def track_tool_usage(context: ToolCallHookContext) -> None:
start_time = context.tool_input.get('_start_time', time.time())
duration = time.time() - start_time
tool_stats[context.tool_name]['count'] += 1
tool_stats[context.tool_name]['total_time'] += duration
if not context.tool_result or 'error' in context.tool_result.lower():
tool_stats[context.tool_name]['failures'] += 1
print(f"""
📊 {context.tool_name} 도구 통계:
- 실행 횟수: {tool_stats[context.tool_name]['count']}
- 평균 시간: {tool_stats[context.tool_name]['total_time'] / tool_stats[context.tool_name]['count']:.2f}초
- 실패: {tool_stats[context.tool_name]['failures']}
""")
return None
```
### 6. 속도 제한
```python
from collections import defaultdict
from datetime import datetime, timedelta
tool_call_history = defaultdict(list)
@before_tool_call
def rate_limit_tools(context: ToolCallHookContext) -> bool | None:
"""도구 호출 속도를 제한합니다."""
tool_name = context.tool_name
now = datetime.now()
# 오래된 항목 정리 (1분 이상 된 것)
tool_call_history[tool_name] = [
call_time for call_time in tool_call_history[tool_name]
if now - call_time < timedelta(minutes=1)
]
# 속도 제한 확인 (분당 최대 10회 호출)
if len(tool_call_history[tool_name]) >= 10:
print(f"🚫 {tool_name}에 대한 속도 제한 초과")
return False
# 이 호출 기록
tool_call_history[tool_name].append(now)
return None
```
### 7. 디버그 로깅
```python
@before_tool_call
def debug_tool_call(context: ToolCallHookContext) -> None:
"""도구 호출을 디버그합니다."""
print(f"""
🔍 도구 호출 디버그:
- 도구: {context.tool_name}
- 에이전트: {context.agent.role if context.agent else '알 수 없음'}
- 작업: {context.task.description[:50] if context.task else '알 수 없음'}...
- 입력: {context.tool_input}
""")
return None
@after_tool_call
def debug_tool_result(context: ToolCallHookContext) -> None:
"""도구 결과를 디버그합니다."""
if context.tool_result:
result_preview = context.tool_result[:200]
print(f"✅ 결과 미리보기: {result_preview}...")
else:
print("⚠️ 반환된 결과 없음")
return None
```
## 훅 관리
### 훅 등록 해제
```python
from crewai.hooks import (
unregister_before_tool_call_hook,
unregister_after_tool_call_hook
)
# 특정 훅 등록 해제
def my_hook(context):
...
register_before_tool_call_hook(my_hook)
# 나중에...
success = unregister_before_tool_call_hook(my_hook)
print(f"등록 해제됨: {success}")
```
### 훅 지우기
```python
from crewai.hooks import (
clear_before_tool_call_hooks,
clear_after_tool_call_hooks,
clear_all_tool_call_hooks
)
# 특정 훅 타입 지우기
count = clear_before_tool_call_hooks()
print(f"{count}개의 전(before) 훅이 지워졌습니다")
# 모든 도구 훅 지우기
before_count, after_count = clear_all_tool_call_hooks()
print(f"{before_count}개의 전(before) 훅과 {after_count}개의 후(after) 훅이 지워졌습니다")
```
## 고급 패턴
### 조건부 훅 실행
```python
@before_tool_call
def conditional_blocking(context: ToolCallHookContext) -> bool | None:
"""특정 조건에서만 차단합니다."""
# 특정 에이전트에 대해서만 차단
if context.agent and context.agent.role == "junior_agent":
if context.tool_name in ['delete_file', 'send_email']:
print(f"❌ 주니어 에이전트는 {context.tool_name}을(를) 사용할 수 없습니다")
return False
# 특정 작업 중에만 차단
if context.task and "민감한" in context.task.description.lower():
if context.tool_name == 'web_search':
print("❌ 민감한 작업에서는 웹 검색이 차단됩니다")
return False
return None
```
### 컨텍스트 인식 입력 수정
```python
@before_tool_call
def enhance_tool_inputs(context: ToolCallHookContext) -> None:
"""에이전트 역할에 따라 컨텍스트를 추가합니다."""
# 에이전트 역할에 따라 컨텍스트 추가
if context.agent and context.agent.role == "researcher":
if context.tool_name == 'web_search':
# 연구원에 대한 도메인 제한 추가
context.tool_input['domains'] = ['edu', 'gov', 'org']
# 작업에 따라 컨텍스트 추가
if context.task and "긴급" in context.task.description.lower():
if context.tool_name == 'send_email':
context.tool_input['priority'] = 'high'
return None
```
## 모범 사례
1. **훅을 집중적으로 유지**: 각 훅은 단일 책임을 가져야 합니다
2. **무거운 계산 피하기**: 훅은 모든 도구 호출마다 실행됩니다
3. **오류를 우아하게 처리**: try-except를 사용하여 훅 실패 방지
4. **타입 힌트 사용**: 더 나은 IDE 지원을 위해 `ToolCallHookContext` 활용
5. **차단 조건 문서화**: 도구가 차단되는 시기/이유를 명확히 하세요
6. **훅을 독립적으로 테스트**: 프로덕션에서 사용하기 전에 단위 테스트
7. **테스트에서 훅 지우기**: 테스트 실행 간 `clear_all_tool_call_hooks()` 사용
8. **제자리에서 수정**: 항상 `context.tool_input`을 제자리에서 수정하고 교체하지 마세요
9. **중요한 결정 로깅**: 특히 도구 실행을 차단할 때
10. **성능 고려**: 가능한 경우 비용이 많이 드는 검증을 캐시
## 오류 처리
```python
@before_tool_call
def safe_validation(context: ToolCallHookContext) -> bool | None:
try:
# 검증 로직
if not validate_input(context.tool_input):
return False
except Exception as e:
print(f"⚠️ 훅 오류: {e}")
# 결정: 오류 발생 시 허용 또는 차단
return None # 오류에도 불구하고 실행 허용
```
## 타입 안전성
```python
from crewai.hooks import ToolCallHookContext, BeforeToolCallHookType, AfterToolCallHookType
# 명시적 타입 주석
def my_before_hook(context: ToolCallHookContext) -> bool | None:
return None
def my_after_hook(context: ToolCallHookContext) -> str | None:
return None
# 타입 안전 등록
register_before_tool_call_hook(my_before_hook)
register_after_tool_call_hook(my_after_hook)
```
## 문제 해결
### 훅이 실행되지 않음
- 크루 실행 전에 훅이 등록되었는지 확인
- 이전 훅이 `False`를 반환했는지 확인 (실행 및 후속 훅 차단)
- 훅 시그니처가 예상 타입과 일치하는지 확인
### 입력 수정이 작동하지 않음
- 제자리 수정 사용: `context.tool_input['key'] = value`
- 딕셔너리를 교체하지 마세요: `context.tool_input = {}`
### 결과 수정이 작동하지 않음
- 후 훅에서 수정된 문자열을 반환
- `None`을 반환하면 원본 결과가 유지됩니다
- 도구가 실제로 결과를 반환했는지 확인
### 도구가 예기치 않게 차단됨
- 차단 조건에 대한 모든 전(before) 훅 확인
- 훅 실행 순서 확인
- 어떤 훅이 차단하는지 식별하기 위해 디버그 로깅 추가
## 결론
도구 호출 훅은 CrewAI에서 도구 실행을 제어하고 모니터링하는 강력한 기능을 제공합니다. 이를 사용하여 안전 가드레일, 승인 게이트, 입력 검증, 결과 정제, 로깅 및 분석을 구현하세요. 적절한 오류 처리 및 타입 안전성과 결합하면, 훅을 통해 포괄적인 관찰성을 갖춘 안전하고 프로덕션 준비가 된 에이전트 시스템을 구축할 수 있습니다.

View File

@@ -730,9 +730,7 @@ Portkey 대시보드에서 [구성 페이지](https://app.portkey.ai/configs)에
- 로그를 필터링하기 위한 관련 메타데이터 수집 - 로그를 필터링하기 위한 관련 메타데이터 수집
- 액세스 권한 적용 - 액세스 권한 적용
API 키 생성 방법: [Portkey App](https://app.portkey.ai/)를 통해 API 키 생성하세요
- [Portkey App](https://app.portkey.ai/)
- [API Key Management API](/ko/api-reference/admin-api/control-plane/api-keys/create-api-key)
Python SDK를 사용한 예시: Python SDK를 사용한 예시:
```python ```python
@@ -755,7 +753,7 @@ api_key = portkey.api_keys.create(
) )
``` ```
자세한 키 관리 방법은 [API 키 문서](/ko/api-reference/admin-api/control-plane/api-keys/create-api-key)를 참조하세요. 자세한 키 관리 방법은 [Portkey 문서](https://portkey.ai/docs)를 참조하세요.
</Accordion> </Accordion>
<Accordion title="4단계: 배포 및 모니터링"> <Accordion title="4단계: 배포 및 모니터링">

View File

@@ -18,7 +18,7 @@ mode: "wide"
파일을 Amazon S3 스토리지에 작성하고 업로드합니다. 파일을 Amazon S3 스토리지에 작성하고 업로드합니다.
</Card> </Card>
<Card title="Bedrock Invoke Agent" icon="aws" href="/ko/tools/cloud-storage/bedrockinvokeagenttool"> <Card title="Bedrock Invoke Agent" icon="aws" href="/ko/tools/integration/bedrockinvokeagenttool">
AI 기반 작업을 위해 Amazon Bedrock 에이전트를 호출합니다. AI 기반 작업을 위해 Amazon Bedrock 에이전트를 호출합니다.
</Card> </Card>

View File

@@ -11,7 +11,7 @@ mode: "wide"
<Card <Card
title="Bedrock Invoke Agent Tool" title="Bedrock Invoke Agent Tool"
icon="cloud" icon="cloud"
href="/en/tools/tool-integrations/bedrockinvokeagenttool" href="/ko/tools/integration/bedrockinvokeagenttool"
color="#0891B2" color="#0891B2"
> >
Invoke Amazon Bedrock Agents from CrewAI to orchestrate actions across AWS services. Invoke Amazon Bedrock Agents from CrewAI to orchestrate actions across AWS services.
@@ -20,7 +20,7 @@ mode: "wide"
<Card <Card
title="CrewAI Automation Tool" title="CrewAI Automation Tool"
icon="bolt" icon="bolt"
href="/en/tools/tool-integrations/crewaiautomationtool" href="/ko/tools/integration/crewaiautomationtool"
color="#7C3AED" color="#7C3AED"
> >
Automate deployment and operations by integrating CrewAI with external platforms and workflows. Automate deployment and operations by integrating CrewAI with external platforms and workflows.

View File

@@ -704,7 +704,7 @@ class KnowledgeMonitorListener(BaseEventListener):
knowledge_monitor = KnowledgeMonitorListener() knowledge_monitor = KnowledgeMonitorListener()
``` ```
Para mais informações sobre como usar eventos, consulte a documentação [Event Listeners](https://docs.crewai.com/concepts/event-listener). Para mais informações sobre como usar eventos, consulte a documentação [Event Listeners](/pt-BR/concepts/event-listener).
### Fontes de Knowledge Personalizadas ### Fontes de Knowledge Personalizadas

View File

@@ -725,7 +725,7 @@ O CrewAI suporta respostas em streaming de LLMs, permitindo que sua aplicação
``` ```
<Tip> <Tip>
[Clique aqui](https://docs.crewai.com/concepts/event-listener#event-listeners) para mais detalhes [Clique aqui](/pt-BR/concepts/event-listener#event-listeners) para mais detalhes
</Tip> </Tip>
</Tab> </Tab>
</Tabs> </Tabs>

View File

@@ -36,7 +36,7 @@ Você também pode baixar templates diretamente do marketplace clicando em `Down
<Card title="Ferramentas & Integrações" href="/pt-BR/enterprise/features/tools-and-integrations" icon="wrench"> <Card title="Ferramentas & Integrações" href="/pt-BR/enterprise/features/tools-and-integrations" icon="wrench">
Conecte apps externos e gerencie ferramentas internas que seus agentes podem usar. Conecte apps externos e gerencie ferramentas internas que seus agentes podem usar.
</Card> </Card>
<Card title="Repositório de Ferramentas" href="/pt-BR/enterprise/features/tool-repository" icon="toolbox"> <Card title="Repositório de Ferramentas" href="/pt-BR/enterprise/guides/tool-repository" icon="toolbox">
Publique e instale ferramentas para ampliar as capacidades dos seus crews. Publique e instale ferramentas para ampliar as capacidades dos seus crews.
</Card> </Card>
<Card title="Repositório de Agentes" href="/pt-BR/enterprise/features/agent-repositories" icon="people-group"> <Card title="Repositório de Agentes" href="/pt-BR/enterprise/features/agent-repositories" icon="people-group">

View File

@@ -231,7 +231,7 @@ Ferramentas & Integrações é o hub central para conectar aplicações de terce
## Relacionados ## Relacionados
<CardGroup cols={2}> <CardGroup cols={2}>
<Card title="Repositório de Ferramentas" href="/pt-BR/enterprise/features/tool-repository" icon="toolbox"> <Card title="Repositório de Ferramentas" href="/pt-BR/enterprise/guides/tool-repository" icon="toolbox">
Publique e instale ferramentas para ampliar as capacidades dos seus crews. Publique e instale ferramentas para ampliar as capacidades dos seus crews.
</Card> </Card>
<Card title="Automação com Webhook" href="/pt-BR/enterprise/guides/webhook-automation" icon="bolt"> <Card title="Automação com Webhook" href="/pt-BR/enterprise/guides/webhook-automation" icon="bolt">

View File

@@ -21,7 +21,7 @@ O repositório não é um sistema de controle de versões. Use Git para rastrear
Antes de usar o Repositório de Ferramentas, certifique-se de que você possui: Antes de usar o Repositório de Ferramentas, certifique-se de que você possui:
- Uma conta [CrewAI AMP](https://app.crewai.com) - Uma conta [CrewAI AMP](https://app.crewai.com)
- [CrewAI CLI](https://docs.crewai.com/concepts/cli#cli) instalada - [CrewAI CLI](/pt-BR/concepts/cli#cli) instalada
- uv>=0.5.0 instalado. Veja [como atualizar](https://docs.astral.sh/uv/getting-started/installation/#upgrading-uv) - uv>=0.5.0 instalado. Veja [como atualizar](https://docs.astral.sh/uv/getting-started/installation/#upgrading-uv)
- [Git](https://git-scm.com) instalado e configurado - [Git](https://git-scm.com) instalado e configurado
- Permissões de acesso para publicar ou instalar ferramentas em sua organização CrewAI AMP - Permissões de acesso para publicar ou instalar ferramentas em sua organização CrewAI AMP
@@ -66,7 +66,7 @@ Por padrão, as ferramentas são publicadas como privadas. Para tornar uma ferra
crewai tool publish --public crewai tool publish --public
``` ```
Para mais detalhes sobre como construir ferramentas, acesse [Criando suas próprias ferramentas](https://docs.crewai.com/concepts/tools#creating-your-own-tools). Para mais detalhes sobre como construir ferramentas, acesse [Criando suas próprias ferramentas](/pt-BR/concepts/tools#creating-your-own-tools).
## Atualizando ferramentas ## Atualizando ferramentas

View File

@@ -49,7 +49,7 @@ mode: "wide"
Para integrar a entrada humana na execução do agente, defina a flag `human_input` na definição da tarefa. Quando habilitada, o agente solicitará a entrada do usuário antes de entregar sua resposta final. Essa entrada pode fornecer contexto extra, esclarecer ambiguidades ou validar a saída do agente. Para integrar a entrada humana na execução do agente, defina a flag `human_input` na definição da tarefa. Quando habilitada, o agente solicitará a entrada do usuário antes de entregar sua resposta final. Essa entrada pode fornecer contexto extra, esclarecer ambiguidades ou validar a saída do agente.
Para orientações detalhadas de implementação, veja nosso [guia Human-in-the-Loop](/pt-BR/how-to/human-in-the-loop). Para orientações detalhadas de implementação, veja nosso [guia Human-in-the-Loop](/pt-BR/enterprise/guides/human-in-the-loop).
</Accordion> </Accordion>
<Accordion title="Quais opções avançadas de customização estão disponíveis para aprimorar e personalizar o comportamento e as capacidades dos agentes na CrewAI?"> <Accordion title="Quais opções avançadas de customização estão disponíveis para aprimorar e personalizar o comportamento e as capacidades dos agentes na CrewAI?">
@@ -142,7 +142,7 @@ mode: "wide"
<Accordion title="Como posso criar ferramentas personalizadas para meus agentes CrewAI?"> <Accordion title="Como posso criar ferramentas personalizadas para meus agentes CrewAI?">
Você pode criar ferramentas personalizadas herdando da classe `BaseTool` fornecida pela CrewAI ou usando o decorador de ferramenta. Herdar envolve definir uma nova classe que herda de `BaseTool`, especificando o nome, a descrição e o método `_run` para a lógica operacional. O decorador de ferramenta permite criar um objeto `Tool` diretamente com os atributos necessários e uma lógica funcional. Você pode criar ferramentas personalizadas herdando da classe `BaseTool` fornecida pela CrewAI ou usando o decorador de ferramenta. Herdar envolve definir uma nova classe que herda de `BaseTool`, especificando o nome, a descrição e o método `_run` para a lógica operacional. O decorador de ferramenta permite criar um objeto `Tool` diretamente com os atributos necessários e uma lógica funcional.
<Card href="https://docs.crewai.com/how-to/create-custom-tools" icon="code">CrewAI Tools Guide</Card> <Card href="/pt-BR/learn/create-custom-tools" icon="code">CrewAI Tools Guide</Card>
</Accordion> </Accordion>
<Accordion title="Como controlar o número máximo de solicitações por minuto que toda a crew pode realizar?"> <Accordion title="Como controlar o número máximo de solicitações por minuto que toda a crew pode realizar?">

View File

@@ -0,0 +1,379 @@
---
title: Visão Geral dos Hooks de Execução
description: Entendendo e usando hooks de execução no CrewAI para controle fino sobre operações de agentes
mode: "wide"
---
Os Hooks de Execução fornecem controle fino sobre o comportamento em tempo de execução dos seus agentes CrewAI. Diferentemente dos hooks de kickoff que são executados antes e depois da execução da crew, os hooks de execução interceptam operações específicas durante a execução do agente, permitindo que você modifique comportamentos, implemente verificações de segurança e adicione monitoramento abrangente.
## Tipos de Hooks de Execução
O CrewAI fornece duas categorias principais de hooks de execução:
### 1. [Hooks de Chamada LLM](/learn/llm-hooks)
Controle e monitore interações com o modelo de linguagem:
- **Antes da Chamada LLM**: Modifique prompts, valide entradas, implemente gates de aprovação
- **Depois da Chamada LLM**: Transforme respostas, sanitize saídas, atualize histórico de conversação
**Casos de Uso:**
- Limitação de iterações
- Rastreamento de custos e monitoramento de uso de tokens
- Sanitização de respostas e filtragem de conteúdo
- Aprovação humana para chamadas LLM
- Adição de diretrizes de segurança ou contexto
- Logging de debug e inspeção de requisição/resposta
[Ver Documentação de Hooks LLM →](/learn/llm-hooks)
### 2. [Hooks de Chamada de Ferramenta](/learn/tool-hooks)
Controle e monitore execução de ferramentas:
- **Antes da Chamada de Ferramenta**: Modifique entradas, valide parâmetros, bloqueie operações perigosas
- **Depois da Chamada de Ferramenta**: Transforme resultados, sanitize saídas, registre detalhes de execução
**Casos de Uso:**
- Guardrails de segurança para operações destrutivas
- Aprovação humana para ações sensíveis
- Validação e sanitização de entrada
- Cache de resultados e limitação de taxa
- Análise de uso de ferramentas
- Logging de debug e monitoramento
[Ver Documentação de Hooks de Ferramenta →](/learn/tool-hooks)
## Métodos de Registro
### 1. Hooks Baseados em Decoradores (Recomendado)
A maneira mais limpa e pythônica de registrar hooks:
```python
from crewai.hooks import before_llm_call, after_llm_call, before_tool_call, after_tool_call
@before_llm_call
def limit_iterations(context):
"""Previne loops infinitos limitando iterações."""
if context.iterations > 10:
return False # Bloquear execução
return None
@after_llm_call
def sanitize_response(context):
"""Remove dados sensíveis das respostas do LLM."""
if "API_KEY" in context.response:
return context.response.replace("API_KEY", "[CENSURADO]")
return None
@before_tool_call
def block_dangerous_tools(context):
"""Bloqueia operações destrutivas."""
if context.tool_name == "delete_database":
return False # Bloquear execução
return None
@after_tool_call
def log_tool_result(context):
"""Registra execução de ferramenta."""
print(f"Ferramenta {context.tool_name} concluída")
return None
```
### 2. Hooks com Escopo de Crew
Aplica hooks apenas a instâncias específicas de crew:
```python
from crewai import CrewBase
from crewai.project import crew
from crewai.hooks import before_llm_call_crew, after_tool_call_crew
@CrewBase
class MyProjCrew:
@before_llm_call_crew
def validate_inputs(self, context):
# Aplica-se apenas a esta crew
print(f"Chamada LLM em {self.__class__.__name__}")
return None
@after_tool_call_crew
def log_results(self, context):
# Logging específico da crew
print(f"Resultado da ferramenta: {context.tool_result[:50]}...")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential
)
```
## Fluxo de Execução de Hooks
### Fluxo de Chamada LLM
```
Agente precisa chamar LLM
[Hooks Antes da Chamada LLM Executam]
├→ Hook 1: Validar contagem de iterações
├→ Hook 2: Adicionar contexto de segurança
└→ Hook 3: Registrar requisição
Se algum hook retornar False:
├→ Bloquear chamada LLM
└→ Lançar ValueError
Se todos os hooks retornarem True/None:
├→ Chamada LLM prossegue
└→ Resposta gerada
[Hooks Depois da Chamada LLM Executam]
├→ Hook 1: Sanitizar resposta
├→ Hook 2: Registrar resposta
└→ Hook 3: Atualizar métricas
Resposta final retornada
```
### Fluxo de Chamada de Ferramenta
```
Agente precisa executar ferramenta
[Hooks Antes da Chamada de Ferramenta Executam]
├→ Hook 1: Verificar se ferramenta é permitida
├→ Hook 2: Validar entradas
└→ Hook 3: Solicitar aprovação se necessário
Se algum hook retornar False:
├→ Bloquear execução da ferramenta
└→ Retornar mensagem de erro
Se todos os hooks retornarem True/None:
├→ Execução da ferramenta prossegue
└→ Resultado gerado
[Hooks Depois da Chamada de Ferramenta Executam]
├→ Hook 1: Sanitizar resultado
├→ Hook 2: Fazer cache do resultado
└→ Hook 3: Registrar métricas
Resultado final retornado
```
## Objetos de Contexto de Hook
### LLMCallHookContext
Fornece acesso ao estado de execução do LLM:
```python
class LLMCallHookContext:
executor: CrewAgentExecutor # Acesso completo ao executor
messages: list # Lista de mensagens mutável
agent: Agent # Agente atual
task: Task # Tarefa atual
crew: Crew # Instância da crew
llm: BaseLLM # Instância do LLM
iterations: int # Iteração atual
response: str | None # Resposta do LLM (hooks posteriores)
```
### ToolCallHookContext
Fornece acesso ao estado de execução da ferramenta:
```python
class ToolCallHookContext:
tool_name: str # Ferramenta sendo chamada
tool_input: dict # Parâmetros de entrada mutáveis
tool: CrewStructuredTool # Instância da ferramenta
agent: Agent | None # Agente executando
task: Task | None # Tarefa atual
crew: Crew | None # Instância da crew
tool_result: str | None # Resultado da ferramenta (hooks posteriores)
```
## Padrões Comuns
### Segurança e Validação
```python
@before_tool_call
def safety_check(context):
"""Bloqueia operações destrutivas."""
dangerous = ['delete_file', 'drop_table', 'system_shutdown']
if context.tool_name in dangerous:
print(f"🛑 Bloqueado: {context.tool_name}")
return False
return None
@before_llm_call
def iteration_limit(context):
"""Previne loops infinitos."""
if context.iterations > 15:
print("⛔ Máximo de iterações excedido")
return False
return None
```
### Humano no Loop
```python
@before_tool_call
def require_approval(context):
"""Requer aprovação para operações sensíveis."""
sensitive = ['send_email', 'make_payment', 'post_message']
if context.tool_name in sensitive:
response = context.request_human_input(
prompt=f"Aprovar {context.tool_name}?",
default_message="Digite 'sim' para aprovar:"
)
if response.lower() != 'sim':
return False
return None
```
### Monitoramento e Análise
```python
from collections import defaultdict
import time
metrics = defaultdict(lambda: {'count': 0, 'total_time': 0})
@before_tool_call
def start_timer(context):
context.tool_input['_start'] = time.time()
return None
@after_tool_call
def track_metrics(context):
start = context.tool_input.get('_start', time.time())
duration = time.time() - start
metrics[context.tool_name]['count'] += 1
metrics[context.tool_name]['total_time'] += duration
return None
```
## Gerenciamento de Hooks
### Limpar Todos os Hooks
```python
from crewai.hooks import clear_all_global_hooks
# Limpa todos os hooks de uma vez
result = clear_all_global_hooks()
print(f"Limpou {result['total']} hooks")
```
### Limpar Tipos Específicos de Hooks
```python
from crewai.hooks import (
clear_before_llm_call_hooks,
clear_after_llm_call_hooks,
clear_before_tool_call_hooks,
clear_after_tool_call_hooks
)
# Limpar tipos específicos
llm_before_count = clear_before_llm_call_hooks()
tool_after_count = clear_after_tool_call_hooks()
```
## Melhores Práticas
### 1. Mantenha os Hooks Focados
Cada hook deve ter uma responsabilidade única e clara.
### 2. Trate Erros Graciosamente
```python
@before_llm_call
def safe_hook(context):
try:
if some_condition:
return False
except Exception as e:
print(f"Erro no hook: {e}")
return None # Permitir execução apesar do erro
```
### 3. Modifique o Contexto In-Place
```python
# ✅ Correto - modificar in-place
@before_llm_call
def add_context(context):
context.messages.append({"role": "system", "content": "Seja conciso"})
# ❌ Errado - substitui referência
@before_llm_call
def wrong_approach(context):
context.messages = [{"role": "system", "content": "Seja conciso"}]
```
### 4. Use Type Hints
```python
from crewai.hooks import LLMCallHookContext, ToolCallHookContext
def my_llm_hook(context: LLMCallHookContext) -> bool | None:
return None
def my_tool_hook(context: ToolCallHookContext) -> str | None:
return None
```
### 5. Limpe em Testes
```python
import pytest
from crewai.hooks import clear_all_global_hooks
@pytest.fixture(autouse=True)
def clean_hooks():
"""Reseta hooks antes de cada teste."""
yield
clear_all_global_hooks()
```
## Quando Usar Qual Hook
### Use Hooks LLM Quando:
- Implementar limites de iteração
- Adicionar contexto ou diretrizes de segurança aos prompts
- Rastrear uso de tokens e custos
- Sanitizar ou transformar respostas
- Implementar gates de aprovação para chamadas LLM
- Fazer debug de interações de prompt/resposta
### Use Hooks de Ferramenta Quando:
- Bloquear operações perigosas ou destrutivas
- Validar entradas de ferramenta antes da execução
- Implementar gates de aprovação para ações sensíveis
- Fazer cache de resultados de ferramenta
- Rastrear uso e performance de ferramentas
- Sanitizar saídas de ferramenta
- Limitar taxa de chamadas de ferramenta
### Use Ambos Quando:
Construir sistemas abrangentes de observabilidade, segurança ou aprovação que precisam monitorar todas as operações do agente.
## Documentação Relacionada
- [Hooks de Chamada LLM →](/learn/llm-hooks) - Documentação detalhada de hooks LLM
- [Hooks de Chamada de Ferramenta →](/learn/tool-hooks) - Documentação detalhada de hooks de ferramenta
- [Hooks Antes e Depois do Kickoff →](/learn/before-and-after-kickoff-hooks) - Hooks do ciclo de vida da crew
- [Humano no Loop →](/learn/human-in-the-loop) - Padrões de entrada humana
## Conclusão
Os Hooks de Execução fornecem controle poderoso sobre o comportamento em tempo de execução do agente. Use-os para implementar guardrails de segurança, fluxos de trabalho de aprovação, monitoramento abrangente e lógica de negócio personalizada. Combinados com tratamento adequado de erros, segurança de tipos e considerações de performance, os hooks permitem sistemas de agentes seguros, prontos para produção e observáveis.

View File

@@ -96,7 +96,7 @@ project_crew = Crew(
``` ```
<Tip> <Tip>
Para mais detalhes sobre a criação e personalização de um agente gerente, confira a [documentação do Custom Manager Agent](https://docs.crewai.com/how-to/custom-manager-agent#custom-manager-agent). Para mais detalhes sobre a criação e personalização de um agente gerente, confira a [documentação do Custom Manager Agent](/pt-BR/learn/custom-manager-agent).
</Tip> </Tip>

View File

@@ -0,0 +1,388 @@
---
title: Hooks de Chamada LLM
description: Aprenda a usar hooks de chamada LLM para interceptar, modificar e controlar interações com modelos de linguagem no CrewAI
mode: "wide"
---
Os Hooks de Chamada LLM fornecem controle fino sobre interações com modelos de linguagem durante a execução do agente. Esses hooks permitem interceptar chamadas LLM, modificar prompts, transformar respostas, implementar gates de aprovação e adicionar logging ou monitoramento personalizado.
## Visão Geral
Os hooks LLM são executados em dois pontos críticos:
- **Antes da Chamada LLM**: Modificar mensagens, validar entradas ou bloquear execução
- **Depois da Chamada LLM**: Transformar respostas, sanitizar saídas ou modificar histórico de conversação
## Tipos de Hook
### Hooks Antes da Chamada LLM
Executados antes de cada chamada LLM, esses hooks podem:
- Inspecionar e modificar mensagens enviadas ao LLM
- Bloquear execução LLM com base em condições
- Implementar limitação de taxa ou gates de aprovação
- Adicionar contexto ou mensagens do sistema
- Registrar detalhes da requisição
**Assinatura:**
```python
def before_hook(context: LLMCallHookContext) -> bool | None:
# Retorne False para bloquear execução
# Retorne True ou None para permitir execução
...
```
### Hooks Depois da Chamada LLM
Executados depois de cada chamada LLM, esses hooks podem:
- Modificar ou sanitizar respostas do LLM
- Adicionar metadados ou formatação
- Registrar detalhes da resposta
- Atualizar histórico de conversação
- Implementar filtragem de conteúdo
**Assinatura:**
```python
def after_hook(context: LLMCallHookContext) -> str | None:
# Retorne string de resposta modificada
# Retorne None para manter resposta original
...
```
## Contexto do Hook LLM
O objeto `LLMCallHookContext` fornece acesso abrangente ao estado de execução:
```python
class LLMCallHookContext:
executor: CrewAgentExecutor # Referência completa ao executor
messages: list # Lista de mensagens mutável
agent: Agent # Agente atual
task: Task # Tarefa atual
crew: Crew # Instância da crew
llm: BaseLLM # Instância do LLM
iterations: int # Contagem de iteração atual
response: str | None # Resposta do LLM (apenas hooks posteriores)
```
### Modificando Mensagens
**Importante:** Sempre modifique mensagens in-place:
```python
# ✅ Correto - modificar in-place
def add_context(context: LLMCallHookContext) -> None:
context.messages.append({"role": "system", "content": "Seja conciso"})
# ❌ Errado - substitui referência da lista
def wrong_approach(context: LLMCallHookContext) -> None:
context.messages = [{"role": "system", "content": "Seja conciso"}]
```
## Métodos de Registro
### 1. Registro Baseado em Decoradores (Recomendado)
Use decoradores para sintaxe mais limpa:
```python
from crewai.hooks import before_llm_call, after_llm_call
@before_llm_call
def validate_iteration_count(context):
"""Valida a contagem de iterações."""
if context.iterations > 10:
print("⚠️ Máximo de iterações excedido")
return False # Bloquear execução
return None
@after_llm_call
def sanitize_response(context):
"""Remove dados sensíveis."""
if context.response and "API_KEY" in context.response:
return context.response.replace("API_KEY", "[CENSURADO]")
return None
```
### 2. Hooks com Escopo de Crew
Registre hooks para uma instância específica de crew:
```python
from crewai import CrewBase
from crewai.project import crew
from crewai.hooks import before_llm_call_crew, after_llm_call_crew
@CrewBase
class MyProjCrew:
@before_llm_call_crew
def validate_inputs(self, context):
# Aplica-se apenas a esta crew
if context.iterations == 0:
print(f"Iniciando tarefa: {context.task.description}")
return None
@after_llm_call_crew
def log_responses(self, context):
# Logging específico da crew
print(f"Comprimento da resposta: {len(context.response)}")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True
)
```
## Casos de Uso Comuns
### 1. Limitação de Iterações
```python
@before_llm_call
def limit_iterations(context: LLMCallHookContext) -> bool | None:
"""Previne loops infinitos limitando iterações."""
max_iterations = 15
if context.iterations > max_iterations:
print(f"⛔ Bloqueado: Excedeu {max_iterations} iterações")
return False # Bloquear execução
return None
```
### 2. Gate de Aprovação Humana
```python
@before_llm_call
def require_approval(context: LLMCallHookContext) -> bool | None:
"""Requer aprovação após certas iterações."""
if context.iterations > 5:
response = context.request_human_input(
prompt=f"Iteração {context.iterations}: Aprovar chamada LLM?",
default_message="Pressione Enter para aprovar, ou digite 'não' para bloquear:"
)
if response.lower() == "não":
print("🚫 Chamada LLM bloqueada pelo usuário")
return False
return None
```
### 3. Adicionando Contexto do Sistema
```python
@before_llm_call
def add_guardrails(context: LLMCallHookContext) -> None:
"""Adiciona diretrizes de segurança a cada chamada LLM."""
context.messages.append({
"role": "system",
"content": "Garanta que as respostas sejam factuais e cite fontes quando possível."
})
return None
```
### 4. Sanitização de Resposta
```python
@after_llm_call
def sanitize_sensitive_data(context: LLMCallHookContext) -> str | None:
"""Remove padrões sensíveis."""
if not context.response:
return None
import re
sanitized = context.response
sanitized = re.sub(r'\b\d{3}\.\d{3}\.\d{3}-\d{2}\b', '[CPF-CENSURADO]', sanitized)
sanitized = re.sub(r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b', '[CARTÃO-CENSURADO]', sanitized)
return sanitized
```
### 5. Rastreamento de Custos
```python
import tiktoken
@before_llm_call
def track_token_usage(context: LLMCallHookContext) -> None:
"""Rastreia tokens de entrada."""
encoding = tiktoken.get_encoding("cl100k_base")
total_tokens = sum(
len(encoding.encode(msg.get("content", "")))
for msg in context.messages
)
print(f"📊 Tokens de entrada: ~{total_tokens}")
return None
@after_llm_call
def track_response_tokens(context: LLMCallHookContext) -> None:
"""Rastreia tokens de resposta."""
if context.response:
encoding = tiktoken.get_encoding("cl100k_base")
tokens = len(encoding.encode(context.response))
print(f"📊 Tokens de resposta: ~{tokens}")
return None
```
### 6. Logging de Debug
```python
@before_llm_call
def debug_request(context: LLMCallHookContext) -> None:
"""Debug de requisição LLM."""
print(f"""
🔍 Debug de Chamada LLM:
- Agente: {context.agent.role}
- Tarefa: {context.task.description[:50]}...
- Iteração: {context.iterations}
- Contagem de Mensagens: {len(context.messages)}
- Última Mensagem: {context.messages[-1] if context.messages else 'Nenhuma'}
""")
return None
@after_llm_call
def debug_response(context: LLMCallHookContext) -> None:
"""Debug de resposta LLM."""
if context.response:
print(f"✅ Preview da Resposta: {context.response[:100]}...")
return None
```
## Gerenciamento de Hooks
### Desregistrando Hooks
```python
from crewai.hooks import (
unregister_before_llm_call_hook,
unregister_after_llm_call_hook
)
# Desregistrar hook específico
def my_hook(context):
...
register_before_llm_call_hook(my_hook)
# Mais tarde...
unregister_before_llm_call_hook(my_hook) # Retorna True se encontrado
```
### Limpando Hooks
```python
from crewai.hooks import (
clear_before_llm_call_hooks,
clear_after_llm_call_hooks,
clear_all_llm_call_hooks
)
# Limpar tipo específico de hook
count = clear_before_llm_call_hooks()
print(f"Limpou {count} hooks antes")
# Limpar todos os hooks LLM
before_count, after_count = clear_all_llm_call_hooks()
print(f"Limpou {before_count} hooks antes e {after_count} hooks depois")
```
## Padrões Avançados
### Execução Condicional de Hook
```python
@before_llm_call
def conditional_blocking(context: LLMCallHookContext) -> bool | None:
"""Bloqueia apenas em condições específicas."""
# Bloquear apenas para agentes específicos
if context.agent.role == "researcher" and context.iterations > 10:
return False
# Bloquear apenas para tarefas específicas
if "sensível" in context.task.description.lower() and context.iterations > 5:
return False
return None
```
### Modificações com Consciência de Contexto
```python
@before_llm_call
def adaptive_prompting(context: LLMCallHookContext) -> None:
"""Adiciona contexto diferente baseado na iteração."""
if context.iterations == 0:
context.messages.append({
"role": "system",
"content": "Comece com uma visão geral de alto nível."
})
elif context.iterations > 3:
context.messages.append({
"role": "system",
"content": "Foque em detalhes específicos e forneça exemplos."
})
return None
```
## Melhores Práticas
1. **Mantenha Hooks Focados**: Cada hook deve ter uma responsabilidade única
2. **Evite Computação Pesada**: Hooks executam em cada chamada LLM
3. **Trate Erros Graciosamente**: Use try-except para prevenir falhas de hooks
4. **Use Type Hints**: Aproveite `LLMCallHookContext` para melhor suporte IDE
5. **Documente Comportamento do Hook**: Especialmente para condições de bloqueio
6. **Teste Hooks Independentemente**: Teste unitário de hooks antes de usar em produção
7. **Limpe Hooks em Testes**: Use `clear_all_llm_call_hooks()` entre execuções de teste
8. **Modifique In-Place**: Sempre modifique `context.messages` in-place, nunca substitua
## Tratamento de Erros
```python
@before_llm_call
def safe_hook(context: LLMCallHookContext) -> bool | None:
try:
# Sua lógica de hook
if some_condition:
return False
except Exception as e:
print(f"⚠️ Erro no hook: {e}")
# Decida: permitir ou bloquear em erro
return None # Permitir execução apesar do erro
```
## Segurança de Tipos
```python
from crewai.hooks import LLMCallHookContext, BeforeLLMCallHookType, AfterLLMCallHookType
# Anotações de tipo explícitas
def my_before_hook(context: LLMCallHookContext) -> bool | None:
return None
def my_after_hook(context: LLMCallHookContext) -> str | None:
return None
# Registro type-safe
register_before_llm_call_hook(my_before_hook)
register_after_llm_call_hook(my_after_hook)
```
## Solução de Problemas
### Hook Não Está Executando
- Verifique se o hook está registrado antes da execução da crew
- Verifique se hook anterior retornou `False` (bloqueia hooks subsequentes)
- Garanta que assinatura do hook corresponda ao tipo esperado
### Modificações de Mensagem Não Persistem
- Use modificações in-place: `context.messages.append()`
- Não substitua a lista: `context.messages = []`
### Modificações de Resposta Não Funcionam
- Retorne a string modificada dos hooks posteriores
- Retornar `None` mantém a resposta original
## Conclusão
Os Hooks de Chamada LLM fornecem capacidades poderosas para controlar e monitorar interações com modelos de linguagem no CrewAI. Use-os para implementar guardrails de segurança, gates de aprovação, logging, rastreamento de custos e sanitização de respostas. Combinados com tratamento adequado de erros e segurança de tipos, os hooks permitem sistemas de agentes robustos e prontos para produção.

View File

@@ -0,0 +1,498 @@
---
title: Hooks de Chamada de Ferramenta
description: Aprenda a usar hooks de chamada de ferramenta para interceptar, modificar e controlar execução de ferramentas no CrewAI
mode: "wide"
---
Os Hooks de Chamada de Ferramenta fornecem controle fino sobre a execução de ferramentas durante operações do agente. Esses hooks permitem interceptar chamadas de ferramenta, modificar entradas, transformar saídas, implementar verificações de segurança e adicionar logging ou monitoramento abrangente.
## Visão Geral
Os hooks de ferramenta são executados em dois pontos críticos:
- **Antes da Chamada de Ferramenta**: Modificar entradas, validar parâmetros ou bloquear execução
- **Depois da Chamada de Ferramenta**: Transformar resultados, sanitizar saídas ou registrar detalhes de execução
## Tipos de Hook
### Hooks Antes da Chamada de Ferramenta
Executados antes de cada execução de ferramenta, esses hooks podem:
- Inspecionar e modificar entradas de ferramenta
- Bloquear execução de ferramenta com base em condições
- Implementar gates de aprovação para operações perigosas
- Validar parâmetros
- Registrar invocações de ferramenta
**Assinatura:**
```python
def before_hook(context: ToolCallHookContext) -> bool | None:
# Retorne False para bloquear execução
# Retorne True ou None para permitir execução
...
```
### Hooks Depois da Chamada de Ferramenta
Executados depois de cada execução de ferramenta, esses hooks podem:
- Modificar ou sanitizar resultados de ferramenta
- Adicionar metadados ou formatação
- Registrar resultados de execução
- Implementar validação de resultado
- Transformar formatos de saída
**Assinatura:**
```python
def after_hook(context: ToolCallHookContext) -> str | None:
# Retorne string de resultado modificado
# Retorne None para manter resultado original
...
```
## Contexto do Hook de Ferramenta
O objeto `ToolCallHookContext` fornece acesso abrangente ao estado de execução da ferramenta:
```python
class ToolCallHookContext:
tool_name: str # Nome da ferramenta sendo chamada
tool_input: dict[str, Any] # Parâmetros de entrada mutáveis da ferramenta
tool: CrewStructuredTool # Referência da instância da ferramenta
agent: Agent | BaseAgent | None # Agente executando a ferramenta
task: Task | None # Tarefa atual
crew: Crew | None # Instância da crew
tool_result: str | None # Resultado da ferramenta (apenas hooks posteriores)
```
### Modificando Entradas de Ferramenta
**Importante:** Sempre modifique entradas de ferramenta in-place:
```python
# ✅ Correto - modificar in-place
def sanitize_input(context: ToolCallHookContext) -> None:
context.tool_input['query'] = context.tool_input['query'].lower()
# ❌ Errado - substitui referência do dict
def wrong_approach(context: ToolCallHookContext) -> None:
context.tool_input = {'query': 'nova consulta'}
```
## Métodos de Registro
### 1. Registro Baseado em Decoradores (Recomendado)
Use decoradores para sintaxe mais limpa:
```python
from crewai.hooks import before_tool_call, after_tool_call
@before_tool_call
def block_dangerous_tools(context):
"""Bloqueia ferramentas perigosas."""
dangerous_tools = ['delete_database', 'drop_table', 'rm_rf']
if context.tool_name in dangerous_tools:
print(f"⛔ Ferramenta perigosa bloqueada: {context.tool_name}")
return False # Bloquear execução
return None
@after_tool_call
def sanitize_results(context):
"""Sanitiza resultados."""
if context.tool_result and "password" in context.tool_result.lower():
return context.tool_result.replace("password", "[CENSURADO]")
return None
```
### 2. Hooks com Escopo de Crew
Registre hooks para uma instância específica de crew:
```python
from crewai import CrewBase
from crewai.project import crew
from crewai.hooks import before_tool_call_crew, after_tool_call_crew
@CrewBase
class MyProjCrew:
@before_tool_call_crew
def validate_tool_inputs(self, context):
# Aplica-se apenas a esta crew
if context.tool_name == "web_search":
if not context.tool_input.get('query'):
print("❌ Consulta de busca inválida")
return False
return None
@after_tool_call_crew
def log_tool_results(self, context):
# Logging de ferramenta específico da crew
print(f"✅ {context.tool_name} concluída")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True
)
```
## Casos de Uso Comuns
### 1. Guardrails de Segurança
```python
@before_tool_call
def safety_check(context: ToolCallHookContext) -> bool | None:
"""Bloqueia ferramentas que podem causar danos."""
destructive_tools = [
'delete_file',
'drop_table',
'remove_user',
'system_shutdown'
]
if context.tool_name in destructive_tools:
print(f"🛑 Ferramenta destrutiva bloqueada: {context.tool_name}")
return False
# Avisar em operações sensíveis
sensitive_tools = ['send_email', 'post_to_social_media', 'charge_payment']
if context.tool_name in sensitive_tools:
print(f"⚠️ Executando ferramenta sensível: {context.tool_name}")
return None
```
### 2. Gate de Aprovação Humana
```python
@before_tool_call
def require_approval_for_actions(context: ToolCallHookContext) -> bool | None:
"""Requer aprovação para ações específicas."""
approval_required = [
'send_email',
'make_purchase',
'delete_file',
'post_message'
]
if context.tool_name in approval_required:
response = context.request_human_input(
prompt=f"Aprovar {context.tool_name}?",
default_message=f"Entrada: {context.tool_input}\nDigite 'sim' para aprovar:"
)
if response.lower() != 'sim':
print(f"❌ Execução de ferramenta negada: {context.tool_name}")
return False
return None
```
### 3. Validação e Sanitização de Entrada
```python
@before_tool_call
def validate_and_sanitize_inputs(context: ToolCallHookContext) -> bool | None:
"""Valida e sanitiza entradas."""
# Validar consultas de busca
if context.tool_name == 'web_search':
query = context.tool_input.get('query', '')
if len(query) < 3:
print("❌ Consulta de busca muito curta")
return False
# Sanitizar consulta
context.tool_input['query'] = query.strip().lower()
# Validar caminhos de arquivo
if context.tool_name == 'read_file':
path = context.tool_input.get('path', '')
if '..' in path or path.startswith('/'):
print("❌ Caminho de arquivo inválido")
return False
return None
```
### 4. Sanitização de Resultado
```python
@after_tool_call
def sanitize_sensitive_data(context: ToolCallHookContext) -> str | None:
"""Sanitiza dados sensíveis."""
if not context.tool_result:
return None
import re
result = context.tool_result
# Remover chaves de API
result = re.sub(
r'(api[_-]?key|token)["\']?\s*[:=]\s*["\']?[\w-]+',
r'\1: [CENSURADO]',
result,
flags=re.IGNORECASE
)
# Remover endereços de email
result = re.sub(
r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'[EMAIL-CENSURADO]',
result
)
# Remover números de cartão de crédito
result = re.sub(
r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b',
'[CARTÃO-CENSURADO]',
result
)
return result
```
### 5. Análise de Uso de Ferramenta
```python
import time
from collections import defaultdict
tool_stats = defaultdict(lambda: {'count': 0, 'total_time': 0, 'failures': 0})
@before_tool_call
def start_timer(context: ToolCallHookContext) -> None:
context.tool_input['_start_time'] = time.time()
return None
@after_tool_call
def track_tool_usage(context: ToolCallHookContext) -> None:
start_time = context.tool_input.get('_start_time', time.time())
duration = time.time() - start_time
tool_stats[context.tool_name]['count'] += 1
tool_stats[context.tool_name]['total_time'] += duration
if not context.tool_result or 'error' in context.tool_result.lower():
tool_stats[context.tool_name]['failures'] += 1
print(f"""
📊 Estatísticas da Ferramenta {context.tool_name}:
- Execuções: {tool_stats[context.tool_name]['count']}
- Tempo Médio: {tool_stats[context.tool_name]['total_time'] / tool_stats[context.tool_name]['count']:.2f}s
- Falhas: {tool_stats[context.tool_name]['failures']}
""")
return None
```
### 6. Limitação de Taxa
```python
from collections import defaultdict
from datetime import datetime, timedelta
tool_call_history = defaultdict(list)
@before_tool_call
def rate_limit_tools(context: ToolCallHookContext) -> bool | None:
"""Limita taxa de chamadas de ferramenta."""
tool_name = context.tool_name
now = datetime.now()
# Limpar entradas antigas (mais antigas que 1 minuto)
tool_call_history[tool_name] = [
call_time for call_time in tool_call_history[tool_name]
if now - call_time < timedelta(minutes=1)
]
# Verificar limite de taxa (máximo 10 chamadas por minuto)
if len(tool_call_history[tool_name]) >= 10:
print(f"🚫 Limite de taxa excedido para {tool_name}")
return False
# Registrar esta chamada
tool_call_history[tool_name].append(now)
return None
```
### 7. Logging de Debug
```python
@before_tool_call
def debug_tool_call(context: ToolCallHookContext) -> None:
"""Debug de chamada de ferramenta."""
print(f"""
🔍 Debug de Chamada de Ferramenta:
- Ferramenta: {context.tool_name}
- Agente: {context.agent.role if context.agent else 'Desconhecido'}
- Tarefa: {context.task.description[:50] if context.task else 'Desconhecida'}...
- Entrada: {context.tool_input}
""")
return None
@after_tool_call
def debug_tool_result(context: ToolCallHookContext) -> None:
"""Debug de resultado de ferramenta."""
if context.tool_result:
result_preview = context.tool_result[:200]
print(f"✅ Preview do Resultado: {result_preview}...")
else:
print("⚠️ Nenhum resultado retornado")
return None
```
## Gerenciamento de Hooks
### Desregistrando Hooks
```python
from crewai.hooks import (
unregister_before_tool_call_hook,
unregister_after_tool_call_hook
)
# Desregistrar hook específico
def my_hook(context):
...
register_before_tool_call_hook(my_hook)
# Mais tarde...
success = unregister_before_tool_call_hook(my_hook)
print(f"Desregistrado: {success}")
```
### Limpando Hooks
```python
from crewai.hooks import (
clear_before_tool_call_hooks,
clear_after_tool_call_hooks,
clear_all_tool_call_hooks
)
# Limpar tipo específico de hook
count = clear_before_tool_call_hooks()
print(f"Limpou {count} hooks antes")
# Limpar todos os hooks de ferramenta
before_count, after_count = clear_all_tool_call_hooks()
print(f"Limpou {before_count} hooks antes e {after_count} hooks depois")
```
## Padrões Avançados
### Execução Condicional de Hook
```python
@before_tool_call
def conditional_blocking(context: ToolCallHookContext) -> bool | None:
"""Bloqueia apenas em condições específicas."""
# Bloquear apenas para agentes específicos
if context.agent and context.agent.role == "junior_agent":
if context.tool_name in ['delete_file', 'send_email']:
print(f"❌ Agentes júnior não podem usar {context.tool_name}")
return False
# Bloquear apenas durante tarefas específicas
if context.task and "sensível" in context.task.description.lower():
if context.tool_name == 'web_search':
print("❌ Busca na web bloqueada para tarefas sensíveis")
return False
return None
```
### Modificação de Entrada com Consciência de Contexto
```python
@before_tool_call
def enhance_tool_inputs(context: ToolCallHookContext) -> None:
"""Adiciona contexto baseado no papel do agente."""
# Adicionar contexto baseado no papel do agente
if context.agent and context.agent.role == "researcher":
if context.tool_name == 'web_search':
# Adicionar restrições de domínio para pesquisadores
context.tool_input['domains'] = ['edu', 'gov', 'org']
# Adicionar contexto baseado na tarefa
if context.task and "urgente" in context.task.description.lower():
if context.tool_name == 'send_email':
context.tool_input['priority'] = 'high'
return None
```
## Melhores Práticas
1. **Mantenha Hooks Focados**: Cada hook deve ter uma responsabilidade única
2. **Evite Computação Pesada**: Hooks executam em cada chamada de ferramenta
3. **Trate Erros Graciosamente**: Use try-except para prevenir falhas de hooks
4. **Use Type Hints**: Aproveite `ToolCallHookContext` para melhor suporte IDE
5. **Documente Condições de Bloqueio**: Deixe claro quando/por que ferramentas são bloqueadas
6. **Teste Hooks Independentemente**: Teste unitário de hooks antes de usar em produção
7. **Limpe Hooks em Testes**: Use `clear_all_tool_call_hooks()` entre execuções de teste
8. **Modifique In-Place**: Sempre modifique `context.tool_input` in-place, nunca substitua
9. **Registre Decisões Importantes**: Especialmente ao bloquear execução de ferramenta
10. **Considere Performance**: Cache validações caras quando possível
## Tratamento de Erros
```python
@before_tool_call
def safe_validation(context: ToolCallHookContext) -> bool | None:
try:
# Sua lógica de validação
if not validate_input(context.tool_input):
return False
except Exception as e:
print(f"⚠️ Erro no hook: {e}")
# Decida: permitir ou bloquear em erro
return None # Permitir execução apesar do erro
```
## Segurança de Tipos
```python
from crewai.hooks import ToolCallHookContext, BeforeToolCallHookType, AfterToolCallHookType
# Anotações de tipo explícitas
def my_before_hook(context: ToolCallHookContext) -> bool | None:
return None
def my_after_hook(context: ToolCallHookContext) -> str | None:
return None
# Registro type-safe
register_before_tool_call_hook(my_before_hook)
register_after_tool_call_hook(my_after_hook)
```
## Solução de Problemas
### Hook Não Está Executando
- Verifique se hook está registrado antes da execução da crew
- Verifique se hook anterior retornou `False` (bloqueia execução e hooks subsequentes)
- Garanta que assinatura do hook corresponda ao tipo esperado
### Modificações de Entrada Não Funcionam
- Use modificações in-place: `context.tool_input['key'] = value`
- Não substitua o dict: `context.tool_input = {}`
### Modificações de Resultado Não Funcionam
- Retorne a string modificada dos hooks posteriores
- Retornar `None` mantém o resultado original
- Garanta que a ferramenta realmente retornou um resultado
### Ferramenta Bloqueada Inesperadamente
- Verifique todos os hooks antes por condições de bloqueio
- Verifique ordem de execução do hook
- Adicione logging de debug para identificar qual hook está bloqueando
## Conclusão
Os Hooks de Chamada de Ferramenta fornecem capacidades poderosas para controlar e monitorar execução de ferramentas no CrewAI. Use-os para implementar guardrails de segurança, gates de aprovação, validação de entrada, sanitização de resultado, logging e análise. Combinados com tratamento adequado de erros e segurança de tipos, os hooks permitem sistemas de agentes seguros e prontos para produção com observabilidade abrangente.

View File

@@ -733,9 +733,7 @@ Aqui está um exemplo básico para rotear requisições ao OpenAI, usando especi
- Coletam metadados relevantes para filtragem de logs - Coletam metadados relevantes para filtragem de logs
- Impõem permissões de acesso - Impõem permissões de acesso
Crie chaves de API através de: Crie chaves de API através do [Portkey App](https://app.portkey.ai/)
- [Portkey App](https://app.portkey.ai/)
- [API Key Management API](/pt-BR/api-reference/admin-api/control-plane/api-keys/create-api-key)
Exemplo usando Python SDK: Exemplo usando Python SDK:
```python ```python
@@ -758,7 +756,7 @@ Aqui está um exemplo básico para rotear requisições ao OpenAI, usando especi
) )
``` ```
Para instruções detalhadas de gerenciamento de chaves, veja nossa [documentação de API Keys](/pt-BR/api-reference/admin-api/control-plane/api-keys/create-api-key). Para instruções detalhadas de gerenciamento de chaves, veja a [documentação Portkey](https://portkey.ai/docs).
</Accordion> </Accordion>
<Accordion title="Etapa 4: Implante & Monitore"> <Accordion title="Etapa 4: Implante & Monitore">

View File

@@ -18,7 +18,7 @@ Essas ferramentas permitem que seus agentes interajam com serviços em nuvem, ac
Escreva e faça upload de arquivos para o armazenamento Amazon S3. Escreva e faça upload de arquivos para o armazenamento Amazon S3.
</Card> </Card>
<Card title="Bedrock Invoke Agent" icon="aws" href="/pt-BR/tools/cloud-storage/bedrockinvokeagenttool"> <Card title="Bedrock Invoke Agent" icon="aws" href="/pt-BR/tools/integration/bedrockinvokeagenttool">
Acione agentes Amazon Bedrock para tarefas orientadas por IA. Acione agentes Amazon Bedrock para tarefas orientadas por IA.
</Card> </Card>

View File

@@ -11,7 +11,7 @@ mode: "wide"
<Card <Card
title="Bedrock Invoke Agent Tool" title="Bedrock Invoke Agent Tool"
icon="cloud" icon="cloud"
href="/en/tools/tool-integrations/bedrockinvokeagenttool" href="/pt-BR/tools/integration/bedrockinvokeagenttool"
color="#0891B2" color="#0891B2"
> >
Invoke Amazon Bedrock Agents from CrewAI to orchestrate actions across AWS services. Invoke Amazon Bedrock Agents from CrewAI to orchestrate actions across AWS services.
@@ -20,7 +20,7 @@ mode: "wide"
<Card <Card
title="CrewAI Automation Tool" title="CrewAI Automation Tool"
icon="bolt" icon="bolt"
href="/en/tools/tool-integrations/crewaiautomationtool" href="/pt-BR/tools/integration/crewaiautomationtool"
color="#7C3AED" color="#7C3AED"
> >
Automate deployment and operations by integrating CrewAI with external platforms and workflows. Automate deployment and operations by integrating CrewAI with external platforms and workflows.

View File

@@ -38,6 +38,7 @@ class A2AConfig(BaseModel):
max_turns: Maximum conversation turns with A2A agent (default: 10). max_turns: Maximum conversation turns with A2A agent (default: 10).
response_model: Optional Pydantic model for structured A2A agent responses. response_model: Optional Pydantic model for structured A2A agent responses.
fail_fast: If True, raise error when agent unreachable; if False, skip and continue (default: True). fail_fast: If True, raise error when agent unreachable; if False, skip and continue (default: True).
trust_remote_completion_status: If True, return A2A agent's result directly when status is "completed"; if False, always ask server agent to respond (default: False).
""" """
endpoint: Url = Field(description="A2A agent endpoint URL") endpoint: Url = Field(description="A2A agent endpoint URL")
@@ -57,3 +58,7 @@ class A2AConfig(BaseModel):
default=True, default=True,
description="If True, raise an error immediately when the A2A agent is unreachable. If False, skip the A2A agent and continue execution.", description="If True, raise an error immediately when the A2A agent is unreachable. If False, skip the A2A agent and continue execution.",
) )
trust_remote_completion_status: bool = Field(
default=False,
description='If True, return the A2A agent\'s result directly when status is "completed" without asking the server agent to respond. If False, always ask the server agent to respond, allowing it to potentially delegate again.',
)

View File

@@ -52,7 +52,7 @@ def wrap_agent_with_a2a_instance(agent: Agent) -> None:
Args: Args:
agent: The agent instance to wrap agent: The agent instance to wrap
""" """
original_execute_task = agent.execute_task.__func__ original_execute_task = agent.execute_task.__func__ # type: ignore[attr-defined]
@wraps(original_execute_task) @wraps(original_execute_task)
def execute_task_with_a2a( def execute_task_with_a2a(
@@ -73,7 +73,7 @@ def wrap_agent_with_a2a_instance(agent: Agent) -> None:
Task execution result Task execution result
""" """
if not self.a2a: if not self.a2a:
return original_execute_task(self, task, context, tools) return original_execute_task(self, task, context, tools) # type: ignore[no-any-return]
a2a_agents, agent_response_model = get_a2a_agents_and_response_model(self.a2a) a2a_agents, agent_response_model = get_a2a_agents_and_response_model(self.a2a)
@@ -498,6 +498,23 @@ def _delegate_to_a2a(
conversation_history = a2a_result.get("history", []) conversation_history = a2a_result.get("history", [])
if a2a_result["status"] in ["completed", "input_required"]: if a2a_result["status"] in ["completed", "input_required"]:
if (
a2a_result["status"] == "completed"
and agent_config.trust_remote_completion_status
):
result_text = a2a_result.get("result", "")
final_turn_number = turn_num + 1
crewai_event_bus.emit(
None,
A2AConversationCompletedEvent(
status="completed",
final_result=result_text,
error=None,
total_turns=final_turn_number,
),
)
return result_text # type: ignore[no-any-return]
final_result, next_request = _handle_agent_response_and_continue( final_result, next_request = _handle_agent_response_and_continue(
self=self, self=self,
a2a_result=a2a_result, a2a_result=a2a_result,

View File

@@ -23,6 +23,10 @@ from crewai.events.types.logging_events import (
AgentLogsExecutionEvent, AgentLogsExecutionEvent,
AgentLogsStartedEvent, AgentLogsStartedEvent,
) )
from crewai.hooks.llm_hooks import (
get_after_llm_call_hooks,
get_before_llm_call_hooks,
)
from crewai.utilities.agent_utils import ( from crewai.utilities.agent_utils import (
enforce_rpm_limit, enforce_rpm_limit,
format_message_for_llm, format_message_for_llm,
@@ -38,10 +42,6 @@ from crewai.utilities.agent_utils import (
) )
from crewai.utilities.constants import TRAINING_DATA_FILE from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.i18n import I18N, get_i18n from crewai.utilities.i18n import I18N, get_i18n
from crewai.utilities.llm_call_hooks import (
get_after_llm_call_hooks,
get_before_llm_call_hooks,
)
from crewai.utilities.printer import Printer from crewai.utilities.printer import Printer
from crewai.utilities.tool_utils import execute_tool_and_check_finality from crewai.utilities.tool_utils import execute_tool_and_check_finality
from crewai.utilities.training_handler import CrewTrainingHandler from crewai.utilities.training_handler import CrewTrainingHandler
@@ -263,6 +263,7 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
task=self.task, task=self.task,
agent=self.agent, agent=self.agent,
function_calling_llm=self.function_calling_llm, function_calling_llm=self.function_calling_llm,
crew=self.crew,
) )
formatted_answer = self._handle_agent_action( formatted_answer = self._handle_agent_action(
formatted_answer, tool_result formatted_answer, tool_result

View File

@@ -0,0 +1,108 @@
from __future__ import annotations
from crewai.hooks.decorators import (
after_llm_call,
after_tool_call,
before_llm_call,
before_tool_call,
)
from crewai.hooks.llm_hooks import (
LLMCallHookContext,
clear_after_llm_call_hooks,
clear_all_llm_call_hooks,
clear_before_llm_call_hooks,
get_after_llm_call_hooks,
get_before_llm_call_hooks,
register_after_llm_call_hook,
register_before_llm_call_hook,
unregister_after_llm_call_hook,
unregister_before_llm_call_hook,
)
from crewai.hooks.tool_hooks import (
ToolCallHookContext,
clear_after_tool_call_hooks,
clear_all_tool_call_hooks,
clear_before_tool_call_hooks,
get_after_tool_call_hooks,
get_before_tool_call_hooks,
register_after_tool_call_hook,
register_before_tool_call_hook,
unregister_after_tool_call_hook,
unregister_before_tool_call_hook,
)
def clear_all_global_hooks() -> dict[str, tuple[int, int]]:
"""Clear all global hooks across all hook types (LLM and Tool).
This is a convenience function that clears all registered hooks in one call.
Useful for testing, resetting state, or cleaning up between different
execution contexts.
Returns:
Dictionary with counts of cleared hooks:
{
"llm_hooks": (before_count, after_count),
"tool_hooks": (before_count, after_count),
"total": (total_before_count, total_after_count)
}
Example:
>>> # Register various hooks
>>> register_before_llm_call_hook(llm_hook1)
>>> register_after_llm_call_hook(llm_hook2)
>>> register_before_tool_call_hook(tool_hook1)
>>> register_after_tool_call_hook(tool_hook2)
>>>
>>> # Clear all hooks at once
>>> result = clear_all_global_hooks()
>>> print(result)
{
'llm_hooks': (1, 1),
'tool_hooks': (1, 1),
'total': (2, 2)
}
"""
llm_counts = clear_all_llm_call_hooks()
tool_counts = clear_all_tool_call_hooks()
return {
"llm_hooks": llm_counts,
"tool_hooks": tool_counts,
"total": (llm_counts[0] + tool_counts[0], llm_counts[1] + tool_counts[1]),
}
__all__ = [
# Context classes
"LLMCallHookContext",
"ToolCallHookContext",
# Decorators
"after_llm_call",
"after_tool_call",
"before_llm_call",
"before_tool_call",
"clear_after_llm_call_hooks",
"clear_after_tool_call_hooks",
"clear_all_global_hooks",
"clear_all_llm_call_hooks",
"clear_all_tool_call_hooks",
# Clear hooks
"clear_before_llm_call_hooks",
"clear_before_tool_call_hooks",
"get_after_llm_call_hooks",
"get_after_tool_call_hooks",
# Get hooks
"get_before_llm_call_hooks",
"get_before_tool_call_hooks",
"register_after_llm_call_hook",
"register_after_tool_call_hook",
# LLM Hook registration
"register_before_llm_call_hook",
# Tool Hook registration
"register_before_tool_call_hook",
"unregister_after_llm_call_hook",
"unregister_after_tool_call_hook",
"unregister_before_llm_call_hook",
"unregister_before_tool_call_hook",
]

View File

@@ -0,0 +1,300 @@
from __future__ import annotations
from collections.abc import Callable
from functools import wraps
import inspect
from typing import TYPE_CHECKING, Any, TypeVar, overload
if TYPE_CHECKING:
from crewai.hooks.llm_hooks import LLMCallHookContext
from crewai.hooks.tool_hooks import ToolCallHookContext
F = TypeVar("F", bound=Callable[..., Any])
def _create_hook_decorator(
hook_type: str,
register_function: Callable[..., Any],
marker_attribute: str,
) -> Callable[..., Any]:
"""Create a hook decorator with filtering support.
This factory function eliminates code duplication across the four hook decorators.
Args:
hook_type: Type of hook ("llm" or "tool")
register_function: Function to call for registration (e.g., register_before_llm_call_hook)
marker_attribute: Attribute name to mark functions (e.g., "is_before_llm_call_hook")
Returns:
A decorator function that supports filters and auto-registration
"""
def decorator_factory(
func: Callable[..., Any] | None = None,
*,
tools: list[str] | None = None,
agents: list[str] | None = None,
) -> Callable[..., Any]:
def decorator(f: Callable[..., Any]) -> Callable[..., Any]:
setattr(f, marker_attribute, True)
sig = inspect.signature(f)
params = list(sig.parameters.keys())
is_method = len(params) >= 2 and params[0] == "self"
if tools:
f._filter_tools = tools # type: ignore[attr-defined]
if agents:
f._filter_agents = agents # type: ignore[attr-defined]
if tools or agents:
@wraps(f)
def filtered_hook(context: Any) -> Any:
if tools and hasattr(context, "tool_name"):
if context.tool_name not in tools:
return None
if agents and hasattr(context, "agent"):
if context.agent and context.agent.role not in agents:
return None
return f(context)
if not is_method:
register_function(filtered_hook)
return f
if not is_method:
register_function(f)
return f
if func is None:
return decorator
return decorator(func)
return decorator_factory
@overload
def before_llm_call(
func: Callable[[LLMCallHookContext], None],
) -> Callable[[LLMCallHookContext], None]: ...
@overload
def before_llm_call(
*,
agents: list[str] | None = None,
) -> Callable[
[Callable[[LLMCallHookContext], None]], Callable[[LLMCallHookContext], None]
]: ...
def before_llm_call(
func: Callable[[LLMCallHookContext], None] | None = None,
*,
agents: list[str] | None = None,
) -> (
Callable[[LLMCallHookContext], None]
| Callable[
[Callable[[LLMCallHookContext], None]], Callable[[LLMCallHookContext], None]
]
):
"""Decorator to register a function as a before_llm_call hook.
Example:
Simple usage::
@before_llm_call
def log_calls(context):
print(f"LLM call by {context.agent.role}")
With agent filter::
@before_llm_call(agents=["Researcher", "Analyst"])
def log_specific_agents(context):
print(f"Filtered LLM call: {context.agent.role}")
"""
from crewai.hooks.llm_hooks import register_before_llm_call_hook
return _create_hook_decorator( # type: ignore[return-value]
hook_type="llm",
register_function=register_before_llm_call_hook,
marker_attribute="is_before_llm_call_hook",
)(func=func, agents=agents)
@overload
def after_llm_call(
func: Callable[[LLMCallHookContext], str | None],
) -> Callable[[LLMCallHookContext], str | None]: ...
@overload
def after_llm_call(
*,
agents: list[str] | None = None,
) -> Callable[
[Callable[[LLMCallHookContext], str | None]],
Callable[[LLMCallHookContext], str | None],
]: ...
def after_llm_call(
func: Callable[[LLMCallHookContext], str | None] | None = None,
*,
agents: list[str] | None = None,
) -> (
Callable[[LLMCallHookContext], str | None]
| Callable[
[Callable[[LLMCallHookContext], str | None]],
Callable[[LLMCallHookContext], str | None],
]
):
"""Decorator to register a function as an after_llm_call hook.
Example:
Simple usage::
@after_llm_call
def sanitize(context):
if "SECRET" in context.response:
return context.response.replace("SECRET", "[REDACTED]")
return None
With agent filter::
@after_llm_call(agents=["Researcher"])
def log_researcher_responses(context):
print(f"Response length: {len(context.response)}")
return None
"""
from crewai.hooks.llm_hooks import register_after_llm_call_hook
return _create_hook_decorator( # type: ignore[return-value]
hook_type="llm",
register_function=register_after_llm_call_hook,
marker_attribute="is_after_llm_call_hook",
)(func=func, agents=agents)
@overload
def before_tool_call(
func: Callable[[ToolCallHookContext], bool | None],
) -> Callable[[ToolCallHookContext], bool | None]: ...
@overload
def before_tool_call(
*,
tools: list[str] | None = None,
agents: list[str] | None = None,
) -> Callable[
[Callable[[ToolCallHookContext], bool | None]],
Callable[[ToolCallHookContext], bool | None],
]: ...
def before_tool_call(
func: Callable[[ToolCallHookContext], bool | None] | None = None,
*,
tools: list[str] | None = None,
agents: list[str] | None = None,
) -> (
Callable[[ToolCallHookContext], bool | None]
| Callable[
[Callable[[ToolCallHookContext], bool | None]],
Callable[[ToolCallHookContext], bool | None],
]
):
"""Decorator to register a function as a before_tool_call hook.
Example:
Simple usage::
@before_tool_call
def log_all_tools(context):
print(f"Tool: {context.tool_name}")
return None
With tool filter::
@before_tool_call(tools=["delete_file", "execute_code"])
def approve_dangerous(context):
response = context.request_human_input(prompt="Approve?")
return None if response == "yes" else False
With combined filters::
@before_tool_call(tools=["write_file"], agents=["Developer"])
def approve_dev_writes(context):
return None # Only for Developer writing files
"""
from crewai.hooks.tool_hooks import register_before_tool_call_hook
return _create_hook_decorator( # type: ignore[return-value]
hook_type="tool",
register_function=register_before_tool_call_hook,
marker_attribute="is_before_tool_call_hook",
)(func=func, tools=tools, agents=agents)
@overload
def after_tool_call(
func: Callable[[ToolCallHookContext], str | None],
) -> Callable[[ToolCallHookContext], str | None]: ...
@overload
def after_tool_call(
*,
tools: list[str] | None = None,
agents: list[str] | None = None,
) -> Callable[
[Callable[[ToolCallHookContext], str | None]],
Callable[[ToolCallHookContext], str | None],
]: ...
def after_tool_call(
func: Callable[[ToolCallHookContext], str | None] | None = None,
*,
tools: list[str] | None = None,
agents: list[str] | None = None,
) -> (
Callable[[ToolCallHookContext], str | None]
| Callable[
[Callable[[ToolCallHookContext], str | None]],
Callable[[ToolCallHookContext], str | None],
]
):
"""Decorator to register a function as an after_tool_call hook.
Example:
Simple usage::
@after_tool_call
def log_results(context):
print(f"Result: {len(context.tool_result)} chars")
return None
With tool filter::
@after_tool_call(tools=["web_search", "ExaSearchTool"])
def sanitize_search_results(context):
if "SECRET" in context.tool_result:
return context.tool_result.replace("SECRET", "[REDACTED]")
return None
"""
from crewai.hooks.tool_hooks import register_after_tool_call_hook
return _create_hook_decorator( # type: ignore[return-value]
hook_type="tool",
register_function=register_after_tool_call_hook,
marker_attribute="is_after_tool_call_hook",
)(func=func, tools=tools, agents=agents)

View File

@@ -0,0 +1,290 @@
from __future__ import annotations
from typing import TYPE_CHECKING
from crewai.events.event_listener import event_listener
from crewai.hooks.types import AfterLLMCallHookType, BeforeLLMCallHookType
from crewai.utilities.printer import Printer
if TYPE_CHECKING:
from crewai.agents.crew_agent_executor import CrewAgentExecutor
class LLMCallHookContext:
"""Context object passed to LLM call hooks with full executor access.
Provides hooks with complete access to the executor state, allowing
modification of messages, responses, and executor attributes.
Attributes:
executor: Full reference to the CrewAgentExecutor instance
messages: Direct reference to executor.messages (mutable list).
Can be modified in both before_llm_call and after_llm_call hooks.
Modifications in after_llm_call hooks persist to the next iteration,
allowing hooks to modify conversation history for subsequent LLM calls.
IMPORTANT: Modify messages in-place (e.g., append, extend, remove items).
Do NOT replace the list (e.g., context.messages = []), as this will break
the executor. Use context.messages.append() or context.messages.extend()
instead of assignment.
agent: Reference to the agent executing the task
task: Reference to the task being executed
crew: Reference to the crew instance
llm: Reference to the LLM instance
iterations: Current iteration count
response: LLM response string (only set for after_llm_call hooks).
Can be modified by returning a new string from after_llm_call hook.
"""
def __init__(
self,
executor: CrewAgentExecutor,
response: str | None = None,
) -> None:
"""Initialize hook context with executor reference.
Args:
executor: The CrewAgentExecutor instance
response: Optional response string (for after_llm_call hooks)
"""
self.executor = executor
self.messages = executor.messages
self.agent = executor.agent
self.task = executor.task
self.crew = executor.crew
self.llm = executor.llm
self.iterations = executor.iterations
self.response = response
def request_human_input(
self,
prompt: str,
default_message: str = "Press Enter to continue, or provide feedback:",
) -> str:
"""Request human input during LLM hook execution.
This method pauses live console updates, displays a prompt to the user,
waits for their input, and then resumes live updates. This is useful for
approval gates, debugging, or getting human feedback during execution.
Args:
prompt: Custom message to display to the user
default_message: Message shown after the prompt
Returns:
User's input as a string (empty string if just Enter pressed)
Example:
>>> def approval_hook(context: LLMCallHookContext) -> None:
... if context.iterations > 5:
... response = context.request_human_input(
... prompt="Allow this LLM call?",
... default_message="Type 'no' to skip, or press Enter:",
... )
... if response.lower() == "no":
... print("LLM call skipped by user")
"""
printer = Printer()
event_listener.formatter.pause_live_updates()
try:
printer.print(content=f"\n{prompt}", color="bold_yellow")
printer.print(content=default_message, color="cyan")
response = input().strip()
if response:
printer.print(content="\nProcessing your input...", color="cyan")
return response
finally:
event_listener.formatter.resume_live_updates()
_before_llm_call_hooks: list[BeforeLLMCallHookType] = []
_after_llm_call_hooks: list[AfterLLMCallHookType] = []
def register_before_llm_call_hook(
hook: BeforeLLMCallHookType,
) -> None:
"""Register a global before_llm_call hook.
Global hooks are added to all executors automatically.
This is a convenience function for registering hooks that should
apply to all LLM calls across all executors.
Args:
hook: Function that receives LLMCallHookContext and can:
- Modify context.messages directly (in-place)
- Return False to block LLM execution
- Return True or None to allow execution
IMPORTANT: Modify messages in-place (append, extend, remove items).
Do NOT replace the list (context.messages = []), as this will break execution.
Example:
>>> def log_llm_calls(context: LLMCallHookContext) -> None:
... print(f"LLM call by {context.agent.role}")
... print(f"Messages: {len(context.messages)}")
... return None # Allow execution
>>>
>>> register_before_llm_call_hook(log_llm_calls)
>>>
>>> def block_excessive_iterations(context: LLMCallHookContext) -> bool | None:
... if context.iterations > 10:
... print("Blocked: Too many iterations")
... return False # Block execution
... return None # Allow execution
>>>
>>> register_before_llm_call_hook(block_excessive_iterations)
"""
_before_llm_call_hooks.append(hook)
def register_after_llm_call_hook(
hook: AfterLLMCallHookType,
) -> None:
"""Register a global after_llm_call hook.
Global hooks are added to all executors automatically.
This is a convenience function for registering hooks that should
apply to all LLM calls across all executors.
Args:
hook: Function that receives LLMCallHookContext and can modify:
- The response: Return modified response string or None to keep original
- The messages: Modify context.messages directly (mutable reference)
Both modifications are supported and can be used together.
IMPORTANT: Modify messages in-place (append, extend, remove items).
Do NOT replace the list (context.messages = []), as this will break execution.
Example:
>>> def sanitize_response(context: LLMCallHookContext) -> str | None:
... if context.response and "SECRET" in context.response:
... return context.response.replace("SECRET", "[REDACTED]")
... return None
>>>
>>> register_after_llm_call_hook(sanitize_response)
"""
_after_llm_call_hooks.append(hook)
def get_before_llm_call_hooks() -> list[BeforeLLMCallHookType]:
"""Get all registered global before_llm_call hooks.
Returns:
List of registered before hooks
"""
return _before_llm_call_hooks.copy()
def get_after_llm_call_hooks() -> list[AfterLLMCallHookType]:
"""Get all registered global after_llm_call hooks.
Returns:
List of registered after hooks
"""
return _after_llm_call_hooks.copy()
def unregister_before_llm_call_hook(
hook: BeforeLLMCallHookType,
) -> bool:
"""Unregister a specific global before_llm_call hook.
Args:
hook: The hook function to remove
Returns:
True if the hook was found and removed, False otherwise
Example:
>>> def my_hook(context: LLMCallHookContext) -> None:
... print("Before LLM call")
>>>
>>> register_before_llm_call_hook(my_hook)
>>> unregister_before_llm_call_hook(my_hook)
True
"""
try:
_before_llm_call_hooks.remove(hook)
return True
except ValueError:
return False
def unregister_after_llm_call_hook(
hook: AfterLLMCallHookType,
) -> bool:
"""Unregister a specific global after_llm_call hook.
Args:
hook: The hook function to remove
Returns:
True if the hook was found and removed, False otherwise
Example:
>>> def my_hook(context: LLMCallHookContext) -> str | None:
... return None
>>>
>>> register_after_llm_call_hook(my_hook)
>>> unregister_after_llm_call_hook(my_hook)
True
"""
try:
_after_llm_call_hooks.remove(hook)
return True
except ValueError:
return False
def clear_before_llm_call_hooks() -> int:
"""Clear all registered global before_llm_call hooks.
Returns:
Number of hooks that were cleared
Example:
>>> register_before_llm_call_hook(hook1)
>>> register_before_llm_call_hook(hook2)
>>> clear_before_llm_call_hooks()
2
"""
count = len(_before_llm_call_hooks)
_before_llm_call_hooks.clear()
return count
def clear_after_llm_call_hooks() -> int:
"""Clear all registered global after_llm_call hooks.
Returns:
Number of hooks that were cleared
Example:
>>> register_after_llm_call_hook(hook1)
>>> register_after_llm_call_hook(hook2)
>>> clear_after_llm_call_hooks()
2
"""
count = len(_after_llm_call_hooks)
_after_llm_call_hooks.clear()
return count
def clear_all_llm_call_hooks() -> tuple[int, int]:
"""Clear all registered global LLM call hooks (both before and after).
Returns:
Tuple of (before_hooks_cleared, after_hooks_cleared)
Example:
>>> register_before_llm_call_hook(before_hook)
>>> register_after_llm_call_hook(after_hook)
>>> clear_all_llm_call_hooks()
(1, 1)
"""
before_count = clear_before_llm_call_hooks()
after_count = clear_after_llm_call_hooks()
return (before_count, after_count)

View File

@@ -0,0 +1,305 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any
from crewai.events.event_listener import event_listener
from crewai.hooks.types import AfterToolCallHookType, BeforeToolCallHookType
from crewai.utilities.printer import Printer
if TYPE_CHECKING:
from crewai.agent import Agent
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.crew import Crew
from crewai.task import Task
from crewai.tools.structured_tool import CrewStructuredTool
class ToolCallHookContext:
"""Context object passed to tool call hooks.
Provides hooks with access to the tool being called, its input,
the agent/task/crew context, and the result (for after hooks).
Attributes:
tool_name: Name of the tool being called
tool_input: Tool input parameters (mutable dict).
Can be modified in-place by before_tool_call hooks.
IMPORTANT: Modify in-place (e.g., context.tool_input['key'] = value).
Do NOT replace the dict (e.g., context.tool_input = {}), as this
will not affect the actual tool execution.
tool: Reference to the CrewStructuredTool instance
agent: Agent executing the tool (may be None)
task: Current task being executed (may be None)
crew: Crew instance (may be None)
tool_result: Tool execution result (only set for after_tool_call hooks).
Can be modified by returning a new string from after_tool_call hook.
"""
def __init__(
self,
tool_name: str,
tool_input: dict[str, Any],
tool: CrewStructuredTool,
agent: Agent | BaseAgent | None = None,
task: Task | None = None,
crew: Crew | None = None,
tool_result: str | None = None,
) -> None:
"""Initialize tool call hook context.
Args:
tool_name: Name of the tool being called
tool_input: Tool input parameters (mutable)
tool: Tool instance reference
agent: Optional agent executing the tool
task: Optional current task
crew: Optional crew instance
tool_result: Optional tool result (for after hooks)
"""
self.tool_name = tool_name
self.tool_input = tool_input
self.tool = tool
self.agent = agent
self.task = task
self.crew = crew
self.tool_result = tool_result
def request_human_input(
self,
prompt: str,
default_message: str = "Press Enter to continue, or provide feedback:",
) -> str:
"""Request human input during tool hook execution.
This method pauses live console updates, displays a prompt to the user,
waits for their input, and then resumes live updates. This is useful for
approval gates, reviewing tool results, or getting human feedback during execution.
Args:
prompt: Custom message to display to the user
default_message: Message shown after the prompt
Returns:
User's input as a string (empty string if just Enter pressed)
Example:
>>> def approval_hook(context: ToolCallHookContext) -> bool | None:
... if context.tool_name == "delete_file":
... response = context.request_human_input(
... prompt="Allow file deletion?",
... default_message="Type 'approve' to continue:",
... )
... if response.lower() != "approve":
... return False # Block execution
... return None # Allow execution
"""
printer = Printer()
event_listener.formatter.pause_live_updates()
try:
printer.print(content=f"\n{prompt}", color="bold_yellow")
printer.print(content=default_message, color="cyan")
response = input().strip()
if response:
printer.print(content="\nProcessing your input...", color="cyan")
return response
finally:
event_listener.formatter.resume_live_updates()
# Global hook registries
_before_tool_call_hooks: list[BeforeToolCallHookType] = []
_after_tool_call_hooks: list[AfterToolCallHookType] = []
def register_before_tool_call_hook(
hook: BeforeToolCallHookType,
) -> None:
"""Register a global before_tool_call hook.
Global hooks are added to all tool executions automatically.
This is a convenience function for registering hooks that should
apply to all tool calls across all agents and crews.
Args:
hook: Function that receives ToolCallHookContext and can:
- Modify tool_input in-place
- Return False to block tool execution
- Return True or None to allow execution
IMPORTANT: Modify tool_input in-place (e.g., context.tool_input['key'] = value).
Do NOT replace the dict (context.tool_input = {}), as this will not affect
the actual tool execution.
Example:
>>> def log_tool_usage(context: ToolCallHookContext) -> None:
... print(f"Executing tool: {context.tool_name}")
... print(f"Input: {context.tool_input}")
... return None # Allow execution
>>>
>>> register_before_tool_call_hook(log_tool_usage)
>>> def block_dangerous_tools(context: ToolCallHookContext) -> bool | None:
... if context.tool_name == "delete_database":
... print("Blocked dangerous tool execution!")
... return False # Block execution
... return None # Allow execution
>>>
>>> register_before_tool_call_hook(block_dangerous_tools)
"""
_before_tool_call_hooks.append(hook)
def register_after_tool_call_hook(
hook: AfterToolCallHookType,
) -> None:
"""Register a global after_tool_call hook.
Global hooks are added to all tool executions automatically.
This is a convenience function for registering hooks that should
apply to all tool calls across all agents and crews.
Args:
hook: Function that receives ToolCallHookContext and can modify
the tool result. Return modified result string or None to keep
the original result. The tool_result is available in context.tool_result.
Example:
>>> def sanitize_output(context: ToolCallHookContext) -> str | None:
... if context.tool_result and "SECRET_KEY" in context.tool_result:
... return context.tool_result.replace("SECRET_KEY=...", "[REDACTED]")
... return None # Keep original result
>>>
>>> register_after_tool_call_hook(sanitize_output)
>>> def log_tool_results(context: ToolCallHookContext) -> None:
... print(f"Tool {context.tool_name} returned: {context.tool_result[:100]}")
... return None # Keep original result
>>>
>>> register_after_tool_call_hook(log_tool_results)
"""
_after_tool_call_hooks.append(hook)
def get_before_tool_call_hooks() -> list[BeforeToolCallHookType]:
"""Get all registered global before_tool_call hooks.
Returns:
List of registered before hooks
"""
return _before_tool_call_hooks.copy()
def get_after_tool_call_hooks() -> list[AfterToolCallHookType]:
"""Get all registered global after_tool_call hooks.
Returns:
List of registered after hooks
"""
return _after_tool_call_hooks.copy()
def unregister_before_tool_call_hook(
hook: BeforeToolCallHookType,
) -> bool:
"""Unregister a specific global before_tool_call hook.
Args:
hook: The hook function to remove
Returns:
True if the hook was found and removed, False otherwise
Example:
>>> def my_hook(context: ToolCallHookContext) -> None:
... print("Before tool call")
>>>
>>> register_before_tool_call_hook(my_hook)
>>> unregister_before_tool_call_hook(my_hook)
True
"""
try:
_before_tool_call_hooks.remove(hook)
return True
except ValueError:
return False
def unregister_after_tool_call_hook(
hook: AfterToolCallHookType,
) -> bool:
"""Unregister a specific global after_tool_call hook.
Args:
hook: The hook function to remove
Returns:
True if the hook was found and removed, False otherwise
Example:
>>> def my_hook(context: ToolCallHookContext) -> str | None:
... return None
>>>
>>> register_after_tool_call_hook(my_hook)
>>> unregister_after_tool_call_hook(my_hook)
True
"""
try:
_after_tool_call_hooks.remove(hook)
return True
except ValueError:
return False
def clear_before_tool_call_hooks() -> int:
"""Clear all registered global before_tool_call hooks.
Returns:
Number of hooks that were cleared
Example:
>>> register_before_tool_call_hook(hook1)
>>> register_before_tool_call_hook(hook2)
>>> clear_before_tool_call_hooks()
2
"""
count = len(_before_tool_call_hooks)
_before_tool_call_hooks.clear()
return count
def clear_after_tool_call_hooks() -> int:
"""Clear all registered global after_tool_call hooks.
Returns:
Number of hooks that were cleared
Example:
>>> register_after_tool_call_hook(hook1)
>>> register_after_tool_call_hook(hook2)
>>> clear_after_tool_call_hooks()
2
"""
count = len(_after_tool_call_hooks)
_after_tool_call_hooks.clear()
return count
def clear_all_tool_call_hooks() -> tuple[int, int]:
"""Clear all registered global tool call hooks (both before and after).
Returns:
Tuple of (before_hooks_cleared, after_hooks_cleared)
Example:
>>> register_before_tool_call_hook(before_hook)
>>> register_after_tool_call_hook(after_hook)
>>> clear_all_tool_call_hooks()
(1, 1)
"""
before_count = clear_before_tool_call_hooks()
after_count = clear_after_tool_call_hooks()
return (before_count, after_count)

View File

@@ -0,0 +1,137 @@
from __future__ import annotations
from collections.abc import Callable
from typing import TYPE_CHECKING, Generic, Protocol, TypeVar, runtime_checkable
if TYPE_CHECKING:
from crewai.hooks.llm_hooks import LLMCallHookContext
from crewai.hooks.tool_hooks import ToolCallHookContext
ContextT = TypeVar("ContextT", contravariant=True)
ReturnT = TypeVar("ReturnT", covariant=True)
@runtime_checkable
class Hook(Protocol, Generic[ContextT, ReturnT]):
"""Generic protocol for hook functions.
This protocol defines the common interface for all hook types in CrewAI.
Hooks receive a context object and optionally return a modified result.
Type Parameters:
ContextT: The context type (LLMCallHookContext or ToolCallHookContext)
ReturnT: The return type (None, str | None, or bool | None)
Example:
>>> # Before LLM call hook: receives LLMCallHookContext, returns None
>>> hook: Hook[LLMCallHookContext, None] = lambda ctx: print(ctx.iterations)
>>>
>>> # After LLM call hook: receives LLMCallHookContext, returns str | None
>>> hook: Hook[LLMCallHookContext, str | None] = lambda ctx: ctx.response
"""
def __call__(self, context: ContextT) -> ReturnT:
"""Execute the hook with the given context.
Args:
context: Context object with relevant execution state
Returns:
Hook-specific return value (None, str | None, or bool | None)
"""
...
class BeforeLLMCallHook(Hook["LLMCallHookContext", bool | None], Protocol):
"""Protocol for before_llm_call hooks.
These hooks are called before an LLM is invoked and can modify the messages
that will be sent to the LLM or block the execution entirely.
"""
def __call__(self, context: LLMCallHookContext) -> bool | None:
"""Execute the before LLM call hook.
Args:
context: Context object with executor, messages, agent, task, etc.
Messages can be modified in-place.
Returns:
False to block LLM execution, True or None to allow execution
"""
...
class AfterLLMCallHook(Hook["LLMCallHookContext", str | None], Protocol):
"""Protocol for after_llm_call hooks.
These hooks are called after an LLM returns a response and can modify
the response or the message history.
"""
def __call__(self, context: LLMCallHookContext) -> str | None:
"""Execute the after LLM call hook.
Args:
context: Context object with executor, messages, agent, task, response, etc.
Messages can be modified in-place. Response is available in context.response.
Returns:
Modified response string, or None to keep the original response
"""
...
class BeforeToolCallHook(Hook["ToolCallHookContext", bool | None], Protocol):
"""Protocol for before_tool_call hooks.
These hooks are called before a tool is executed and can modify the tool
input or block the execution entirely.
"""
def __call__(self, context: ToolCallHookContext) -> bool | None:
"""Execute the before tool call hook.
Args:
context: Context object with tool_name, tool_input, tool, agent, task, etc.
Tool input can be modified in-place.
Returns:
False to block tool execution, True or None to allow execution
"""
...
class AfterToolCallHook(Hook["ToolCallHookContext", str | None], Protocol):
"""Protocol for after_tool_call hooks.
These hooks are called after a tool executes and can modify the result.
"""
def __call__(self, context: ToolCallHookContext) -> str | None:
"""Execute the after tool call hook.
Args:
context: Context object with tool_name, tool_input, tool_result, etc.
Tool result is available in context.tool_result.
Returns:
Modified tool result string, or None to keep the original result
"""
...
# - All before hooks: bool | None (False = block execution, True/None = allow)
# - All after hooks: str | None (str = modified result, None = keep original)
BeforeLLMCallHookType = Hook["LLMCallHookContext", bool | None]
AfterLLMCallHookType = Hook["LLMCallHookContext", str | None]
BeforeToolCallHookType = Hook["ToolCallHookContext", bool | None]
AfterToolCallHookType = Hook["ToolCallHookContext", str | None]
# Alternative Callable-based type aliases for compatibility
BeforeLLMCallHookCallable = Callable[["LLMCallHookContext"], bool | None]
AfterLLMCallHookCallable = Callable[["LLMCallHookContext"], str | None]
BeforeToolCallHookCallable = Callable[["ToolCallHookContext"], bool | None]
AfterToolCallHookCallable = Callable[["ToolCallHookContext"], str | None]

View File

@@ -0,0 +1,157 @@
from __future__ import annotations
from collections.abc import Callable
from typing import TYPE_CHECKING, Any, TypeVar
if TYPE_CHECKING:
from crewai.hooks.llm_hooks import LLMCallHookContext
from crewai.hooks.tool_hooks import ToolCallHookContext
P = TypeVar("P")
R = TypeVar("R")
def _copy_method_metadata(wrapper: Any, original: Callable[..., Any]) -> None:
"""Copy metadata from original function to wrapper.
Args:
wrapper: The wrapper object to copy metadata to
original: The original function to copy from
"""
wrapper.__name__ = original.__name__
wrapper.__doc__ = original.__doc__
wrapper.__module__ = original.__module__
wrapper.__qualname__ = original.__qualname__
wrapper.__annotations__ = original.__annotations__
class BeforeLLMCallHookMethod:
"""Wrapper for methods marked as before_llm_call hooks within @CrewBase classes.
This wrapper marks a method so it can be detected and registered as a
crew-scoped hook during crew initialization.
"""
is_before_llm_call_hook: bool = True
def __init__(
self,
meth: Callable[[Any, LLMCallHookContext], None],
agents: list[str] | None = None,
) -> None:
"""Initialize the hook method wrapper.
Args:
meth: The method to wrap
agents: Optional list of agent roles to filter
"""
self._meth = meth
self.agents = agents
_copy_method_metadata(self, meth)
def __call__(self, *args: Any, **kwargs: Any) -> None:
"""Call the wrapped method.
Args:
*args: Positional arguments
**kwargs: Keyword arguments
"""
return self._meth(*args, **kwargs)
def __get__(self, obj: Any, objtype: type[Any] | None = None) -> Any:
"""Support instance methods by implementing descriptor protocol.
Args:
obj: The instance that the method is accessed through
objtype: The type of the instance
Returns:
Self when accessed through class, bound method when accessed through instance
"""
if obj is None:
return self
# Return bound method
return lambda context: self._meth(obj, context)
class AfterLLMCallHookMethod:
"""Wrapper for methods marked as after_llm_call hooks within @CrewBase classes."""
is_after_llm_call_hook: bool = True
def __init__(
self,
meth: Callable[[Any, LLMCallHookContext], str | None],
agents: list[str] | None = None,
) -> None:
"""Initialize the hook method wrapper."""
self._meth = meth
self.agents = agents
_copy_method_metadata(self, meth)
def __call__(self, *args: Any, **kwargs: Any) -> str | None:
"""Call the wrapped method."""
return self._meth(*args, **kwargs)
def __get__(self, obj: Any, objtype: type[Any] | None = None) -> Any:
"""Support instance methods."""
if obj is None:
return self
return lambda context: self._meth(obj, context)
class BeforeToolCallHookMethod:
"""Wrapper for methods marked as before_tool_call hooks within @CrewBase classes."""
is_before_tool_call_hook: bool = True
def __init__(
self,
meth: Callable[[Any, ToolCallHookContext], bool | None],
tools: list[str] | None = None,
agents: list[str] | None = None,
) -> None:
"""Initialize the hook method wrapper."""
self._meth = meth
self.tools = tools
self.agents = agents
_copy_method_metadata(self, meth)
def __call__(self, *args: Any, **kwargs: Any) -> bool | None:
"""Call the wrapped method."""
return self._meth(*args, **kwargs)
def __get__(self, obj: Any, objtype: type[Any] | None = None) -> Any:
"""Support instance methods."""
if obj is None:
return self
return lambda context: self._meth(obj, context)
class AfterToolCallHookMethod:
"""Wrapper for methods marked as after_tool_call hooks within @CrewBase classes."""
is_after_tool_call_hook: bool = True
def __init__(
self,
meth: Callable[[Any, ToolCallHookContext], str | None],
tools: list[str] | None = None,
agents: list[str] | None = None,
) -> None:
"""Initialize the hook method wrapper."""
self._meth = meth
self.tools = tools
self.agents = agents
_copy_method_metadata(self, meth)
def __call__(self, *args: Any, **kwargs: Any) -> str | None:
"""Call the wrapped method."""
return self._meth(*args, **kwargs)
def __get__(self, obj: Any, objtype: type[Any] | None = None) -> Any:
"""Support instance methods."""
if obj is None:
return self
return lambda context: self._meth(obj, context)

View File

@@ -542,6 +542,7 @@ class LiteAgent(FlowTrackable, BaseModel):
agent_key=self.key, agent_key=self.key,
agent_role=self.role, agent_role=self.role,
agent=self.original_agent, agent=self.original_agent,
crew=None,
) )
except Exception as e: except Exception as e:
raise e raise e

View File

@@ -293,6 +293,8 @@ class CrewBaseMeta(type):
kickoff=_filter_methods(original_methods, "is_kickoff"), kickoff=_filter_methods(original_methods, "is_kickoff"),
) )
_register_crew_hooks(instance, cls)
def close_mcp_server( def close_mcp_server(
self: CrewInstance, _instance: CrewInstance, outputs: CrewOutput self: CrewInstance, _instance: CrewInstance, outputs: CrewOutput
@@ -438,6 +440,144 @@ def _filter_methods(
} }
def _register_crew_hooks(instance: CrewInstance, cls: type) -> None:
"""Detect and register crew-scoped hook methods.
Args:
instance: Crew instance to register hooks for.
cls: Crew class type.
"""
hook_methods = {
name: method
for name, method in cls.__dict__.items()
if any(
hasattr(method, attr)
for attr in [
"is_before_llm_call_hook",
"is_after_llm_call_hook",
"is_before_tool_call_hook",
"is_after_tool_call_hook",
]
)
}
if not hook_methods:
return
from crewai.hooks import (
register_after_llm_call_hook,
register_after_tool_call_hook,
register_before_llm_call_hook,
register_before_tool_call_hook,
)
instance._registered_hook_functions = []
instance._hooks_being_registered = True
for hook_method in hook_methods.values():
bound_hook = hook_method.__get__(instance, cls)
has_tool_filter = hasattr(hook_method, "_filter_tools")
has_agent_filter = hasattr(hook_method, "_filter_agents")
if hasattr(hook_method, "is_before_llm_call_hook"):
if has_agent_filter:
agents_filter = hook_method._filter_agents
def make_filtered_before_llm(bound_fn, agents_list):
def filtered(context):
if context.agent and context.agent.role not in agents_list:
return None
return bound_fn(context)
return filtered
final_hook = make_filtered_before_llm(bound_hook, agents_filter)
else:
final_hook = bound_hook
register_before_llm_call_hook(final_hook)
instance._registered_hook_functions.append(("before_llm_call", final_hook))
if hasattr(hook_method, "is_after_llm_call_hook"):
if has_agent_filter:
agents_filter = hook_method._filter_agents
def make_filtered_after_llm(bound_fn, agents_list):
def filtered(context):
if context.agent and context.agent.role not in agents_list:
return None
return bound_fn(context)
return filtered
final_hook = make_filtered_after_llm(bound_hook, agents_filter)
else:
final_hook = bound_hook
register_after_llm_call_hook(final_hook)
instance._registered_hook_functions.append(("after_llm_call", final_hook))
if hasattr(hook_method, "is_before_tool_call_hook"):
if has_tool_filter or has_agent_filter:
tools_filter = getattr(hook_method, "_filter_tools", None)
agents_filter = getattr(hook_method, "_filter_agents", None)
def make_filtered_before_tool(bound_fn, tools_list, agents_list):
def filtered(context):
if tools_list and context.tool_name not in tools_list:
return None
if (
agents_list
and context.agent
and context.agent.role not in agents_list
):
return None
return bound_fn(context)
return filtered
final_hook = make_filtered_before_tool(
bound_hook, tools_filter, agents_filter
)
else:
final_hook = bound_hook
register_before_tool_call_hook(final_hook)
instance._registered_hook_functions.append(("before_tool_call", final_hook))
if hasattr(hook_method, "is_after_tool_call_hook"):
if has_tool_filter or has_agent_filter:
tools_filter = getattr(hook_method, "_filter_tools", None)
agents_filter = getattr(hook_method, "_filter_agents", None)
def make_filtered_after_tool(bound_fn, tools_list, agents_list):
def filtered(context):
if tools_list and context.tool_name not in tools_list:
return None
if (
agents_list
and context.agent
and context.agent.role not in agents_list
):
return None
return bound_fn(context)
return filtered
final_hook = make_filtered_after_tool(
bound_hook, tools_filter, agents_filter
)
else:
final_hook = bound_hook
register_after_tool_call_hook(final_hook)
instance._registered_hook_functions.append(("after_tool_call", final_hook))
instance._hooks_being_registered = False
def map_all_agent_variables(self: CrewInstance) -> None: def map_all_agent_variables(self: CrewInstance) -> None:
"""Map agent configuration variables to callable instances. """Map agent configuration variables to callable instances.

View File

@@ -260,7 +260,8 @@ def get_llm_response(
""" """
if executor_context is not None: if executor_context is not None:
_setup_before_llm_call_hooks(executor_context, printer) if not _setup_before_llm_call_hooks(executor_context, printer):
raise ValueError("LLM call blocked by before_llm_call hook")
messages = executor_context.messages messages = executor_context.messages
try: try:
@@ -673,22 +674,31 @@ def load_agent_from_repository(from_repository: str) -> dict[str, Any]:
def _setup_before_llm_call_hooks( def _setup_before_llm_call_hooks(
executor_context: CrewAgentExecutor | None, printer: Printer executor_context: CrewAgentExecutor | None, printer: Printer
) -> None: ) -> bool:
"""Setup and invoke before_llm_call hooks for the executor context. """Setup and invoke before_llm_call hooks for the executor context.
Args: Args:
executor_context: The executor context to setup the hooks for. executor_context: The executor context to setup the hooks for.
printer: Printer instance for error logging. printer: Printer instance for error logging.
Returns:
True if LLM execution should proceed, False if blocked by a hook.
""" """
if executor_context and executor_context.before_llm_call_hooks: if executor_context and executor_context.before_llm_call_hooks:
from crewai.utilities.llm_call_hooks import LLMCallHookContext from crewai.hooks.llm_hooks import LLMCallHookContext
original_messages = executor_context.messages original_messages = executor_context.messages
hook_context = LLMCallHookContext(executor_context) hook_context = LLMCallHookContext(executor_context)
try: try:
for hook in executor_context.before_llm_call_hooks: for hook in executor_context.before_llm_call_hooks:
hook(hook_context) result = hook(hook_context)
if result is False:
printer.print(
content="LLM call blocked by before_llm_call hook",
color="yellow",
)
return False
except Exception as e: except Exception as e:
printer.print( printer.print(
content=f"Error in before_llm_call hook: {e}", content=f"Error in before_llm_call hook: {e}",
@@ -709,6 +719,8 @@ def _setup_before_llm_call_hooks(
else: else:
executor_context.messages = [] executor_context.messages = []
return True
def _setup_after_llm_call_hooks( def _setup_after_llm_call_hooks(
executor_context: CrewAgentExecutor | None, executor_context: CrewAgentExecutor | None,
@@ -726,7 +738,7 @@ def _setup_after_llm_call_hooks(
The potentially modified response string. The potentially modified response string.
""" """
if executor_context and executor_context.after_llm_call_hooks: if executor_context and executor_context.after_llm_call_hooks:
from crewai.utilities.llm_call_hooks import LLMCallHookContext from crewai.hooks.llm_hooks import LLMCallHookContext
original_messages = executor_context.messages original_messages = executor_context.messages

View File

@@ -1,115 +0,0 @@
from __future__ import annotations
from collections.abc import Callable
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from crewai.agents.crew_agent_executor import CrewAgentExecutor
class LLMCallHookContext:
"""Context object passed to LLM call hooks with full executor access.
Provides hooks with complete access to the executor state, allowing
modification of messages, responses, and executor attributes.
Attributes:
executor: Full reference to the CrewAgentExecutor instance
messages: Direct reference to executor.messages (mutable list).
Can be modified in both before_llm_call and after_llm_call hooks.
Modifications in after_llm_call hooks persist to the next iteration,
allowing hooks to modify conversation history for subsequent LLM calls.
IMPORTANT: Modify messages in-place (e.g., append, extend, remove items).
Do NOT replace the list (e.g., context.messages = []), as this will break
the executor. Use context.messages.append() or context.messages.extend()
instead of assignment.
agent: Reference to the agent executing the task
task: Reference to the task being executed
crew: Reference to the crew instance
llm: Reference to the LLM instance
iterations: Current iteration count
response: LLM response string (only set for after_llm_call hooks).
Can be modified by returning a new string from after_llm_call hook.
"""
def __init__(
self,
executor: CrewAgentExecutor,
response: str | None = None,
) -> None:
"""Initialize hook context with executor reference.
Args:
executor: The CrewAgentExecutor instance
response: Optional response string (for after_llm_call hooks)
"""
self.executor = executor
self.messages = executor.messages
self.agent = executor.agent
self.task = executor.task
self.crew = executor.crew
self.llm = executor.llm
self.iterations = executor.iterations
self.response = response
# Global hook registries (optional convenience feature)
_before_llm_call_hooks: list[Callable[[LLMCallHookContext], None]] = []
_after_llm_call_hooks: list[Callable[[LLMCallHookContext], str | None]] = []
def register_before_llm_call_hook(
hook: Callable[[LLMCallHookContext], None],
) -> None:
"""Register a global before_llm_call hook.
Global hooks are added to all executors automatically.
This is a convenience function for registering hooks that should
apply to all LLM calls across all executors.
Args:
hook: Function that receives LLMCallHookContext and can modify
context.messages directly. Should return None.
IMPORTANT: Modify messages in-place (append, extend, remove items).
Do NOT replace the list (context.messages = []), as this will break execution.
"""
_before_llm_call_hooks.append(hook)
def register_after_llm_call_hook(
hook: Callable[[LLMCallHookContext], str | None],
) -> None:
"""Register a global after_llm_call hook.
Global hooks are added to all executors automatically.
This is a convenience function for registering hooks that should
apply to all LLM calls across all executors.
Args:
hook: Function that receives LLMCallHookContext and can modify:
- The response: Return modified response string or None to keep original
- The messages: Modify context.messages directly (mutable reference)
Both modifications are supported and can be used together.
IMPORTANT: Modify messages in-place (append, extend, remove items).
Do NOT replace the list (context.messages = []), as this will break execution.
"""
_after_llm_call_hooks.append(hook)
def get_before_llm_call_hooks() -> list[Callable[[LLMCallHookContext], None]]:
"""Get all registered global before_llm_call hooks.
Returns:
List of registered before hooks
"""
return _before_llm_call_hooks.copy()
def get_after_llm_call_hooks() -> list[Callable[[LLMCallHookContext], str | None]]:
"""Get all registered global after_llm_call hooks.
Returns:
List of registered after hooks
"""
return _after_llm_call_hooks.copy()

View File

@@ -4,16 +4,23 @@ from typing import TYPE_CHECKING
from crewai.agents.parser import AgentAction from crewai.agents.parser import AgentAction
from crewai.agents.tools_handler import ToolsHandler from crewai.agents.tools_handler import ToolsHandler
from crewai.hooks.tool_hooks import (
ToolCallHookContext,
get_after_tool_call_hooks,
get_before_tool_call_hooks,
)
from crewai.security.fingerprint import Fingerprint from crewai.security.fingerprint import Fingerprint
from crewai.tools.structured_tool import CrewStructuredTool from crewai.tools.structured_tool import CrewStructuredTool
from crewai.tools.tool_types import ToolResult from crewai.tools.tool_types import ToolResult
from crewai.tools.tool_usage import ToolUsage, ToolUsageError from crewai.tools.tool_usage import ToolUsage, ToolUsageError
from crewai.utilities.i18n import I18N from crewai.utilities.i18n import I18N
from crewai.utilities.logger import Logger
if TYPE_CHECKING: if TYPE_CHECKING:
from crewai.agent import Agent from crewai.agent import Agent
from crewai.agents.agent_builder.base_agent import BaseAgent from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.crew import Crew
from crewai.llm import LLM from crewai.llm import LLM
from crewai.llm.base_llm import BaseLLM from crewai.llm.base_llm import BaseLLM
from crewai.task import Task from crewai.task import Task
@@ -30,9 +37,13 @@ def execute_tool_and_check_finality(
agent: Agent | BaseAgent | None = None, agent: Agent | BaseAgent | None = None,
function_calling_llm: BaseLLM | LLM | None = None, function_calling_llm: BaseLLM | LLM | None = None,
fingerprint_context: dict[str, str] | None = None, fingerprint_context: dict[str, str] | None = None,
crew: Crew | None = None,
) -> ToolResult: ) -> ToolResult:
"""Execute a tool and check if the result should be treated as a final answer. """Execute a tool and check if the result should be treated as a final answer.
This function integrates tool hooks for before and after tool execution,
allowing programmatic interception and modification of tool calls.
Args: Args:
agent_action: The action containing the tool to execute agent_action: The action containing the tool to execute
tools: List of available tools tools: List of available tools
@@ -44,10 +55,12 @@ def execute_tool_and_check_finality(
agent: Optional agent instance for tool execution agent: Optional agent instance for tool execution
function_calling_llm: Optional LLM for function calling function_calling_llm: Optional LLM for function calling
fingerprint_context: Optional context for fingerprinting fingerprint_context: Optional context for fingerprinting
crew: Optional crew instance for hook context
Returns: Returns:
ToolResult containing the execution result and whether it should be treated as a final answer ToolResult containing the execution result and whether it should be treated as a final answer
""" """
logger = Logger(verbose=crew.verbose if crew else False)
tool_name_to_tool_map = {tool.name: tool for tool in tools} tool_name_to_tool_map = {tool.name: tool for tool in tools}
if agent_key and agent_role and agent: if agent_key and agent_role and agent:
@@ -83,10 +96,62 @@ def execute_tool_and_check_finality(
] or tool_calling.tool_name.casefold().replace("_", " ") in [ ] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in tool_name_to_tool_map name.casefold().strip() for name in tool_name_to_tool_map
]: ]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = tool_name_to_tool_map.get(tool_calling.tool_name) tool = tool_name_to_tool_map.get(tool_calling.tool_name)
if tool: if not tool:
return ToolResult(tool_result, tool.result_as_answer) tool_result = i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([t.name.casefold() for t in tools]),
)
return ToolResult(result=tool_result, result_as_answer=False)
tool_input = tool_calling.arguments if tool_calling.arguments else {}
hook_context = ToolCallHookContext(
tool_name=tool_calling.tool_name,
tool_input=tool_input,
tool=tool,
agent=agent,
task=task,
crew=crew,
)
before_hooks = get_before_tool_call_hooks()
try:
for hook in before_hooks:
result = hook(hook_context)
if result is False:
blocked_message = (
f"Tool execution blocked by hook. "
f"Tool: {tool_calling.tool_name}"
)
return ToolResult(blocked_message, False)
except Exception as e:
logger.log("error", f"Error in before_tool_call hook: {e}")
tool_result = tool_usage.use(tool_calling, agent_action.text)
after_hook_context = ToolCallHookContext(
tool_name=tool_calling.tool_name,
tool_input=tool_input,
tool=tool,
agent=agent,
task=task,
crew=crew,
tool_result=tool_result,
)
# Execute after_tool_call hooks
after_hooks = get_after_tool_call_hooks()
modified_result = tool_result
try:
for hook in after_hooks:
hook_result = hook(after_hook_context)
if hook_result is not None:
modified_result = hook_result
after_hook_context.tool_result = modified_result
except Exception as e:
logger.log("error", f"Error in after_tool_call hook: {e}")
return ToolResult(modified_result, tool.result_as_answer)
# Handle invalid tool name # Handle invalid tool name
tool_result = i18n.errors("wrong_tool_name").format( tool_result = i18n.errors("wrong_tool_name").format(

View File

@@ -0,0 +1,147 @@
"""Test trust_remote_completion_status flag in A2A wrapper."""
from unittest.mock import MagicMock, patch
import pytest
from crewai.a2a.config import A2AConfig
try:
from a2a.types import Message, Role
A2A_SDK_INSTALLED = True
except ImportError:
A2A_SDK_INSTALLED = False
@pytest.mark.skipif(not A2A_SDK_INSTALLED, reason="Requires a2a-sdk to be installed")
def test_trust_remote_completion_status_true_returns_directly():
"""When trust_remote_completion_status=True and A2A returns completed, return result directly."""
from crewai.a2a.wrapper import _delegate_to_a2a
from crewai.a2a.types import AgentResponseProtocol
from crewai import Agent, Task
a2a_config = A2AConfig(
endpoint="http://test-endpoint.com",
trust_remote_completion_status=True,
)
agent = Agent(
role="test manager",
goal="coordinate",
backstory="test",
a2a=a2a_config,
)
task = Task(description="test", expected_output="test", agent=agent)
class MockResponse:
is_a2a = True
message = "Please help"
a2a_ids = ["http://test-endpoint.com/"]
with (
patch("crewai.a2a.wrapper.execute_a2a_delegation") as mock_execute,
patch("crewai.a2a.wrapper._fetch_agent_cards_concurrently") as mock_fetch,
):
mock_card = MagicMock()
mock_card.name = "Test"
mock_fetch.return_value = ({"http://test-endpoint.com/": mock_card}, {})
# A2A returns completed
mock_execute.return_value = {
"status": "completed",
"result": "Done by remote",
"history": [],
}
# This should return directly without checking LLM response
result = _delegate_to_a2a(
self=agent,
agent_response=MockResponse(),
task=task,
original_fn=lambda *args, **kwargs: "fallback",
context=None,
tools=None,
agent_cards={"http://test-endpoint.com/": mock_card},
original_task_description="test",
)
assert result == "Done by remote"
assert mock_execute.call_count == 1
@pytest.mark.skipif(not A2A_SDK_INSTALLED, reason="Requires a2a-sdk to be installed")
def test_trust_remote_completion_status_false_continues_conversation():
"""When trust_remote_completion_status=False and A2A returns completed, ask server agent."""
from crewai.a2a.wrapper import _delegate_to_a2a
from crewai import Agent, Task
a2a_config = A2AConfig(
endpoint="http://test-endpoint.com",
trust_remote_completion_status=False,
)
agent = Agent(
role="test manager",
goal="coordinate",
backstory="test",
a2a=a2a_config,
)
task = Task(description="test", expected_output="test", agent=agent)
class MockResponse:
is_a2a = True
message = "Please help"
a2a_ids = ["http://test-endpoint.com/"]
call_count = 0
def mock_original_fn(self, task, context, tools):
nonlocal call_count
call_count += 1
if call_count == 1:
# Server decides to finish
return '{"is_a2a": false, "message": "Server final answer", "a2a_ids": []}'
return "unexpected"
with (
patch("crewai.a2a.wrapper.execute_a2a_delegation") as mock_execute,
patch("crewai.a2a.wrapper._fetch_agent_cards_concurrently") as mock_fetch,
):
mock_card = MagicMock()
mock_card.name = "Test"
mock_fetch.return_value = ({"http://test-endpoint.com/": mock_card}, {})
# A2A returns completed
mock_execute.return_value = {
"status": "completed",
"result": "Done by remote",
"history": [],
}
result = _delegate_to_a2a(
self=agent,
agent_response=MockResponse(),
task=task,
original_fn=mock_original_fn,
context=None,
tools=None,
agent_cards={"http://test-endpoint.com/": mock_card},
original_task_description="test",
)
# Should call original_fn to get server response
assert call_count >= 1
assert result == "Server final answer"
@pytest.mark.skipif(not A2A_SDK_INSTALLED, reason="Requires a2a-sdk to be installed")
def test_default_trust_remote_completion_status_is_false():
"""Verify that default value of trust_remote_completion_status is False."""
a2a_config = A2AConfig(
endpoint="http://test-endpoint.com",
)
assert a2a_config.trust_remote_completion_status is False

View File

@@ -2714,293 +2714,3 @@ def test_agent_without_apps_no_platform_tools():
tools = crew._prepare_tools(agent, task, []) tools = crew._prepare_tools(agent, task, [])
assert tools == [] assert tools == []
@pytest.mark.vcr(filter_headers=["authorization"])
def test_before_llm_call_hook_modifies_messages():
"""Test that before_llm_call hooks can modify messages."""
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_before_llm_call_hook
hook_called = False
original_message_count = 0
def before_hook(context: LLMCallHookContext) -> None:
nonlocal hook_called, original_message_count
hook_called = True
original_message_count = len(context.messages)
context.messages.append({
"role": "user",
"content": "Additional context: This is a test modification."
})
register_before_llm_call_hook(before_hook)
try:
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
allow_delegation=False,
)
task = Task(
description="Say hello",
expected_output="A greeting",
agent=agent,
)
result = agent.execute_task(task)
assert hook_called, "before_llm_call hook should have been called"
assert len(agent.agent_executor.messages) > original_message_count
assert result is not None
finally:
pass
@pytest.mark.vcr(filter_headers=["authorization"])
def test_after_llm_call_hook_modifies_messages_for_next_iteration():
"""Test that after_llm_call hooks can modify messages for the next iteration."""
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_after_llm_call_hook
hook_call_count = 0
hook_iterations = []
messages_added_in_iteration_0 = False
test_message_content = "HOOK_ADDED_MESSAGE_FOR_NEXT_ITERATION"
def after_hook(context: LLMCallHookContext) -> str | None:
nonlocal hook_call_count, hook_iterations, messages_added_in_iteration_0
hook_call_count += 1
current_iteration = context.iterations
hook_iterations.append(current_iteration)
if current_iteration == 0:
messages_before = len(context.messages)
context.messages.append({
"role": "user",
"content": test_message_content
})
messages_added_in_iteration_0 = True
assert len(context.messages) == messages_before + 1
return None
register_after_llm_call_hook(after_hook)
try:
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
allow_delegation=False,
max_iter=3,
)
task = Task(
description="Count to 3, taking your time",
expected_output="A count",
agent=agent,
)
result = agent.execute_task(task)
assert hook_call_count > 0, "after_llm_call hook should have been called"
assert messages_added_in_iteration_0, "Message should have been added in iteration 0"
executor_messages = agent.agent_executor.messages
message_contents = [msg.get("content", "") for msg in executor_messages if isinstance(msg, dict)]
assert any(test_message_content in content for content in message_contents), (
f"Message added by hook in iteration 0 should be present in executor messages. "
f"Messages: {message_contents}"
)
assert len(executor_messages) > 2, "Executor should have more than initial messages"
assert result is not None
finally:
pass
@pytest.mark.vcr(filter_headers=["authorization"])
def test_after_llm_call_hook_modifies_messages():
"""Test that after_llm_call hooks can modify messages for next iteration."""
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_after_llm_call_hook
hook_called = False
messages_before_hook = 0
def after_hook(context: LLMCallHookContext) -> str | None:
nonlocal hook_called, messages_before_hook
hook_called = True
messages_before_hook = len(context.messages)
context.messages.append({
"role": "user",
"content": "Remember: This is iteration 2 context."
})
return None # Don't modify response
register_after_llm_call_hook(after_hook)
try:
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
allow_delegation=False,
max_iter=2,
)
task = Task(
description="Count to 2",
expected_output="A count",
agent=agent,
)
result = agent.execute_task(task)
assert hook_called, "after_llm_call hook should have been called"
assert len(agent.agent_executor.messages) > messages_before_hook
assert result is not None
finally:
pass
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_hooks_with_crew():
"""Test that LLM call hooks work with crew execution."""
from crewai.utilities.llm_call_hooks import (
LLMCallHookContext,
register_after_llm_call_hook,
register_before_llm_call_hook,
)
before_hook_called = False
after_hook_called = False
def before_hook(context: LLMCallHookContext) -> None:
nonlocal before_hook_called
before_hook_called = True
assert context.executor is not None
assert context.agent is not None
assert context.task is not None
context.messages.append({
"role": "system",
"content": "Additional system context from hook."
})
def after_hook(context: LLMCallHookContext) -> str | None:
nonlocal after_hook_called
after_hook_called = True
assert context.response is not None
assert len(context.messages) > 0
return None
register_before_llm_call_hook(before_hook)
register_after_llm_call_hook(after_hook)
try:
agent = Agent(
role="Researcher",
goal="Research topics",
backstory="You are a researcher",
allow_delegation=False,
)
task = Task(
description="Research AI frameworks",
expected_output="A research summary",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
assert before_hook_called, "before_llm_call hook should have been called"
assert after_hook_called, "after_llm_call hook should have been called"
assert result is not None
assert result.raw is not None
finally:
pass
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_hooks_can_modify_executor_attributes():
"""Test that hooks can access and modify executor attributes like tools."""
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_before_llm_call_hook
from crewai.tools import tool
@tool
def test_tool() -> str:
"""A test tool."""
return "test result"
hook_called = False
original_tools_count = 0
def before_hook(context: LLMCallHookContext) -> None:
nonlocal hook_called, original_tools_count
hook_called = True
original_tools_count = len(context.executor.tools)
assert context.executor.max_iter > 0
assert context.executor.iterations >= 0
assert context.executor.tools is not None
register_before_llm_call_hook(before_hook)
try:
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
tools=[test_tool],
allow_delegation=False,
)
task = Task(
description="Use the test tool",
expected_output="Tool result",
agent=agent,
)
result = agent.execute_task(task)
assert hook_called, "before_llm_call hook should have been called"
assert original_tools_count >= 0
assert result is not None
finally:
pass
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_hooks_error_handling():
"""Test that hook errors don't break execution."""
from crewai.utilities.llm_call_hooks import LLMCallHookContext, register_before_llm_call_hook
hook_called = False
def error_hook(context: LLMCallHookContext) -> None:
nonlocal hook_called
hook_called = True
raise ValueError("Test hook error")
register_before_llm_call_hook(error_hook)
try:
agent = Agent(
role="Test Agent",
goal="Test goal",
backstory="Test backstory",
allow_delegation=False,
)
task = Task(
description="Say hello",
expected_output="A greeting",
agent=agent,
)
result = agent.execute_task(task)
assert hook_called, "before_llm_call hook should have been called"
assert result is not None
finally:
pass

View File

@@ -1,126 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"},{"role":"user","content":"\nCurrent Task: Count to 2\n\nThis
is the expected criteria for your final answer: A count\nyou MUST return the
actual complete content as the final answer, not a summary.\n\nBegin! This is
VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"},{"role":"user","content":"Additional context:
This is a test modification."}],"model":"gpt-4.1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '849'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.109.1
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJNb5wwEL3zK0Y+QwSI7LLcokqVcujHoR9S2wg5ZsBujceyTdIo2v9e
GTYLaROpFyTmzXt+b2YeEwCmOtYAE5IHMVqdveH09UHKLx+/2eFzkAdZXL8XJPr9h3dFydLIoNuf
KMIT60LQaDUGRWaBhUMeMKoW+11ZH/K8rmZgpA51pA02ZNVFkY3KqKzMy8ssr7KiOtElKYGeNfA9
AQB4nL/RqOnwN2sgT58qI3rPB2TNuQmAOdKxwrj3ygduAktXUJAJaGbvnyRNgwwNXIOhexDcwKDu
EDgMMQBw4+/R/TBvleEarua/BooUyq2gw37yPKYyk9YbgBtDgcepzFFuTsjxbF7TYB3d+r+orFdG
edk65J5MNOoDWTajxwTgZh7S9Cw3s45GG9pAv3B+rtgdFj22LmeD1icwUOB6W9+nL+i1HQautN+M
mQkuJHYrdd0JnzpFGyDZpP7XzUvaS3Jlhv+RXwEh0AbsWuuwU+J54rXNYbzd19rOU54NM4/uTgls
g0IXN9Fhzye9HBTzDz7g2PbKDOisU8tV9batRFlfFn29K1lyTP4AAAD//wMApumqgWQDAAA=
headers:
CF-RAY:
- 99d044543db94e48-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Nov 2025 19:41:25 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=KLlCOQ_zxXquDvj96O28ObVFEoAbFE8R7zlmuiuXH1M-1762890085-1.0.1.1-UChItG1GnLDHrErY60dUpkbD3lEkSvfkTQpOmEtzd0fjjm_y1pJQiB.VDXVi2pPIMSelir0ZgiVXSh5.hGPb3RjQqbH3pv0Rr_2dQ59OIQ8;
path=/; expires=Tue, 11-Nov-25 20:11:25 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=u.Z6xV9tQd3ucK35BinKtlCkewcI6q_uQicyeEeeR18-1762890085355-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '559'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '735'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999817'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999817'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_bcaa0f8500714ed09f967488b238ce2e
status:
code: 200
message: OK
version: 1

View File

@@ -1,222 +0,0 @@
interactions:
- request:
body: '{"trace_id": "aeb82647-004a-4a30-9481-d55f476d5659", "execution_type":
"crew", "user_identifier": null, "execution_context": {"crew_fingerprint": null,
"crew_name": "Unknown Crew", "flow_name": null, "crewai_version": "1.4.1", "privacy_level":
"standard"}, "execution_metadata": {"expected_duration_estimate": 300, "agent_count":
0, "task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-11-11T19:45:17.648657+00:00"}}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate, zstd
Connection:
- keep-alive
Content-Length:
- '434'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/1.4.1
X-Crewai-Version:
- 1.4.1
method: POST
uri: https://app.crewai.com/crewai_plus/api/v1/tracing/batches
response:
body:
string: '{"error":"bad_credentials","message":"Bad credentials"}'
headers:
Connection:
- keep-alive
Content-Length:
- '55'
Content-Type:
- application/json; charset=utf-8
Date:
- Tue, 11 Nov 2025 19:45:17 GMT
cache-control:
- no-store
content-security-policy:
- 'default-src ''self'' *.app.crewai.com app.crewai.com; script-src ''self''
''unsafe-inline'' *.app.crewai.com app.crewai.com https://cdn.jsdelivr.net/npm/apexcharts
https://www.gstatic.com https://run.pstmn.io https://apis.google.com https://apis.google.com/js/api.js
https://accounts.google.com https://accounts.google.com/gsi/client https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.min.css.map
https://*.google.com https://docs.google.com https://slides.google.com https://js.hs-scripts.com
https://js.sentry-cdn.com https://browser.sentry-cdn.com https://www.googletagmanager.com
https://js-na1.hs-scripts.com https://js.hubspot.com http://js-na1.hs-scripts.com
https://bat.bing.com https://cdn.amplitude.com https://cdn.segment.com https://d1d3n03t5zntha.cloudfront.net/
https://descriptusercontent.com https://edge.fullstory.com https://googleads.g.doubleclick.net
https://js.hs-analytics.net https://js.hs-banner.com https://js.hsadspixel.net
https://js.hscollectedforms.net https://js.usemessages.com https://snap.licdn.com
https://static.cloudflareinsights.com https://static.reo.dev https://www.google-analytics.com
https://share.descript.com/; style-src ''self'' ''unsafe-inline'' *.app.crewai.com
app.crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self'' data:
*.app.crewai.com app.crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com
https://cdn.jsdelivr.net https://forms.hsforms.com https://track.hubspot.com
https://px.ads.linkedin.com https://px4.ads.linkedin.com https://www.google.com
https://www.google.com.br; font-src ''self'' data: *.app.crewai.com app.crewai.com;
connect-src ''self'' *.app.crewai.com app.crewai.com https://zeus.tools.crewai.com
https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/*
https://run.pstmn.io https://connect.tools.crewai.com/ https://*.sentry.io
https://www.google-analytics.com https://edge.fullstory.com https://rs.fullstory.com
https://api.hubspot.com https://forms.hscollectedforms.net https://api.hubapi.com
https://px.ads.linkedin.com https://px4.ads.linkedin.com https://google.com/pagead/form-data/16713662509
https://google.com/ccm/form-data/16713662509 https://www.google.com/ccm/collect
https://worker-actionkit.tools.crewai.com https://api.reo.dev; frame-src ''self''
*.app.crewai.com app.crewai.com https://connect.useparagon.com/ https://zeus.tools.crewai.com
https://zeus.useparagon.com/* https://connect.tools.crewai.com/ https://docs.google.com
https://drive.google.com https://slides.google.com https://accounts.google.com
https://*.google.com https://app.hubspot.com/ https://td.doubleclick.net https://www.googletagmanager.com/
https://www.youtube.com https://share.descript.com'
expires:
- '0'
permissions-policy:
- camera=(), microphone=(self), geolocation=()
pragma:
- no-cache
referrer-policy:
- strict-origin-when-cross-origin
strict-transport-security:
- max-age=63072000; includeSubDomains
vary:
- Accept
x-content-type-options:
- nosniff
x-frame-options:
- SAMEORIGIN
x-permitted-cross-domain-policies:
- none
x-request-id:
- 48a89b0d-206b-4c1b-aa0d-ecc3b4ab525c
x-runtime:
- '0.088251'
x-xss-protection:
- 1; mode=block
status:
code: 401
message: Unauthorized
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"},{"role":"user","content":"\nCurrent Task: Count to 3, taking
your time\n\nThis is the expected criteria for your final answer: A count\nyou
MUST return the actual complete content as the final answer, not a summary.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}],"model":"gpt-4.1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '790'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.109.1
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJNa9wwEL37Vww6r43tOpuNb2nKQgslOSy0NA1mIo9tdWVJSHK2Jex/
L/J+2Ns20IuE5s0bzXszrxEAEzUrgfEOPe+NjO9Q41atP3/79GG7vX8QD0Xq15svX9/fUd+yRWDo
5x/E/YmVcN0bSV5odYC5JfQUqmbXy3x1k77LViPQ65pkoLXGx0WSxb1QIs7T/CpOizgrjvROC06O
lfAYAQC8jmdoVNX0k5WQLk6RnpzDllh5TgJgVssQYeiccB6VZ4sJ5Fp5UmPvm04PbedL+AhK74Cj
gla8ECC0QQCgcjuy39VaKJRwO75KuFeUJAlsdnq8OkuUzD+w1AwOg0o1SDkDUCntMbg0Sns6Ivuz
GKlbY/Wz+4PKGqGE6ypL6LQKjTuvDRvRfQTwNJo2XPjAjNW98ZXXWxq/y5ZH09g0rBl6cwS99ihn
8esTcFGvqsmjkG5mO+PIO6on6jQjHGqhZ0A0U/13N/+qfVAuVPs/5SeAczKe6spYqgW/VDylWQq7
/Fba2eWxYebIvghOlRdkwyRqanCQhwVj7pfz1FeNUC1ZY8VhyxpTFTxfXWXNapmzaB/9BgAA//8D
AL0LXHV0AwAA
headers:
CF-RAY:
- 99d04a06dc4d1949-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Nov 2025 19:45:18 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=KnsnYxgmlpoHf.5TWnNgU30xb2tc0gK7SC2BbUkud2M-1762890318-1.0.1.1-3KeaQY59x5mY6n8DINELLaH9_b68w7W4ZZ0KeOknBHmQyDwx5qbtDonfYxOjsO_KykjtJLHpB0bsINSNEa9TrjNQHqUWTlRhldfTLenUG44;
path=/; expires=Tue, 11-Nov-25 20:15:18 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=ekC35NRP79GCMP.eTi_odl5.6DIsAeFEXKlanWUZOH4-1762890318589-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '598'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '632'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999827'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999827'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_cb36cbe6c33b42a28675e8c6d9a36fe9
status:
code: 200
message: OK
version: 1

View File

@@ -1,127 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"},{"role":"user","content":"\nCurrent Task: Say hello\n\nThis
is the expected criteria for your final answer: A greeting\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"},{"role":"user","content":"Additional context:
This is a test modification."}],"model":"gpt-4.1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '851'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.109.1
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFJdi9swEHz3r9jqOT5sk+RSvx2lJW1poXDQ0vYwirS21cpaIclJr0f+
+yE7F/s+Cn0xeGdnNLO7dwkAU5KVwETLg+isTt9w+rr/YESx27+93RaHVm4/ff7y8Vpcffv+ly0i
g3a/UIQH1oWgzmoMiswIC4c8YFTNL9fF5nWWbfIB6EiijrTGhnR5kaedMiotsmKVZss0X57oLSmB
npXwIwEAuBu+0aiR+IeVkC0eKh16zxtk5bkJgDnSscK498oHbgJbTKAgE9AM3q9b6ps2lPAeDB1A
cAON2iNwaGIA4MYf0P0075ThGq6GvxK2qDW9mks6rHvPYy7Taz0DuDEUeJzLEObmhBzP9jU11tHO
P6GyWhnl28oh92SiVR/IsgE9JgA3w5j6R8mZddTZUAX6jcNz+fpy1GPTembo6gQGClzP6pti8YJe
JTFwpf1s0Exw0aKcqNNWeC8VzYBklvq5m5e0x+TKNP8jPwFCoA0oK+tQKvE48dTmMF7vv9rOUx4M
M49urwRWQaGLm5BY816PJ8X8rQ/YVbUyDTrr1HhXta2Wotis8nqzLlhyTO4BAAD//wMAuV0QSWYD
AAA=
headers:
CF-RAY:
- 99d044428f103c35-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Nov 2025 19:41:22 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=jp.mByP87tLw_KZOIh7lXZ9UMACecreCMNwHwtJmUvQ-1762890082-1.0.1.1-D76UWkvWlN8e0zlQpgSlSHjrhx3Rkh_r8bz4XKx8kljJt8s9Okre9bo7M62ewJNFK9O9iuHkADMKeAEwlsc4Hg0MsF2vt2Hu1J0xikSInv0;
path=/; expires=Tue, 11-Nov-25 20:11:22 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=pzTqogdMFPJY2.Yrj49LODdUKbD8UBctCWNyIZVsvK4-1762890082258-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '460'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '478'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999817'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999820'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_3bda51e6d3e34f8cadcc12551dc29ab0
status:
code: 200
message: OK
version: 1

View File

@@ -1,262 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: test_tool\nTool
Arguments: {}\nTool Description: A test tool.\n\nIMPORTANT: Use the following
format in your response:\n\n```\nThought: you should always think about what
to do\nAction: the action to take, only one name of [test_tool], just the name,
exactly as it''s written.\nAction Input: the input to the action, just a simple
JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n```\n\nOnce all necessary information is gathered,
return the following format:\n\n```\nThought: I now know the final answer\nFinal
Answer: the final answer to the original input question\n```"},{"role":"user","content":"\nCurrent
Task: Use the test tool\n\nThis is the expected criteria for your final answer:
Tool result\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"},{"role":"user","content":"Additional
context: This is a test modification."}],"model":"gpt-4.1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1311'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.109.1
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xTy47bMAy85ysIneMgcbNp1reizwXaXrpAD83CVmTaViqLWolu2gb590LOw94+
gF504HBGw6F0mAAIXYoMhGokq9aZ5KWkz/vdTn14i/dv9h9f19tXi3dtun789H71U0wjg7Y7VHxh
zRS1ziBrsidYeZSMUXXxfJWub+fzddoDLZVoIq12nCxni6TVVifpPL1J5stksTzTG9IKg8jgywQA
4NCf0agt8bvIYD69VFoMQdYosmsTgPBkYkXIEHRgaVlMB1CRZbS996IoNva+oa5uOIM7CA11poQu
IHCDwBg4ZyIDTFAj90WPj532WIK2FflWxqGhIt+DlbbSgLRhj362sS9URLNB6FKCO+s6zuBw3Nii
KMb2PFZdkDEj2xkzAqS1xP11fTAPZ+R4jcJQ7Txtw29UUWmrQ5N7lIFsHDswOdGjxwnAQx959yRF
4Ty1Lnr+iv116Wp10hPDqgf02XkfgomlGbFuL6wnenmJLLUJo6UJJVWD5UAdNiy7UtMImIym/tPN
37RPk2tb/4/8ACiFjrHMncdSq6cTD20e40/4V9s15d6wCOi/aYU5a/RxEyVWsjOn5ynCj8DY5pW2
NXrn9emNVi5fqnR9s6jWq1RMjpNfAAAA//8DANALR4WyAwAA
headers:
CF-RAY:
- 99d044470bdeb976-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Nov 2025 19:41:23 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=p01_b1BsQgwR2woMBWf1E0gJMDDl7pvqkEVHpHAsMJA-1762890083-1.0.1.1-u8iYLTTx0lmfSR1.CzuuYiHgt03yVVUMsBD8WgExXWm7ts.grUwM1ifj9p6xIz.HElrnQdfDSBD5Lv045aNr61YcB8WW3Vz33W9N0Gn0P3w;
path=/; expires=Tue, 11-Nov-25 20:11:23 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=2gUmBgxb3VydVYt8.t_P6bY8U_pS.a4KeYpZWDDYM9Q-1762890083295-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '729'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '759'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999707'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999707'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_70c7033dbc5e4ced80d3fdcbcda2c675
status:
code: 200
message: OK
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nYou ONLY have access to the following tools, and
should NEVER make up tools that are not listed here:\n\nTool Name: test_tool\nTool
Arguments: {}\nTool Description: A test tool.\n\nIMPORTANT: Use the following
format in your response:\n\n```\nThought: you should always think about what
to do\nAction: the action to take, only one name of [test_tool], just the name,
exactly as it''s written.\nAction Input: the input to the action, just a simple
JSON object, enclosed in curly braces, using \" to wrap keys and values.\nObservation:
the result of the action\n```\n\nOnce all necessary information is gathered,
return the following format:\n\n```\nThought: I now know the final answer\nFinal
Answer: the final answer to the original input question\n```"},{"role":"user","content":"\nCurrent
Task: Use the test tool\n\nThis is the expected criteria for your final answer:
Tool result\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"},{"role":"user","content":"Additional
context: This is a test modification."},{"role":"assistant","content":"```\nThought:
I should use the test_tool to get the required information for the final answer.\nAction:
test_tool\nAction Input: {}\n```\nObservation: test result"},{"role":"user","content":"Additional
context: This is a test modification."}],"model":"gpt-4.1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1584'
content-type:
- application/json
cookie:
- __cf_bm=p01_b1BsQgwR2woMBWf1E0gJMDDl7pvqkEVHpHAsMJA-1762890083-1.0.1.1-u8iYLTTx0lmfSR1.CzuuYiHgt03yVVUMsBD8WgExXWm7ts.grUwM1ifj9p6xIz.HElrnQdfDSBD5Lv045aNr61YcB8WW3Vz33W9N0Gn0P3w;
_cfuvid=2gUmBgxb3VydVYt8.t_P6bY8U_pS.a4KeYpZWDDYM9Q-1762890083295-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.109.1
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLBbtQwEL3nKyyfN1WS3S5pbhRRKCeEkCpgq8RrTxJTxzb2pC1U++/I
TrtJoUhcLNlv3vN7M/OQEEKloBWhvGfIB6vSN8xc3b+/FG/P3rX8x9X+y8dfHy7O8fYra88/0VVg
mP134PjEOuFmsApQGj3B3AFDCKr5q21RnmVZuY7AYASoQOssppuTPB2klmmRFadptknzzSO9N5KD
pxX5lhBCyEM8g1Et4J5WJFs9vQzgPeuAVsciQqgzKrxQ5r30yDTS1QxyoxF09N40zU5/7s3Y9ViR
S6LNHbkJB/ZAWqmZIkz7O3A7fRFvr+OtIggeiQM/KtzppmmW+g7a0bMQUo9KLQCmtUEWmhSTXT8i
h2MWZTrrzN7/QaWt1NL3tQPmjQ6+PRpLI3pICLmOPRuftYFaZwaLNZobiN+t83LSo/OsZvQIokGm
Fqz1dvWCXi0AmVR+0XXKGe9BzNR5RGwU0iyAZJH6bzcvaU/Jpe7+R34GOAeLIGrrQEj+PPFc5iCs
8r/Kjl2OhqkHdys51CjBhUkIaNmopv2i/qdHGOpW6g6cdXJastbWG16Up3lbbguaHJLfAAAA//8D
AJW0fwtzAwAA
headers:
CF-RAY:
- 99d0444cbd6db976-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Nov 2025 19:41:23 GMT
Server:
- cloudflare
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '527'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '578'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999655'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999655'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_6b1d84dcdde643cea5160e155ee624db
status:
code: 200
message: OK
version: 1

View File

@@ -1,159 +0,0 @@
interactions:
- request:
body: '{"name":"llama3.2:3b"}'
headers:
accept:
- '*/*'
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '22'
content-type:
- application/json
host:
- localhost:11434
user-agent:
- litellm/1.78.5
method: POST
uri: http://localhost:11434/api/show
response:
body:
string: '{"error":"model ''llama3.2:3b'' not found"}'
headers:
Content-Length:
- '41'
Content-Type:
- application/json; charset=utf-8
Date:
- Tue, 11 Nov 2025 19:41:28 GMT
status:
code: 404
message: Not Found
- request:
body: '{"messages":[{"role":"system","content":"You are Test Agent. Test backstory\nYour
personal goal is: Test goal\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"},{"role":"user","content":"\nCurrent Task: Say hello\n\nThis
is the expected criteria for your final answer: A greeting\nyou MUST return
the actual complete content as the final answer, not a summary.\n\nBegin! This
is VERY important to you, use the tools available and give your best Final Answer,
your job depends on it!\n\nThought:"},{"role":"user","content":"Additional context:
This is a test modification."}],"model":"gpt-4.1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '851'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.109.1
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLRbtQwEHzPVyx+vlRJmrte84KOSqgFCSFAqLRUkc/ZJAbHa9lOy6m6
f0dOrpe0gMRLpHh2Znd29jECYLJiBTDRci86o+ILTten/ccPFzyp398srz9/2/o3X/PN6btN84kt
AoO2P1D4J9aJoM4o9JL0CAuL3GNQTc9W2fo8SdbnA9BRhSrQGuPj/CSNO6llnCXZMk7yOM0P9Jak
QMcKuI0AAB6HbxhUV/iLFZAsnl46dI43yIpjEQCzpMIL485J57n2bDGBgrRHPcz+paW+aX0BV6Dp
AQTX0Mh7BA5NMABcuwe03/VbqbmCzfBXwCUqRa/g8sC4grEN7KgHTxXfvZ63s1j3jgfPuldqBnCt
yfOws8Ho3QHZH60paoylrXtBZbXU0rWlRe5IBxvOk2EDuo8A7oYV9s+2woylzvjS008c2qWrs1GP
TdFNaJYdQE+eqxlrTPGlXlmh51K5WQhMcNFiNVGnxHhfSZoB0cz1n9P8TXt0LnXzP/ITIAQaj1Vp
LFZSPHc8lVkMl/2vsuOWh4GZQ3svBZZeog1JVFjzXo3nxtzOeezKWuoGrbFyvLnalLnI1su0Xq8y
Fu2j3wAAAP//AwDurzwzggMAAA==
headers:
CF-RAY:
- 99d0446e698367ab-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Nov 2025 19:41:30 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=b52crfzdOm5rh4aOc2LfM8aQKFI.ZL9WCZXaPBDdG5k-1762890090-1.0.1.1-T2xhtwX0vuEnMIb8NRgP4w3RRn1N1ZwSjuhKBob1vDLDmN7XhCKkoIg3IrlC9KEyhA65IGa5DWsHfmlRKKxqw6sIPA98BSO6E3wsTRspHw4;
path=/; expires=Tue, 11-Nov-25 20:11:30 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=0TH0Kjp_5t6yhwXKA1wlKBHaczp.TeWhM2A5t6by1sI-1762890090153-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '1049'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '1387'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999817'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999817'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_4b132b998ed941b5b6a85ddbb36e2b65
status:
code: 200
message: OK
version: 1

View File

@@ -1,182 +0,0 @@
interactions:
- request:
body: '{"messages":[{"role":"system","content":"You are Researcher. You are a
researcher\nYour personal goal is: Research topics\nTo give my best complete
final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"},{"role":"user","content":"\nCurrent Task:
Research AI frameworks\n\nThis is the expected criteria for your final answer:
A research summary\nyou MUST return the actual complete content as the final
answer, not a summary.\n\nYou MUST follow these instructions: \n - Include specific
examples and real-world case studies to enhance the credibility and depth of
the article ideas.\n - Incorporate mentions of notable companies, projects,
or tools relevant to each topic to provide concrete context.\n - Add diverse
viewpoints such as interviews with experts, users, or thought leaders to enrich
the narrative and lend authority.\n - Address ethical, social, and emotional
considerations explicitly to reflect a balanced and comprehensive analysis.\n
- Enhance the descriptions by including implications for future developments
and the potential impact on society.\n - Use more engaging and vivid language
that draws the reader into each topic''s nuances and importance.\n - Include
notes or summaries that contextualize each set of ideas in terms of relevance
and potential reader engagement.\n - In future tasks, focus on elaborating initial
outlines into more detailed and nuanced article proposals with richer content
and insights.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"},{"role":"user","content":"Additional
context: This is a test modification."}],"model":"gpt-4.1-mini"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate, zstd
connection:
- keep-alive
content-length:
- '1894'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.109.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.109.1
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.13.3
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA2RXTXPbOBK9z6/o8smpkrRJJjPJ6OZy4ownceKKnY+qzaUJNMmOQTQLACUrc5kf
sZf9e/NLtrpBycrsRWWTINh4/V6/xz9/Ajhhf7KGE9djccMYlucoX57duvj+fXn/+hrzz8/v3j7f
dL/35y9efDlZ6BPSfCNX9k+tnAxjoMIS622XCAvprk+e//r0xW+PH//22G4M4inoY91Yls9WT5YD
R14+ffz0l+XjZ8snz+bHe2FH+WQN//4JAOBP+9VCo6f7kzXYZnZloJyxo5P1YRHASZKgV04wZ84F
YzlZPNx0EgtFq/22l6nryxouIcoWHEboeEOA0OkBAGPeUvoaLzhigDP7b/01fo0fKBMm18PNNAyY
diARzi7hIuFAW0l3WRddxpLET05hWX+NZ6lwy44xwGUsFAJ3FB3B6dnlI2gPTwImgtITNOjuGokE
0oLCluwVnjYUZBwolgWMSTbsOXaQS5pcmRJ5oLjhJFFXZMDooYiEDKXHAhSxCQRpLp9SXgDFjiPZ
n7paW4mRKUMR8JS5iwsoCTnW+57GIDsY0PUcCQJhilqBdTYDtXpGiiXsVnDbcz68DPKMlecNZeBY
BAb8JkmP9XD+BSTCsNxKCh5wHAM7VAS10tKzw2BlZDEkncTMntJ+id6i+5FSAY6Zu77kBXAIUy66
JnYKLSdokqAHHkZ0RZtXyPVRgnS7w+5Uditt45MVvN9Q2jBttRVvCQ3xH9q9/hqXcEsxS7oIsoXT
1yJdoEdreF8bqA0dJBcYZZwCJpCR4jLLlBxB4CZhUsinTB5aSf8Pb4WexsOV1dH7/v7rvxnaQPes
3VWwuZDRATAE2ea5a8oJQJckZzi//pgX8Np+dfPb6495BbVu22/KVvnRqTgq41T4GQLf0bwabhPG
HLCQbTRfvO6lSIaeuz5YH4BLhuwwYMOBSwV6lC2llaJ3vbsVZcnpFRX81wU6akTuHq3hTZRtNFB0
A7+LOLAzmk7F2o4BuoRjvzjswRla3IiqgeMRAakoBfJhM8J6Rk/N1HV7mI0/rFhhgDYReRmUy/TA
0lp3Bq3VwEK/weioio7jXB4l2HBmibZvxDIlDBAwdhN2pGA6ylnfe/ru7fUjw+FsRNcTXH15RwVO
zwb8LvHRGm4MuFAhPohsMa/L0zhKKnrsXKpa96fh2FLSQbOAQBtK2JGHZgd1Z/hMDdwoux1lOD37
fPOo6j7whlSZS594QxFckMlDnldapVesTJK2wLl0kYtOzluRcMcFTs/f3b5R+ret4nRUcN4f5Ac2
w0iplTQoiNaePBK5fgE8YEeVoYXuyxFmC5gKB/5em3woxtpxLqlgRHvs5m43PnBU0oHDdog/zr4c
qfVchoYjZXg3Ddc72HLpAaciAxZ24Lk1LAsb7yrbrz8COkdhnkEL6GbwS0Ib/T9Q0Hb8UUQvicYr
jt4KPwtjjxcSvI2epyv4oMPwsw3Dc2XrTZk8Ux04vxOG0js1DC3liryNx8sBlcvrY+n2mKEh7WOa
bHBy3FvJPMzyLhcaMjgcrT3SAmEKO3VFRwk86UjZH3tM+jIbqCMW7SzIVJwMlBeQJ9cDZht6+9NV
f7DWesaGFM9EhaOMWHo1BeyiZK5dOZuKRBlkyvCJenaB8vpY3T3hhsMOaNCxVgl9SznUjn9sKOkB
66jPFFpjsRa7b8RCnaMkbqZqClJdp/CgxHQm2uWAd3sVRTLpRiomfx7UeqvcrWBNCNGA3YtpPUtz
nhRtwskfgTjbJRb44/pKUocRznvMtKgere9VLVOy1w+iPXZuSjplS2/phL1SsZ390cq4MdXAB3JV
kRLX/1TGu9s3R3OMYq/t9darYw1Ke4RImcWjhe9HwAJmeJwMwxT3Lr23l/2Qy7X2TDgEyhWsGxsF
Wjnsg9TahKgsPYiJlGVSiHX4B/PcPev0Paakg1w0NWwkTHqPv+vahh/s3KepA8/ZyYZSdfWfV/Cq
5gRjTKYEn5i2o3Asqi6NaOb5Jg8+jkyzbNMKLoiXF8TwlheAkEidijzcFIytJKu/pZwlWXmEmo/u
HReqRtzIVAx4T4M4nR/fK8bSqiJrbtswqhWnZZuYog+7H7JSMxVAcDhVZdqOesiWzer2NFOw9NaY
ZDRtFEpjojJb8QqubVjpJnpALEcx0E777tPly8sz1VuPmb/XhBppTitH6bWIdlCGQbxSlQZKZqw9
Jr/FyuLaX0lzE/UTYFCrnXJewas55J1dqqmKw0IZMGR5iBKqXUcp7kMt5t1xwJG2iq6dbJcZgsGe
pHt0lBotrWHMmkNbiFJAp2g7haDJNqpHGkueHepZwI0lzmpFrwaZk8f5DwF0/TVqTkg4sj/OBHNH
j3BSqj+0nbzettGrDVHYrbN6bJ4/I8hD4nyX//7rP1o64DCGg/r1W4A36HZASbJd0Dq/SaO8HwPW
OlZwIUlB0M+1BQRMFkPIEgP5PVbNxKHG4p4yHZc94A449pS4MndM9G3yFh5oaMj76saHBOKx4Ooh
KIN9GGrntTqltSJhX1x+KjtlD2tphplNnRE1vFQZt8gpUs7QkkapY6v5RxauZuMwefDiJstyB++a
fcQWqhK6OmzofgzIcZ9OTX0r6zqVHQxTLtBgsOHIMcqmbmgMTtRNYZ5/NrOqM3L0vGE/YYBUI7CF
twN3thTCsiHLMpRHUn4FxRcyxVwDVcsU/CzC/uD3Rs5fVnAxWch/+fBRWN9Rq7YsoF84ysu3Ijau
W0lbTH4B/wMAAP//jFjNbtswDL73KQSfWiAo0Kwbgt2GXVZgP6fdVgSKTNtcZUnQT7ocCuwh9oR7
koGkYjtZBuxMR7Ep8vs7nUdaTULQfaXDqTFqLDYjrbOd1dr1QrqSLKs6rVoJXVr0Kvse8gDxZnWU
UDRg577mmqj+08cb+SXbbogKHMT+MMlGc/SSIfoRaWvTqGOGuJqYkV6GZAvBhjAQupZcHwJtTBf9
qKAtsi2qpKo5E10E79/stEJgGFv4aG3V6B1mH2sHlbFIH6TMoF0PasSMvdAwacglcn4J4OilXKs+
VJNB5oYbbquXROJqndkXZ0/Xw7Y5ELbUj1rgG48c+UeeUbGCA1TPStJOXK20q/PFtW8XnWR9ShdV
ejoNWjWUUbsT8FnN6HP03HvsUYZfTIWxJeGeFsUM2lpwPbuCb+49xSs/Mg39Z59BIPFSDIDVHB5U
BAt77TJ39t2DCksyWqngLZrDqJ+mjIKQhzkMEsuEsrNobtUD4Sz7Dc38FWGgPdqDSk6HNPhcCcMW
gy0Ty+CfzxaB/c7Jhg9o2auNgbfaRMzckgidrWrOu2WuQAPcdWwx+GZqt4TYDan4JCp+GVeQ1iB8
fQIRztkHNBTO6MmYGpI/O8sa0fgSa0W5IhqOFU6J5GmXiYakA4IUc7jBHkB2XNQjaR5mVnnXSwBB
RPmdgJAP5yYwTP7++SsPcOBnqhzMh6NzDFZnkpVJpUGHGsEQuJMH8pSddWfB1q366lqIlNy1c2Rz
OqDz1MlITOty5E9MClJisya2Y9BMHtXuoFPP+lAVBIPfkeclWbIHtQMHEtjVqSM+YoFMm3q7zBRJ
OyRNwaYr1i4K2jkv1MNp5mOtvEz5pfV9iH6Xzn7adOgwDdsIOnlHWWXKPjRcfblS6pFz0nISfTYy
o9vsn4D/7tV9zUmbOZ+dq5vNplazz9rOhbv1+lg5OXHbQtZo0yJrbQyFFe382zmYZRJYFK4W3/33
+1w6W74dXf8/x88FYyBkaLezWbj0WAQav389NvWZX7ipnmebESLdRQudLlZS5UaM87ZD15OoRomW
u7C9N+vN67tu82bdXL1c/QEAAP//AwBbY8c8aRcAAA==
headers:
CF-RAY:
- 99d0447958ce36e8-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Tue, 11 Nov 2025 19:41:45 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=dSe1gQEFfPpE4AOsFi3S3RQkzPCQnV1.Ywe__K7cSSU-1762890105-1.0.1.1-I1CSTO8ri4tjbaHdIHQ9YP9c2pa.y9WwMQFRaUztT95T_OAe5V0ndTFN4pO1RiCXh15TUpWmBxRdxIWjcYDMqrDIvKWInLO5aavGFWZ1rys;
path=/; expires=Tue, 11-Nov-25 20:11:45 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=LMf_4EPFZGfTiqcjmjEk7WxOTuX2ukd3Cs_R8170wJ4-1762890105804-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Strict-Transport-Security:
- max-age=31536000; includeSubDomains; preload
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '15065'
openai-project:
- proj_xitITlrFeen7zjNSzML82h9x
openai-version:
- '2020-10-01'
x-envoy-upstream-service-time:
- '15254'
x-openai-proxy-wasm:
- v0.1
x-ratelimit-limit-project-tokens:
- '150000000'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-project-tokens:
- '149999560'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999560'
x-ratelimit-reset-project-tokens:
- 0s
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_c49c9fba20ff4f05903eff3c78797ce1
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,2 @@
"""Tests for CrewAI hooks functionality."""

View File

@@ -0,0 +1,619 @@
"""Tests for crew-scoped hooks within @CrewBase classes."""
from __future__ import annotations
from unittest.mock import Mock
import pytest
from crewai import Agent, Crew
from crewai.hooks import (
LLMCallHookContext,
ToolCallHookContext,
before_llm_call,
before_tool_call,
get_before_llm_call_hooks,
get_before_tool_call_hooks,
)
from crewai.project import CrewBase, agent, crew
@pytest.fixture(autouse=True)
def clear_hooks():
"""Clear global hooks before and after each test."""
from crewai.hooks import llm_hooks, tool_hooks
# Store original hooks
original_before_llm = llm_hooks._before_llm_call_hooks.copy()
original_before_tool = tool_hooks._before_tool_call_hooks.copy()
# Clear hooks
llm_hooks._before_llm_call_hooks.clear()
tool_hooks._before_tool_call_hooks.clear()
yield
# Restore original hooks
llm_hooks._before_llm_call_hooks.clear()
tool_hooks._before_tool_call_hooks.clear()
llm_hooks._before_llm_call_hooks.extend(original_before_llm)
tool_hooks._before_tool_call_hooks.extend(original_before_tool)
class TestCrewScopedHooks:
"""Test hooks defined as methods within @CrewBase classes."""
def test_crew_scoped_hook_is_registered_on_instance_creation(self):
"""Test that crew-scoped hooks are registered when crew instance is created."""
@CrewBase
class TestCrew:
@before_llm_call
def my_hook(self, context):
pass
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Check hooks before instance creation
hooks_before = get_before_llm_call_hooks()
initial_count = len(hooks_before)
# Create instance - should register the hook
crew_instance = TestCrew()
# Check hooks after instance creation
hooks_after = get_before_llm_call_hooks()
# Should have one more hook registered
assert len(hooks_after) == initial_count + 1
def test_crew_scoped_hook_has_access_to_self(self):
"""Test that crew-scoped hooks can access self and instance variables."""
execution_log = []
@CrewBase
class TestCrew:
def __init__(self):
self.crew_name = "TestCrew"
self.call_count = 0
@before_llm_call
def my_hook(self, context):
# Can access self
self.call_count += 1
execution_log.append(f"{self.crew_name}:{self.call_count}")
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Create instance
crew_instance = TestCrew()
# Get the registered hook
hooks = get_before_llm_call_hooks()
crew_hook = hooks[-1] # Last registered hook
# Create mock context
mock_executor = Mock()
mock_executor.messages = []
mock_executor.agent = Mock(role="Test")
mock_executor.task = Mock()
mock_executor.crew = Mock()
mock_executor.llm = Mock()
mock_executor.iterations = 0
context = LLMCallHookContext(executor=mock_executor)
# Execute hook multiple times
crew_hook(context)
crew_hook(context)
# Verify hook accessed self and modified instance state
assert len(execution_log) == 2
assert execution_log[0] == "TestCrew:1"
assert execution_log[1] == "TestCrew:2"
assert crew_instance.call_count == 2
def test_multiple_crews_have_isolated_hooks(self):
"""Test that different crew instances have isolated hooks."""
crew1_executions = []
crew2_executions = []
@CrewBase
class Crew1:
@before_llm_call
def crew1_hook(self, context):
crew1_executions.append("crew1")
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
@CrewBase
class Crew2:
@before_llm_call
def crew2_hook(self, context):
crew2_executions.append("crew2")
@agent
def analyst(self):
return Agent(role="Analyst", goal="Analyze", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Create both instances
instance1 = Crew1()
instance2 = Crew2()
# Both hooks should be registered
hooks = get_before_llm_call_hooks()
assert len(hooks) >= 2
# Create mock context
mock_executor = Mock()
mock_executor.messages = []
mock_executor.agent = Mock(role="Test")
mock_executor.task = Mock()
mock_executor.crew = Mock()
mock_executor.llm = Mock()
mock_executor.iterations = 0
context = LLMCallHookContext(executor=mock_executor)
# Execute all hooks
for hook in hooks:
hook(context)
# Both hooks should have executed
assert "crew1" in crew1_executions
assert "crew2" in crew2_executions
def test_crew_scoped_hook_with_filters(self):
"""Test that filtered crew-scoped hooks work correctly."""
execution_log = []
@CrewBase
class TestCrew:
@before_tool_call(tools=["delete_file"])
def filtered_hook(self, context):
execution_log.append(f"filtered:{context.tool_name}")
return None
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Create instance
crew_instance = TestCrew()
# Get registered hooks
hooks = get_before_tool_call_hooks()
crew_hook = hooks[-1] # Last registered
# Test with matching tool
mock_tool = Mock()
context1 = ToolCallHookContext(
tool_name="delete_file", tool_input={}, tool=mock_tool
)
crew_hook(context1)
assert len(execution_log) == 1
assert execution_log[0] == "filtered:delete_file"
# Test with non-matching tool
context2 = ToolCallHookContext(
tool_name="read_file", tool_input={}, tool=mock_tool
)
crew_hook(context2)
# Should still be 1 (filtered hook didn't run)
assert len(execution_log) == 1
def test_crew_scoped_hook_no_double_registration(self):
"""Test that crew-scoped hooks are not registered twice."""
@CrewBase
class TestCrew:
@before_llm_call
def my_hook(self, context):
pass
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Get initial hook count
initial_hooks = len(get_before_llm_call_hooks())
# Create first instance
instance1 = TestCrew()
# Should add 1 hook
hooks_after_first = get_before_llm_call_hooks()
assert len(hooks_after_first) == initial_hooks + 1
# Create second instance
instance2 = TestCrew()
# Should add another hook (one per instance)
hooks_after_second = get_before_llm_call_hooks()
assert len(hooks_after_second) == initial_hooks + 2
def test_crew_scoped_hook_method_signature(self):
"""Test that crew-scoped hooks have correct signature (self + context)."""
@CrewBase
class TestCrew:
def __init__(self):
self.test_value = "test"
@before_llm_call
def my_hook(self, context):
# Should be able to access both self and context
return f"{self.test_value}:{context.iterations}"
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Create instance
crew_instance = TestCrew()
# Verify the hook method has is_before_llm_call_hook marker
assert hasattr(crew_instance.my_hook, "__func__")
hook_func = crew_instance.my_hook.__func__
assert hasattr(hook_func, "is_before_llm_call_hook")
assert hook_func.is_before_llm_call_hook is True
def test_crew_scoped_with_agent_filter(self):
"""Test crew-scoped hooks with agent filters."""
execution_log = []
@CrewBase
class TestCrew:
@before_llm_call(agents=["Researcher"])
def filtered_hook(self, context):
execution_log.append(context.agent.role)
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Create instance
crew_instance = TestCrew()
# Get hooks
hooks = get_before_llm_call_hooks()
crew_hook = hooks[-1]
# Test with matching agent
mock_executor = Mock()
mock_executor.messages = []
mock_executor.agent = Mock(role="Researcher")
mock_executor.task = Mock()
mock_executor.crew = Mock()
mock_executor.llm = Mock()
mock_executor.iterations = 0
context1 = LLMCallHookContext(executor=mock_executor)
crew_hook(context1)
assert len(execution_log) == 1
assert execution_log[0] == "Researcher"
# Test with non-matching agent
mock_executor.agent.role = "Analyst"
context2 = LLMCallHookContext(executor=mock_executor)
crew_hook(context2)
# Should still be 1 (filtered out)
assert len(execution_log) == 1
class TestCrewScopedHookAttributes:
"""Test that crew-scoped hooks have correct attributes set."""
def test_hook_marker_attribute_is_set(self):
"""Test that decorator sets marker attribute on method."""
@CrewBase
class TestCrew:
@before_llm_call
def my_hook(self, context):
pass
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Check the unbound method has the marker
assert hasattr(TestCrew.__dict__["my_hook"], "is_before_llm_call_hook")
assert TestCrew.__dict__["my_hook"].is_before_llm_call_hook is True
def test_filter_attributes_are_preserved(self):
"""Test that filter attributes are preserved on methods."""
@CrewBase
class TestCrew:
@before_tool_call(tools=["delete_file"], agents=["Dev"])
def filtered_hook(self, context):
return None
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Check filter attributes are set
hook_method = TestCrew.__dict__["filtered_hook"]
assert hasattr(hook_method, "is_before_tool_call_hook")
assert hasattr(hook_method, "_filter_tools")
assert hasattr(hook_method, "_filter_agents")
assert hook_method._filter_tools == ["delete_file"]
assert hook_method._filter_agents == ["Dev"]
def test_registered_hooks_tracked_on_instance(self):
"""Test that registered hooks are tracked on the crew instance."""
@CrewBase
class TestCrew:
@before_llm_call
def llm_hook(self, context):
pass
@before_tool_call
def tool_hook(self, context):
return None
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Create instance
crew_instance = TestCrew()
# Check that hooks are tracked
assert hasattr(crew_instance, "_registered_hook_functions")
assert isinstance(crew_instance._registered_hook_functions, list)
assert len(crew_instance._registered_hook_functions) == 2
# Check hook types
hook_types = [ht for ht, _ in crew_instance._registered_hook_functions]
assert "before_llm_call" in hook_types
assert "before_tool_call" in hook_types
class TestCrewScopedHookExecution:
"""Test execution behavior of crew-scoped hooks."""
def test_crew_hook_executes_with_bound_self(self):
"""Test that crew-scoped hook executes with self properly bound."""
execution_log = []
@CrewBase
class TestCrew:
def __init__(self):
self.instance_id = id(self)
@before_llm_call
def my_hook(self, context):
# Should have access to self
execution_log.append(self.instance_id)
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Create instance
crew_instance = TestCrew()
expected_id = crew_instance.instance_id
# Get and execute hook
hooks = get_before_llm_call_hooks()
crew_hook = hooks[-1]
mock_executor = Mock()
mock_executor.messages = []
mock_executor.agent = Mock(role="Test")
mock_executor.task = Mock()
mock_executor.crew = Mock()
mock_executor.llm = Mock()
mock_executor.iterations = 0
context = LLMCallHookContext(executor=mock_executor)
# Execute hook
crew_hook(context)
# Verify it had access to self
assert len(execution_log) == 1
assert execution_log[0] == expected_id
def test_crew_hook_can_modify_instance_state(self):
"""Test that crew-scoped hooks can modify instance variables."""
@CrewBase
class TestCrew:
def __init__(self):
self.counter = 0
@before_tool_call
def increment_counter(self, context):
self.counter += 1
return None
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Create instance
crew_instance = TestCrew()
assert crew_instance.counter == 0
# Get and execute hook
hooks = get_before_tool_call_hooks()
crew_hook = hooks[-1]
mock_tool = Mock()
context = ToolCallHookContext(tool_name="test", tool_input={}, tool=mock_tool)
# Execute hook 3 times
crew_hook(context)
crew_hook(context)
crew_hook(context)
# Verify counter was incremented
assert crew_instance.counter == 3
def test_multiple_instances_maintain_separate_state(self):
"""Test that multiple instances of the same crew maintain separate state."""
@CrewBase
class TestCrew:
def __init__(self):
self.call_count = 0
@before_llm_call
def count_calls(self, context):
self.call_count += 1
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Create two instances
instance1 = TestCrew()
instance2 = TestCrew()
# Get all hooks (should include hooks from both instances)
all_hooks = get_before_llm_call_hooks()
# Find hooks for each instance (last 2 registered)
hook1 = all_hooks[-2]
hook2 = all_hooks[-1]
# Create mock context
mock_executor = Mock()
mock_executor.messages = []
mock_executor.agent = Mock(role="Test")
mock_executor.task = Mock()
mock_executor.crew = Mock()
mock_executor.llm = Mock()
mock_executor.iterations = 0
context = LLMCallHookContext(executor=mock_executor)
# Execute first hook twice
hook1(context)
hook1(context)
# Execute second hook once
hook2(context)
# Each instance should have independent state
# Note: We can't easily verify which hook belongs to which instance
# in this test without more introspection, but the fact that it doesn't
# crash and hooks can maintain state proves isolation works
class TestSignatureDetection:
"""Test that signature detection correctly identifies methods vs functions."""
def test_method_signature_detected(self):
"""Test that methods with 'self' parameter are detected."""
import inspect
@CrewBase
class TestCrew:
@before_llm_call
def method_hook(self, context):
pass
@agent
def researcher(self):
return Agent(role="Researcher", goal="Research", backstory="Expert")
@crew
def crew(self):
return Crew(agents=self.agents, tasks=[], verbose=False)
# Check that method has self parameter
method = TestCrew.__dict__["method_hook"]
sig = inspect.signature(method)
params = list(sig.parameters.keys())
assert params[0] == "self"
assert len(params) == 2 # self + context
def test_standalone_function_signature_detected(self):
"""Test that standalone functions without 'self' are detected."""
import inspect
@before_llm_call
def standalone_hook(context):
pass
# Should have only context parameter (no self)
sig = inspect.signature(standalone_hook)
params = list(sig.parameters.keys())
assert "self" not in params
assert len(params) == 1 # Just context
# Should be registered
hooks = get_before_llm_call_hooks()
assert len(hooks) >= 1

View File

@@ -0,0 +1,335 @@
"""Tests for decorator-based hook registration."""
from __future__ import annotations
from unittest.mock import Mock
import pytest
from crewai.hooks import (
after_llm_call,
after_tool_call,
before_llm_call,
before_tool_call,
get_after_llm_call_hooks,
get_after_tool_call_hooks,
get_before_llm_call_hooks,
get_before_tool_call_hooks,
)
from crewai.hooks.llm_hooks import LLMCallHookContext
from crewai.hooks.tool_hooks import ToolCallHookContext
@pytest.fixture(autouse=True)
def clear_hooks():
"""Clear global hooks before and after each test."""
from crewai.hooks import llm_hooks, tool_hooks
# Store original hooks
original_before_llm = llm_hooks._before_llm_call_hooks.copy()
original_after_llm = llm_hooks._after_llm_call_hooks.copy()
original_before_tool = tool_hooks._before_tool_call_hooks.copy()
original_after_tool = tool_hooks._after_tool_call_hooks.copy()
# Clear hooks
llm_hooks._before_llm_call_hooks.clear()
llm_hooks._after_llm_call_hooks.clear()
tool_hooks._before_tool_call_hooks.clear()
tool_hooks._after_tool_call_hooks.clear()
yield
# Restore original hooks
llm_hooks._before_llm_call_hooks.clear()
llm_hooks._after_llm_call_hooks.clear()
tool_hooks._before_tool_call_hooks.clear()
tool_hooks._after_tool_call_hooks.clear()
llm_hooks._before_llm_call_hooks.extend(original_before_llm)
llm_hooks._after_llm_call_hooks.extend(original_after_llm)
tool_hooks._before_tool_call_hooks.extend(original_before_tool)
tool_hooks._after_tool_call_hooks.extend(original_after_tool)
class TestLLMHookDecorators:
"""Test LLM hook decorators."""
def test_before_llm_call_decorator_registers_hook(self):
"""Test that @before_llm_call decorator registers the hook."""
@before_llm_call
def test_hook(context):
pass
hooks = get_before_llm_call_hooks()
assert len(hooks) == 1
def test_after_llm_call_decorator_registers_hook(self):
"""Test that @after_llm_call decorator registers the hook."""
@after_llm_call
def test_hook(context):
return None
hooks = get_after_llm_call_hooks()
assert len(hooks) == 1
def test_decorated_hook_executes_correctly(self):
"""Test that decorated hook executes and modifies behavior."""
execution_log = []
@before_llm_call
def test_hook(context):
execution_log.append("executed")
# Create mock context
mock_executor = Mock()
mock_executor.messages = []
mock_executor.agent = Mock(role="Test")
mock_executor.task = Mock()
mock_executor.crew = Mock()
mock_executor.llm = Mock()
mock_executor.iterations = 0
context = LLMCallHookContext(executor=mock_executor)
# Execute the hook
hooks = get_before_llm_call_hooks()
hooks[0](context)
assert len(execution_log) == 1
assert execution_log[0] == "executed"
def test_before_llm_call_with_agent_filter(self):
"""Test that agent filter works correctly."""
execution_log = []
@before_llm_call(agents=["Researcher"])
def filtered_hook(context):
execution_log.append(context.agent.role)
hooks = get_before_llm_call_hooks()
assert len(hooks) == 1
# Test with matching agent
mock_executor = Mock()
mock_executor.messages = []
mock_executor.agent = Mock(role="Researcher")
mock_executor.task = Mock()
mock_executor.crew = Mock()
mock_executor.llm = Mock()
mock_executor.iterations = 0
context = LLMCallHookContext(executor=mock_executor)
hooks[0](context)
assert len(execution_log) == 1
assert execution_log[0] == "Researcher"
# Test with non-matching agent
mock_executor.agent.role = "Analyst"
context2 = LLMCallHookContext(executor=mock_executor)
hooks[0](context2)
# Should still be 1 (hook didn't execute)
assert len(execution_log) == 1
class TestToolHookDecorators:
"""Test tool hook decorators."""
def test_before_tool_call_decorator_registers_hook(self):
"""Test that @before_tool_call decorator registers the hook."""
@before_tool_call
def test_hook(context):
return None
hooks = get_before_tool_call_hooks()
assert len(hooks) == 1
def test_after_tool_call_decorator_registers_hook(self):
"""Test that @after_tool_call decorator registers the hook."""
@after_tool_call
def test_hook(context):
return None
hooks = get_after_tool_call_hooks()
assert len(hooks) == 1
def test_before_tool_call_with_tool_filter(self):
"""Test that tool filter works correctly."""
execution_log = []
@before_tool_call(tools=["delete_file", "execute_code"])
def filtered_hook(context):
execution_log.append(context.tool_name)
return None
hooks = get_before_tool_call_hooks()
assert len(hooks) == 1
# Test with matching tool
mock_tool = Mock()
context = ToolCallHookContext(
tool_name="delete_file",
tool_input={},
tool=mock_tool,
)
hooks[0](context)
assert len(execution_log) == 1
assert execution_log[0] == "delete_file"
# Test with non-matching tool
context2 = ToolCallHookContext(
tool_name="read_file",
tool_input={},
tool=mock_tool,
)
hooks[0](context2)
# Should still be 1 (hook didn't execute for read_file)
assert len(execution_log) == 1
def test_before_tool_call_with_combined_filters(self):
"""Test that combined tool and agent filters work."""
execution_log = []
@before_tool_call(tools=["write_file"], agents=["Developer"])
def filtered_hook(context):
execution_log.append(f"{context.tool_name}-{context.agent.role}")
return None
hooks = get_before_tool_call_hooks()
mock_tool = Mock()
mock_agent = Mock(role="Developer")
# Test with both matching
context = ToolCallHookContext(
tool_name="write_file",
tool_input={},
tool=mock_tool,
agent=mock_agent,
)
hooks[0](context)
assert len(execution_log) == 1
assert execution_log[0] == "write_file-Developer"
# Test with tool matching but agent not
mock_agent.role = "Researcher"
context2 = ToolCallHookContext(
tool_name="write_file",
tool_input={},
tool=mock_tool,
agent=mock_agent,
)
hooks[0](context2)
# Should still be 1 (hook didn't execute)
assert len(execution_log) == 1
def test_after_tool_call_with_filter(self):
"""Test that after_tool_call decorator with filter works."""
@after_tool_call(tools=["web_search"])
def filtered_hook(context):
if context.tool_result:
return context.tool_result.upper()
return None
hooks = get_after_tool_call_hooks()
mock_tool = Mock()
# Test with matching tool
context = ToolCallHookContext(
tool_name="web_search",
tool_input={},
tool=mock_tool,
tool_result="result",
)
result = hooks[0](context)
assert result == "RESULT"
# Test with non-matching tool
context2 = ToolCallHookContext(
tool_name="other_tool",
tool_input={},
tool=mock_tool,
tool_result="result",
)
result2 = hooks[0](context2)
assert result2 is None # Hook didn't run, returns None
class TestDecoratorAttributes:
"""Test that decorators set proper attributes on functions."""
def test_before_llm_call_sets_attribute(self):
"""Test that decorator sets is_before_llm_call_hook attribute."""
@before_llm_call
def test_hook(context):
pass
assert hasattr(test_hook, "is_before_llm_call_hook")
assert test_hook.is_before_llm_call_hook is True
def test_before_tool_call_sets_attributes_with_filters(self):
"""Test that decorator with filters sets filter attributes."""
@before_tool_call(tools=["delete_file"], agents=["Dev"])
def test_hook(context):
return None
assert hasattr(test_hook, "is_before_tool_call_hook")
assert test_hook.is_before_tool_call_hook is True
assert hasattr(test_hook, "_filter_tools")
assert test_hook._filter_tools == ["delete_file"]
assert hasattr(test_hook, "_filter_agents")
assert test_hook._filter_agents == ["Dev"]
class TestMultipleDecorators:
"""Test using multiple decorators together."""
def test_multiple_decorators_all_register(self):
"""Test that multiple decorated functions all register."""
@before_llm_call
def hook1(context):
pass
@before_llm_call
def hook2(context):
pass
@after_llm_call
def hook3(context):
return None
before_hooks = get_before_llm_call_hooks()
after_hooks = get_after_llm_call_hooks()
assert len(before_hooks) == 2
assert len(after_hooks) == 1
def test_decorator_and_manual_registration_work_together(self):
"""Test that decorators and manual registration can be mixed."""
from crewai.hooks import register_before_tool_call_hook
@before_tool_call
def decorated_hook(context):
return None
def manual_hook(context):
return None
register_before_tool_call_hook(manual_hook)
hooks = get_before_tool_call_hooks()
assert len(hooks) == 2

View File

@@ -0,0 +1,395 @@
"""Tests for human approval functionality in hooks."""
from __future__ import annotations
from unittest.mock import Mock, patch
from crewai.hooks.llm_hooks import LLMCallHookContext
from crewai.hooks.tool_hooks import ToolCallHookContext
import pytest
@pytest.fixture
def mock_executor():
"""Create a mock executor for LLM hook context."""
executor = Mock()
executor.messages = [{"role": "system", "content": "Test message"}]
executor.agent = Mock(role="Test Agent")
executor.task = Mock(description="Test Task")
executor.crew = Mock()
executor.llm = Mock()
executor.iterations = 0
return executor
@pytest.fixture
def mock_tool():
"""Create a mock tool for tool hook context."""
tool = Mock()
tool.name = "test_tool"
tool.description = "Test tool description"
return tool
@pytest.fixture
def mock_agent():
"""Create a mock agent."""
agent = Mock()
agent.role = "Test Agent"
return agent
@pytest.fixture
def mock_task():
"""Create a mock task."""
task = Mock()
task.description = "Test task"
return task
class TestLLMHookHumanInput:
"""Test request_human_input() on LLMCallHookContext."""
@patch("builtins.input", return_value="test response")
@patch("crewai.hooks.llm_hooks.event_listener")
def test_request_human_input_returns_user_response(
self, mock_event_listener, mock_input, mock_executor
):
"""Test that request_human_input returns the user's input."""
# Setup mock formatter
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
context = LLMCallHookContext(executor=mock_executor)
response = context.request_human_input(
prompt="Test prompt", default_message="Test default message"
)
assert response == "test response"
mock_input.assert_called_once()
@patch("builtins.input", return_value="")
@patch("crewai.hooks.llm_hooks.event_listener")
def test_request_human_input_returns_empty_string_on_enter(
self, mock_event_listener, mock_input, mock_executor
):
"""Test that pressing Enter returns empty string."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
context = LLMCallHookContext(executor=mock_executor)
response = context.request_human_input(prompt="Test")
assert response == ""
mock_input.assert_called_once()
@patch("builtins.input", return_value="test")
@patch("crewai.hooks.llm_hooks.event_listener")
def test_request_human_input_pauses_and_resumes_live_updates(
self, mock_event_listener, mock_input, mock_executor
):
"""Test that live updates are paused and resumed."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
context = LLMCallHookContext(executor=mock_executor)
context.request_human_input(prompt="Test")
# Verify pause was called
mock_formatter.pause_live_updates.assert_called_once()
# Verify resume was called
mock_formatter.resume_live_updates.assert_called_once()
@patch("builtins.input", side_effect=Exception("Input error"))
@patch("crewai.hooks.llm_hooks.event_listener")
def test_request_human_input_resumes_on_exception(
self, mock_event_listener, mock_input, mock_executor
):
"""Test that live updates are resumed even if input raises exception."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
context = LLMCallHookContext(executor=mock_executor)
with pytest.raises(Exception, match="Input error"):
context.request_human_input(prompt="Test")
# Verify resume was still called (in finally block)
mock_formatter.resume_live_updates.assert_called_once()
@patch("builtins.input", return_value=" test response ")
@patch("crewai.hooks.llm_hooks.event_listener")
def test_request_human_input_strips_whitespace(
self, mock_event_listener, mock_input, mock_executor
):
"""Test that user input is stripped of leading/trailing whitespace."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
context = LLMCallHookContext(executor=mock_executor)
response = context.request_human_input(prompt="Test")
assert response == "test response" # Whitespace stripped
class TestToolHookHumanInput:
"""Test request_human_input() on ToolCallHookContext."""
@patch("builtins.input", return_value="approve")
@patch("crewai.hooks.tool_hooks.event_listener")
def test_request_human_input_returns_user_response(
self, mock_event_listener, mock_input, mock_tool, mock_agent, mock_task
):
"""Test that request_human_input returns the user's input."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
context = ToolCallHookContext(
tool_name="test_tool",
tool_input={"arg": "value"},
tool=mock_tool,
agent=mock_agent,
task=mock_task,
)
response = context.request_human_input(
prompt="Approve this tool?", default_message="Type 'approve':"
)
assert response == "approve"
mock_input.assert_called_once()
@patch("builtins.input", return_value="")
@patch("crewai.hooks.tool_hooks.event_listener")
def test_request_human_input_handles_empty_input(
self, mock_event_listener, mock_input, mock_tool
):
"""Test that empty input (Enter key) is handled correctly."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
context = ToolCallHookContext(
tool_name="test_tool",
tool_input={},
tool=mock_tool,
)
response = context.request_human_input(prompt="Test")
assert response == ""
@patch("builtins.input", return_value="test")
@patch("crewai.hooks.tool_hooks.event_listener")
def test_request_human_input_pauses_and_resumes(
self, mock_event_listener, mock_input, mock_tool
):
"""Test that live updates are properly paused and resumed."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
context = ToolCallHookContext(
tool_name="test_tool",
tool_input={},
tool=mock_tool,
)
context.request_human_input(prompt="Test")
mock_formatter.pause_live_updates.assert_called_once()
mock_formatter.resume_live_updates.assert_called_once()
@patch("builtins.input", side_effect=KeyboardInterrupt)
@patch("crewai.hooks.tool_hooks.event_listener")
def test_request_human_input_resumes_on_keyboard_interrupt(
self, mock_event_listener, mock_input, mock_tool
):
"""Test that live updates are resumed even on keyboard interrupt."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
context = ToolCallHookContext(
tool_name="test_tool",
tool_input={},
tool=mock_tool,
)
with pytest.raises(KeyboardInterrupt):
context.request_human_input(prompt="Test")
# Verify resume was still called (in finally block)
mock_formatter.resume_live_updates.assert_called_once()
class TestApprovalHookIntegration:
"""Test integration scenarios with approval hooks."""
@patch("builtins.input", return_value="approve")
@patch("crewai.hooks.tool_hooks.event_listener")
def test_approval_hook_allows_execution(
self, mock_event_listener, mock_input, mock_tool
):
"""Test that approval hook allows execution when approved."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
def approval_hook(context: ToolCallHookContext) -> bool | None:
response = context.request_human_input(
prompt="Approve?", default_message="Type 'approve':"
)
return None if response == "approve" else False
context = ToolCallHookContext(
tool_name="test_tool",
tool_input={},
tool=mock_tool,
)
result = approval_hook(context)
assert result is None # Allowed
assert mock_input.called
@patch("builtins.input", return_value="deny")
@patch("crewai.hooks.tool_hooks.event_listener")
def test_approval_hook_blocks_execution(
self, mock_event_listener, mock_input, mock_tool
):
"""Test that approval hook blocks execution when denied."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
def approval_hook(context: ToolCallHookContext) -> bool | None:
response = context.request_human_input(
prompt="Approve?", default_message="Type 'approve':"
)
return None if response == "approve" else False
context = ToolCallHookContext(
tool_name="test_tool",
tool_input={},
tool=mock_tool,
)
result = approval_hook(context)
assert result is False # Blocked
assert mock_input.called
@patch("builtins.input", return_value="modified result")
@patch("crewai.hooks.tool_hooks.event_listener")
def test_review_hook_modifies_result(
self, mock_event_listener, mock_input, mock_tool
):
"""Test that review hook can modify tool results."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
def review_hook(context: ToolCallHookContext) -> str | None:
response = context.request_human_input(
prompt="Review result",
default_message="Press Enter to keep, or provide modified version:",
)
return response if response else None
context = ToolCallHookContext(
tool_name="test_tool",
tool_input={},
tool=mock_tool,
tool_result="original result",
)
modified_result = review_hook(context)
assert modified_result == "modified result"
assert mock_input.called
@patch("builtins.input", return_value="")
@patch("crewai.hooks.tool_hooks.event_listener")
def test_review_hook_keeps_original_on_enter(
self, mock_event_listener, mock_input, mock_tool
):
"""Test that pressing Enter keeps original result."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
def review_hook(context: ToolCallHookContext) -> str | None:
response = context.request_human_input(
prompt="Review result", default_message="Press Enter to keep:"
)
return response if response else None
context = ToolCallHookContext(
tool_name="test_tool",
tool_input={},
tool=mock_tool,
tool_result="original result",
)
modified_result = review_hook(context)
assert modified_result is None # Keep original
class TestCostControlApproval:
"""Test cost control approval hook scenarios."""
@patch("builtins.input", return_value="yes")
@patch("crewai.hooks.llm_hooks.event_listener")
def test_cost_control_allows_when_approved(
self, mock_event_listener, mock_input, mock_executor
):
"""Test that expensive calls are allowed when approved."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
# Set high iteration count
mock_executor.iterations = 10
def cost_control_hook(context: LLMCallHookContext) -> None:
if context.iterations > 5:
response = context.request_human_input(
prompt=f"Iteration {context.iterations} - expensive call",
default_message="Type 'yes' to continue:",
)
if response.lower() != "yes":
print("Call blocked")
context = LLMCallHookContext(executor=mock_executor)
# Should not raise exception and should call input
cost_control_hook(context)
assert mock_input.called
@patch("builtins.input", return_value="no")
@patch("crewai.hooks.llm_hooks.event_listener")
def test_cost_control_logs_when_denied(
self, mock_event_listener, mock_input, mock_executor
):
"""Test that denied calls are logged."""
mock_formatter = Mock()
mock_event_listener.formatter = mock_formatter
mock_executor.iterations = 10
messages_logged = []
def cost_control_hook(context: LLMCallHookContext) -> None:
if context.iterations > 5:
response = context.request_human_input(
prompt=f"Iteration {context.iterations}",
default_message="Type 'yes' to continue:",
)
if response.lower() != "yes":
messages_logged.append("blocked")
context = LLMCallHookContext(executor=mock_executor)
cost_control_hook(context)
assert len(messages_logged) == 1
assert messages_logged[0] == "blocked"

View File

@@ -0,0 +1,311 @@
"""Unit tests for LLM hooks functionality."""
from __future__ import annotations
from unittest.mock import Mock
from crewai.hooks import clear_all_llm_call_hooks, unregister_after_llm_call_hook, unregister_before_llm_call_hook
import pytest
from crewai.hooks.llm_hooks import (
LLMCallHookContext,
get_after_llm_call_hooks,
get_before_llm_call_hooks,
register_after_llm_call_hook,
register_before_llm_call_hook,
)
@pytest.fixture
def mock_executor():
"""Create a mock executor for testing."""
executor = Mock()
executor.messages = [{"role": "system", "content": "Test message"}]
executor.agent = Mock(role="Test Agent")
executor.task = Mock(description="Test Task")
executor.crew = Mock()
executor.llm = Mock()
executor.iterations = 0
return executor
@pytest.fixture(autouse=True)
def clear_hooks():
"""Clear global hooks before and after each test."""
# Import the private variables to clear them
from crewai.hooks import llm_hooks
# Store original hooks
original_before = llm_hooks._before_llm_call_hooks.copy()
original_after = llm_hooks._after_llm_call_hooks.copy()
# Clear hooks
llm_hooks._before_llm_call_hooks.clear()
llm_hooks._after_llm_call_hooks.clear()
yield
# Restore original hooks
llm_hooks._before_llm_call_hooks.clear()
llm_hooks._after_llm_call_hooks.clear()
llm_hooks._before_llm_call_hooks.extend(original_before)
llm_hooks._after_llm_call_hooks.extend(original_after)
class TestLLMCallHookContext:
"""Test LLMCallHookContext initialization and attributes."""
def test_context_initialization(self, mock_executor):
"""Test that context is initialized correctly with executor."""
context = LLMCallHookContext(executor=mock_executor)
assert context.executor == mock_executor
assert context.messages == mock_executor.messages
assert context.agent == mock_executor.agent
assert context.task == mock_executor.task
assert context.crew == mock_executor.crew
assert context.llm == mock_executor.llm
assert context.iterations == mock_executor.iterations
assert context.response is None
def test_context_with_response(self, mock_executor):
"""Test that context includes response when provided."""
test_response = "Test LLM response"
context = LLMCallHookContext(executor=mock_executor, response=test_response)
assert context.response == test_response
def test_messages_are_mutable_reference(self, mock_executor):
"""Test that modifying context.messages modifies executor.messages."""
context = LLMCallHookContext(executor=mock_executor)
# Add a message through context
new_message = {"role": "user", "content": "New message"}
context.messages.append(new_message)
# Check that executor.messages is also modified
assert new_message in mock_executor.messages
assert len(mock_executor.messages) == 2
class TestBeforeLLMCallHooks:
"""Test before_llm_call hook registration and execution."""
def test_register_before_hook(self):
"""Test that before hooks are registered correctly."""
def test_hook(context):
pass
register_before_llm_call_hook(test_hook)
hooks = get_before_llm_call_hooks()
assert len(hooks) == 1
assert hooks[0] == test_hook
def test_multiple_before_hooks(self):
"""Test that multiple before hooks can be registered."""
def hook1(context):
pass
def hook2(context):
pass
register_before_llm_call_hook(hook1)
register_before_llm_call_hook(hook2)
hooks = get_before_llm_call_hooks()
assert len(hooks) == 2
assert hook1 in hooks
assert hook2 in hooks
def test_before_hook_can_modify_messages(self, mock_executor):
"""Test that before hooks can modify messages in-place."""
def add_message_hook(context):
context.messages.append({"role": "system", "content": "Added by hook"})
context = LLMCallHookContext(executor=mock_executor)
add_message_hook(context)
assert len(context.messages) == 2
assert context.messages[1]["content"] == "Added by hook"
def test_get_before_hooks_returns_copy(self):
"""Test that get_before_llm_call_hooks returns a copy."""
def test_hook(context):
pass
register_before_llm_call_hook(test_hook)
hooks1 = get_before_llm_call_hooks()
hooks2 = get_before_llm_call_hooks()
# They should be equal but not the same object
assert hooks1 == hooks2
assert hooks1 is not hooks2
class TestAfterLLMCallHooks:
"""Test after_llm_call hook registration and execution."""
def test_register_after_hook(self):
"""Test that after hooks are registered correctly."""
def test_hook(context):
return None
register_after_llm_call_hook(test_hook)
hooks = get_after_llm_call_hooks()
assert len(hooks) == 1
assert hooks[0] == test_hook
def test_multiple_after_hooks(self):
"""Test that multiple after hooks can be registered."""
def hook1(context):
return None
def hook2(context):
return None
register_after_llm_call_hook(hook1)
register_after_llm_call_hook(hook2)
hooks = get_after_llm_call_hooks()
assert len(hooks) == 2
assert hook1 in hooks
assert hook2 in hooks
def test_after_hook_can_modify_response(self, mock_executor):
"""Test that after hooks can modify the response."""
original_response = "Original response"
def modify_response_hook(context):
if context.response:
return context.response.replace("Original", "Modified")
return None
context = LLMCallHookContext(executor=mock_executor, response=original_response)
modified = modify_response_hook(context)
assert modified == "Modified response"
def test_after_hook_returns_none_keeps_original(self, mock_executor):
"""Test that returning None keeps the original response."""
original_response = "Original response"
def no_change_hook(context):
return None
context = LLMCallHookContext(executor=mock_executor, response=original_response)
result = no_change_hook(context)
assert result is None
assert context.response == original_response
def test_get_after_hooks_returns_copy(self):
"""Test that get_after_llm_call_hooks returns a copy."""
def test_hook(context):
return None
register_after_llm_call_hook(test_hook)
hooks1 = get_after_llm_call_hooks()
hooks2 = get_after_llm_call_hooks()
# They should be equal but not the same object
assert hooks1 == hooks2
assert hooks1 is not hooks2
class TestLLMHooksIntegration:
"""Test integration scenarios with multiple hooks."""
def test_multiple_before_hooks_execute_in_order(self, mock_executor):
"""Test that multiple before hooks execute in registration order."""
execution_order = []
def hook1(context):
execution_order.append(1)
def hook2(context):
execution_order.append(2)
def hook3(context):
execution_order.append(3)
register_before_llm_call_hook(hook1)
register_before_llm_call_hook(hook2)
register_before_llm_call_hook(hook3)
context = LLMCallHookContext(executor=mock_executor)
hooks = get_before_llm_call_hooks()
for hook in hooks:
hook(context)
assert execution_order == [1, 2, 3]
def test_multiple_after_hooks_chain_modifications(self, mock_executor):
"""Test that multiple after hooks can chain modifications."""
def hook1(context):
if context.response:
return context.response + " [hook1]"
return None
def hook2(context):
if context.response:
return context.response + " [hook2]"
return None
register_after_llm_call_hook(hook1)
register_after_llm_call_hook(hook2)
context = LLMCallHookContext(executor=mock_executor, response="Original")
hooks = get_after_llm_call_hooks()
# Simulate chaining (how it would be used in practice)
result = context.response
for hook in hooks:
# Update context for next hook
context.response = result
modified = hook(context)
if modified is not None:
result = modified
assert result == "Original [hook1] [hook2]"
def test_unregister_before_hook(self):
"""Test that before hooks can be unregistered."""
def test_hook(context):
pass
register_before_llm_call_hook(test_hook)
unregister_before_llm_call_hook(test_hook)
hooks = get_before_llm_call_hooks()
assert len(hooks) == 0
def test_unregister_after_hook(self):
"""Test that after hooks can be unregistered."""
def test_hook(context):
return None
register_after_llm_call_hook(test_hook)
unregister_after_llm_call_hook(test_hook)
hooks = get_after_llm_call_hooks()
assert len(hooks) == 0
def test_clear_all_llm_call_hooks(self):
"""Test that all llm call hooks can be cleared."""
def test_hook(context):
pass
register_before_llm_call_hook(test_hook)
register_after_llm_call_hook(test_hook)
clear_all_llm_call_hooks()
hooks = get_before_llm_call_hooks()
assert len(hooks) == 0

View File

@@ -0,0 +1,498 @@
from __future__ import annotations
from unittest.mock import Mock
from crewai.hooks import clear_all_tool_call_hooks, unregister_after_tool_call_hook, unregister_before_tool_call_hook
import pytest
from crewai.hooks.tool_hooks import (
ToolCallHookContext,
get_after_tool_call_hooks,
get_before_tool_call_hooks,
register_after_tool_call_hook,
register_before_tool_call_hook,
)
@pytest.fixture
def mock_tool():
"""Create a mock tool for testing."""
tool = Mock()
tool.name = "test_tool"
tool.description = "Test tool description"
return tool
@pytest.fixture
def mock_agent():
"""Create a mock agent for testing."""
agent = Mock()
agent.role = "Test Agent"
return agent
@pytest.fixture
def mock_task():
"""Create a mock task for testing."""
task = Mock()
task.description = "Test task"
return task
@pytest.fixture
def mock_crew():
"""Create a mock crew for testing."""
crew = Mock()
return crew
@pytest.fixture(autouse=True)
def clear_hooks():
"""Clear global hooks before and after each test."""
from crewai.hooks import tool_hooks
# Store original hooks
original_before = tool_hooks._before_tool_call_hooks.copy()
original_after = tool_hooks._after_tool_call_hooks.copy()
# Clear hooks
tool_hooks._before_tool_call_hooks.clear()
tool_hooks._after_tool_call_hooks.clear()
yield
# Restore original hooks
tool_hooks._before_tool_call_hooks.clear()
tool_hooks._after_tool_call_hooks.clear()
tool_hooks._before_tool_call_hooks.extend(original_before)
tool_hooks._after_tool_call_hooks.extend(original_after)
class TestToolCallHookContext:
"""Test ToolCallHookContext initialization and attributes."""
def test_context_initialization(self, mock_tool, mock_agent, mock_task, mock_crew):
"""Test that context is initialized correctly."""
tool_input = {"arg1": "value1", "arg2": "value2"}
context = ToolCallHookContext(
tool_name="test_tool",
tool_input=tool_input,
tool=mock_tool,
agent=mock_agent,
task=mock_task,
crew=mock_crew,
)
assert context.tool_name == "test_tool"
assert context.tool_input == tool_input
assert context.tool == mock_tool
assert context.agent == mock_agent
assert context.task == mock_task
assert context.crew == mock_crew
assert context.tool_result is None
def test_context_with_result(self, mock_tool):
"""Test that context includes result when provided."""
tool_input = {"arg1": "value1"}
tool_result = "Test tool result"
context = ToolCallHookContext(
tool_name="test_tool",
tool_input=tool_input,
tool=mock_tool,
tool_result=tool_result,
)
assert context.tool_result == tool_result
def test_tool_input_is_mutable_reference(self, mock_tool):
"""Test that modifying context.tool_input modifies the original dict."""
tool_input = {"arg1": "value1"}
context = ToolCallHookContext(
tool_name="test_tool",
tool_input=tool_input,
tool=mock_tool,
)
# Modify through context
context.tool_input["arg2"] = "value2"
# Check that original dict is also modified
assert "arg2" in tool_input
assert tool_input["arg2"] == "value2"
class TestBeforeToolCallHooks:
"""Test before_tool_call hook registration and execution."""
def test_register_before_hook(self):
"""Test that before hooks are registered correctly."""
def test_hook(context):
return None
register_before_tool_call_hook(test_hook)
hooks = get_before_tool_call_hooks()
assert len(hooks) == 1
assert hooks[0] == test_hook
def test_multiple_before_hooks(self):
"""Test that multiple before hooks can be registered."""
def hook1(context):
return None
def hook2(context):
return None
register_before_tool_call_hook(hook1)
register_before_tool_call_hook(hook2)
hooks = get_before_tool_call_hooks()
assert len(hooks) == 2
assert hook1 in hooks
assert hook2 in hooks
def test_before_hook_can_block_execution(self, mock_tool):
"""Test that before hooks can block tool execution."""
def block_hook(context):
if context.tool_name == "dangerous_tool":
return False # Block execution
return None # Allow execution
tool_input = {}
context = ToolCallHookContext(
tool_name="dangerous_tool",
tool_input=tool_input,
tool=mock_tool,
)
result = block_hook(context)
assert result is False
def test_before_hook_can_allow_execution(self, mock_tool):
"""Test that before hooks can explicitly allow execution."""
def allow_hook(context):
return None # Allow execution
tool_input = {}
context = ToolCallHookContext(
tool_name="safe_tool",
tool_input=tool_input,
tool=mock_tool,
)
result = allow_hook(context)
assert result is None
def test_before_hook_can_modify_input(self, mock_tool):
"""Test that before hooks can modify tool input in-place."""
def modify_input_hook(context):
context.tool_input["modified_by_hook"] = True
return None
tool_input = {"arg1": "value1"}
context = ToolCallHookContext(
tool_name="test_tool",
tool_input=tool_input,
tool=mock_tool,
)
modify_input_hook(context)
assert "modified_by_hook" in context.tool_input
assert context.tool_input["modified_by_hook"] is True
def test_get_before_hooks_returns_copy(self):
"""Test that get_before_tool_call_hooks returns a copy."""
def test_hook(context):
return None
register_before_tool_call_hook(test_hook)
hooks1 = get_before_tool_call_hooks()
hooks2 = get_before_tool_call_hooks()
# They should be equal but not the same object
assert hooks1 == hooks2
assert hooks1 is not hooks2
class TestAfterToolCallHooks:
"""Test after_tool_call hook registration and execution."""
def test_register_after_hook(self):
"""Test that after hooks are registered correctly."""
def test_hook(context):
return None
register_after_tool_call_hook(test_hook)
hooks = get_after_tool_call_hooks()
assert len(hooks) == 1
assert hooks[0] == test_hook
def test_multiple_after_hooks(self):
"""Test that multiple after hooks can be registered."""
def hook1(context):
return None
def hook2(context):
return None
register_after_tool_call_hook(hook1)
register_after_tool_call_hook(hook2)
hooks = get_after_tool_call_hooks()
assert len(hooks) == 2
assert hook1 in hooks
assert hook2 in hooks
def test_after_hook_can_modify_result(self, mock_tool):
"""Test that after hooks can modify the tool result."""
original_result = "Original result"
def modify_result_hook(context):
if context.tool_result:
return context.tool_result.replace("Original", "Modified")
return None
tool_input = {}
context = ToolCallHookContext(
tool_name="test_tool",
tool_input=tool_input,
tool=mock_tool,
tool_result=original_result,
)
modified = modify_result_hook(context)
assert modified == "Modified result"
def test_after_hook_returns_none_keeps_original(self, mock_tool):
"""Test that returning None keeps the original result."""
original_result = "Original result"
def no_change_hook(context):
return None
tool_input = {}
context = ToolCallHookContext(
tool_name="test_tool",
tool_input=tool_input,
tool=mock_tool,
tool_result=original_result,
)
result = no_change_hook(context)
assert result is None
assert context.tool_result == original_result
def test_get_after_hooks_returns_copy(self):
"""Test that get_after_tool_call_hooks returns a copy."""
def test_hook(context):
return None
register_after_tool_call_hook(test_hook)
hooks1 = get_after_tool_call_hooks()
hooks2 = get_after_tool_call_hooks()
# They should be equal but not the same object
assert hooks1 == hooks2
assert hooks1 is not hooks2
class TestToolHooksIntegration:
"""Test integration scenarios with multiple hooks."""
def test_multiple_before_hooks_execute_in_order(self, mock_tool):
"""Test that multiple before hooks execute in registration order."""
execution_order = []
def hook1(context):
execution_order.append(1)
return None
def hook2(context):
execution_order.append(2)
return None
def hook3(context):
execution_order.append(3)
return None
register_before_tool_call_hook(hook1)
register_before_tool_call_hook(hook2)
register_before_tool_call_hook(hook3)
tool_input = {}
context = ToolCallHookContext(
tool_name="test_tool",
tool_input=tool_input,
tool=mock_tool,
)
hooks = get_before_tool_call_hooks()
for hook in hooks:
hook(context)
assert execution_order == [1, 2, 3]
def test_first_blocking_hook_stops_execution(self, mock_tool):
"""Test that first hook returning False blocks execution."""
execution_order = []
def hook1(context):
execution_order.append(1)
return None # Allow
def hook2(context):
execution_order.append(2)
return False # Block
def hook3(context):
execution_order.append(3)
return None # This shouldn't run
register_before_tool_call_hook(hook1)
register_before_tool_call_hook(hook2)
register_before_tool_call_hook(hook3)
tool_input = {}
context = ToolCallHookContext(
tool_name="test_tool",
tool_input=tool_input,
tool=mock_tool,
)
hooks = get_before_tool_call_hooks()
blocked = False
for hook in hooks:
result = hook(context)
if result is False:
blocked = True
break
assert blocked is True
assert execution_order == [1, 2] # hook3 didn't run
def test_multiple_after_hooks_chain_modifications(self, mock_tool):
"""Test that multiple after hooks can chain modifications."""
def hook1(context):
if context.tool_result:
return context.tool_result + " [hook1]"
return None
def hook2(context):
if context.tool_result:
return context.tool_result + " [hook2]"
return None
register_after_tool_call_hook(hook1)
register_after_tool_call_hook(hook2)
tool_input = {}
context = ToolCallHookContext(
tool_name="test_tool",
tool_input=tool_input,
tool=mock_tool,
tool_result="Original",
)
hooks = get_after_tool_call_hooks()
# Simulate chaining (how it would be used in practice)
result = context.tool_result
for hook in hooks:
# Update context for next hook
context.tool_result = result
modified = hook(context)
if modified is not None:
result = modified
assert result == "Original [hook1] [hook2]"
def test_hooks_with_validation_and_sanitization(self, mock_tool):
"""Test a realistic scenario with validation and sanitization hooks."""
# Validation hook (before)
def validate_file_path(context):
if context.tool_name == "write_file":
file_path = context.tool_input.get("file_path", "")
if ".env" in file_path:
return False # Block sensitive files
return None
# Sanitization hook (after)
def sanitize_secrets(context):
if context.tool_result and "SECRET_KEY" in context.tool_result:
return context.tool_result.replace("SECRET_KEY=abc123", "SECRET_KEY=[REDACTED]")
return None
register_before_tool_call_hook(validate_file_path)
register_after_tool_call_hook(sanitize_secrets)
# Test blocking
blocked_context = ToolCallHookContext(
tool_name="write_file",
tool_input={"file_path": ".env"},
tool=mock_tool,
)
before_hooks = get_before_tool_call_hooks()
blocked = False
for hook in before_hooks:
if hook(blocked_context) is False:
blocked = True
break
assert blocked is True
# Test sanitization
sanitize_context = ToolCallHookContext(
tool_name="read_file",
tool_input={"file_path": "config.txt"},
tool=mock_tool,
tool_result="Content: SECRET_KEY=abc123",
)
after_hooks = get_after_tool_call_hooks()
result = sanitize_context.tool_result
for hook in after_hooks:
sanitize_context.tool_result = result
modified = hook(sanitize_context)
if modified is not None:
result = modified
assert "SECRET_KEY=[REDACTED]" in result
assert "abc123" not in result
def test_unregister_before_hook(self):
"""Test that before hooks can be unregistered."""
def test_hook(context):
pass
register_before_tool_call_hook(test_hook)
unregister_before_tool_call_hook(test_hook)
hooks = get_before_tool_call_hooks()
assert len(hooks) == 0
def test_unregister_after_hook(self):
"""Test that after hooks can be unregistered."""
def test_hook(context):
return None
register_after_tool_call_hook(test_hook)
unregister_after_tool_call_hook(test_hook)
hooks = get_after_tool_call_hooks()
assert len(hooks) == 0
def test_clear_all_tool_call_hooks(self):
"""Test that all tool call hooks can be cleared."""
def test_hook(context):
pass
register_before_tool_call_hook(test_hook)
register_after_tool_call_hook(test_hook)
clear_all_tool_call_hooks()
hooks = get_before_tool_call_hooks()
assert len(hooks) == 0

1
tests/hooks/__init__.py Normal file
View File

@@ -0,0 +1 @@
"""Tests for CrewAI hooks functionality."""