Files
crewAI/docs/pt-BR/learn/tool-hooks.mdx
Lorenze Jay 528d812263 Lorenze/feat hooks (#3902)
* feat: implement LLM call hooks and enhance agent execution context

- Introduced LLM call hooks to allow modification of messages and responses during LLM interactions.
- Added support for before and after hooks in the CrewAgentExecutor, enabling dynamic adjustments to the execution flow.
- Created LLMCallHookContext for comprehensive access to the executor state, facilitating in-place modifications.
- Added validation for hook callables to ensure proper functionality.
- Enhanced tests for LLM hooks and tool hooks to verify their behavior and error handling capabilities.
- Updated LiteAgent and CrewAgentExecutor to accommodate the new crew context in their execution processes.

* feat: implement LLM call hooks and enhance agent execution context

- Introduced LLM call hooks to allow modification of messages and responses during LLM interactions.
- Added support for before and after hooks in the CrewAgentExecutor, enabling dynamic adjustments to the execution flow.
- Created LLMCallHookContext for comprehensive access to the executor state, facilitating in-place modifications.
- Added validation for hook callables to ensure proper functionality.
- Enhanced tests for LLM hooks and tool hooks to verify their behavior and error handling capabilities.
- Updated LiteAgent and CrewAgentExecutor to accommodate the new crew context in their execution processes.

* fix verbose

* feat: introduce crew-scoped hook decorators and refactor hook registration

- Added decorators for before and after LLM and tool calls to enhance flexibility in modifying execution behavior.
- Implemented a centralized hook registration mechanism within CrewBase to automatically register crew-scoped hooks.
- Removed the obsolete base.py file as its functionality has been integrated into the new decorators and registration system.
- Enhanced tests for the new hook decorators to ensure proper registration and execution flow.
- Updated existing hook handling to accommodate the new decorator-based approach, improving code organization and maintainability.

* feat: enhance hook management with clear and unregister functions

- Introduced functions to unregister specific before and after hooks for both LLM and tool calls, improving flexibility in hook management.
- Added clear functions to remove all registered hooks of each type, facilitating easier state management and cleanup.
- Implemented a convenience function to clear all global hooks in one call, streamlining the process for testing and execution context resets.
- Enhanced tests to verify the functionality of unregistering and clearing hooks, ensuring robust behavior in various scenarios.

* refactor: enhance hook type management for LLM and tool hooks

- Updated hook type definitions to use generic protocols for better type safety and flexibility.
- Replaced Callable type annotations with specific BeforeLLMCallHookType and AfterLLMCallHookType for clarity.
- Improved the registration and retrieval functions for before and after hooks to align with the new type definitions.
- Enhanced the setup functions to handle hook execution results, allowing for blocking of LLM calls based on hook logic.
- Updated related tests to ensure proper functionality and type adherence across the hook management system.

* feat: add execution and tool hooks documentation

- Introduced new documentation for execution hooks, LLM call hooks, and tool call hooks to provide comprehensive guidance on their usage and implementation in CrewAI.
- Updated existing documentation to include references to the new hooks, enhancing the learning resources available for users.
- Ensured consistency across multiple languages (English, Portuguese, Korean) for the new documentation, improving accessibility for a wider audience.
- Added examples and troubleshooting sections to assist users in effectively utilizing hooks for agent operations.

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2025-11-13 10:11:50 -08:00

499 lines
16 KiB
Plaintext

---
title: Hooks de Chamada de Ferramenta
description: Aprenda a usar hooks de chamada de ferramenta para interceptar, modificar e controlar execução de ferramentas no CrewAI
mode: "wide"
---
Os Hooks de Chamada de Ferramenta fornecem controle fino sobre a execução de ferramentas durante operações do agente. Esses hooks permitem interceptar chamadas de ferramenta, modificar entradas, transformar saídas, implementar verificações de segurança e adicionar logging ou monitoramento abrangente.
## Visão Geral
Os hooks de ferramenta são executados em dois pontos críticos:
- **Antes da Chamada de Ferramenta**: Modificar entradas, validar parâmetros ou bloquear execução
- **Depois da Chamada de Ferramenta**: Transformar resultados, sanitizar saídas ou registrar detalhes de execução
## Tipos de Hook
### Hooks Antes da Chamada de Ferramenta
Executados antes de cada execução de ferramenta, esses hooks podem:
- Inspecionar e modificar entradas de ferramenta
- Bloquear execução de ferramenta com base em condições
- Implementar gates de aprovação para operações perigosas
- Validar parâmetros
- Registrar invocações de ferramenta
**Assinatura:**
```python
def before_hook(context: ToolCallHookContext) -> bool | None:
# Retorne False para bloquear execução
# Retorne True ou None para permitir execução
...
```
### Hooks Depois da Chamada de Ferramenta
Executados depois de cada execução de ferramenta, esses hooks podem:
- Modificar ou sanitizar resultados de ferramenta
- Adicionar metadados ou formatação
- Registrar resultados de execução
- Implementar validação de resultado
- Transformar formatos de saída
**Assinatura:**
```python
def after_hook(context: ToolCallHookContext) -> str | None:
# Retorne string de resultado modificado
# Retorne None para manter resultado original
...
```
## Contexto do Hook de Ferramenta
O objeto `ToolCallHookContext` fornece acesso abrangente ao estado de execução da ferramenta:
```python
class ToolCallHookContext:
tool_name: str # Nome da ferramenta sendo chamada
tool_input: dict[str, Any] # Parâmetros de entrada mutáveis da ferramenta
tool: CrewStructuredTool # Referência da instância da ferramenta
agent: Agent | BaseAgent | None # Agente executando a ferramenta
task: Task | None # Tarefa atual
crew: Crew | None # Instância da crew
tool_result: str | None # Resultado da ferramenta (apenas hooks posteriores)
```
### Modificando Entradas de Ferramenta
**Importante:** Sempre modifique entradas de ferramenta in-place:
```python
# ✅ Correto - modificar in-place
def sanitize_input(context: ToolCallHookContext) -> None:
context.tool_input['query'] = context.tool_input['query'].lower()
# ❌ Errado - substitui referência do dict
def wrong_approach(context: ToolCallHookContext) -> None:
context.tool_input = {'query': 'nova consulta'}
```
## Métodos de Registro
### 1. Registro Baseado em Decoradores (Recomendado)
Use decoradores para sintaxe mais limpa:
```python
from crewai.hooks import before_tool_call, after_tool_call
@before_tool_call
def block_dangerous_tools(context):
"""Bloqueia ferramentas perigosas."""
dangerous_tools = ['delete_database', 'drop_table', 'rm_rf']
if context.tool_name in dangerous_tools:
print(f"⛔ Ferramenta perigosa bloqueada: {context.tool_name}")
return False # Bloquear execução
return None
@after_tool_call
def sanitize_results(context):
"""Sanitiza resultados."""
if context.tool_result and "password" in context.tool_result.lower():
return context.tool_result.replace("password", "[CENSURADO]")
return None
```
### 2. Hooks com Escopo de Crew
Registre hooks para uma instância específica de crew:
```python
from crewai import CrewBase
from crewai.project import crew
from crewai.hooks import before_tool_call_crew, after_tool_call_crew
@CrewBase
class MyProjCrew:
@before_tool_call_crew
def validate_tool_inputs(self, context):
# Aplica-se apenas a esta crew
if context.tool_name == "web_search":
if not context.tool_input.get('query'):
print("❌ Consulta de busca inválida")
return False
return None
@after_tool_call_crew
def log_tool_results(self, context):
# Logging de ferramenta específico da crew
print(f"✅ {context.tool_name} concluída")
return None
@crew
def crew(self) -> Crew:
return Crew(
agents=self.agents,
tasks=self.tasks,
process=Process.sequential,
verbose=True
)
```
## Casos de Uso Comuns
### 1. Guardrails de Segurança
```python
@before_tool_call
def safety_check(context: ToolCallHookContext) -> bool | None:
"""Bloqueia ferramentas que podem causar danos."""
destructive_tools = [
'delete_file',
'drop_table',
'remove_user',
'system_shutdown'
]
if context.tool_name in destructive_tools:
print(f"🛑 Ferramenta destrutiva bloqueada: {context.tool_name}")
return False
# Avisar em operações sensíveis
sensitive_tools = ['send_email', 'post_to_social_media', 'charge_payment']
if context.tool_name in sensitive_tools:
print(f"⚠️ Executando ferramenta sensível: {context.tool_name}")
return None
```
### 2. Gate de Aprovação Humana
```python
@before_tool_call
def require_approval_for_actions(context: ToolCallHookContext) -> bool | None:
"""Requer aprovação para ações específicas."""
approval_required = [
'send_email',
'make_purchase',
'delete_file',
'post_message'
]
if context.tool_name in approval_required:
response = context.request_human_input(
prompt=f"Aprovar {context.tool_name}?",
default_message=f"Entrada: {context.tool_input}\nDigite 'sim' para aprovar:"
)
if response.lower() != 'sim':
print(f"❌ Execução de ferramenta negada: {context.tool_name}")
return False
return None
```
### 3. Validação e Sanitização de Entrada
```python
@before_tool_call
def validate_and_sanitize_inputs(context: ToolCallHookContext) -> bool | None:
"""Valida e sanitiza entradas."""
# Validar consultas de busca
if context.tool_name == 'web_search':
query = context.tool_input.get('query', '')
if len(query) < 3:
print("❌ Consulta de busca muito curta")
return False
# Sanitizar consulta
context.tool_input['query'] = query.strip().lower()
# Validar caminhos de arquivo
if context.tool_name == 'read_file':
path = context.tool_input.get('path', '')
if '..' in path or path.startswith('/'):
print("❌ Caminho de arquivo inválido")
return False
return None
```
### 4. Sanitização de Resultado
```python
@after_tool_call
def sanitize_sensitive_data(context: ToolCallHookContext) -> str | None:
"""Sanitiza dados sensíveis."""
if not context.tool_result:
return None
import re
result = context.tool_result
# Remover chaves de API
result = re.sub(
r'(api[_-]?key|token)["\']?\s*[:=]\s*["\']?[\w-]+',
r'\1: [CENSURADO]',
result,
flags=re.IGNORECASE
)
# Remover endereços de email
result = re.sub(
r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
'[EMAIL-CENSURADO]',
result
)
# Remover números de cartão de crédito
result = re.sub(
r'\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b',
'[CARTÃO-CENSURADO]',
result
)
return result
```
### 5. Análise de Uso de Ferramenta
```python
import time
from collections import defaultdict
tool_stats = defaultdict(lambda: {'count': 0, 'total_time': 0, 'failures': 0})
@before_tool_call
def start_timer(context: ToolCallHookContext) -> None:
context.tool_input['_start_time'] = time.time()
return None
@after_tool_call
def track_tool_usage(context: ToolCallHookContext) -> None:
start_time = context.tool_input.get('_start_time', time.time())
duration = time.time() - start_time
tool_stats[context.tool_name]['count'] += 1
tool_stats[context.tool_name]['total_time'] += duration
if not context.tool_result or 'error' in context.tool_result.lower():
tool_stats[context.tool_name]['failures'] += 1
print(f"""
📊 Estatísticas da Ferramenta {context.tool_name}:
- Execuções: {tool_stats[context.tool_name]['count']}
- Tempo Médio: {tool_stats[context.tool_name]['total_time'] / tool_stats[context.tool_name]['count']:.2f}s
- Falhas: {tool_stats[context.tool_name]['failures']}
""")
return None
```
### 6. Limitação de Taxa
```python
from collections import defaultdict
from datetime import datetime, timedelta
tool_call_history = defaultdict(list)
@before_tool_call
def rate_limit_tools(context: ToolCallHookContext) -> bool | None:
"""Limita taxa de chamadas de ferramenta."""
tool_name = context.tool_name
now = datetime.now()
# Limpar entradas antigas (mais antigas que 1 minuto)
tool_call_history[tool_name] = [
call_time for call_time in tool_call_history[tool_name]
if now - call_time < timedelta(minutes=1)
]
# Verificar limite de taxa (máximo 10 chamadas por minuto)
if len(tool_call_history[tool_name]) >= 10:
print(f"🚫 Limite de taxa excedido para {tool_name}")
return False
# Registrar esta chamada
tool_call_history[tool_name].append(now)
return None
```
### 7. Logging de Debug
```python
@before_tool_call
def debug_tool_call(context: ToolCallHookContext) -> None:
"""Debug de chamada de ferramenta."""
print(f"""
🔍 Debug de Chamada de Ferramenta:
- Ferramenta: {context.tool_name}
- Agente: {context.agent.role if context.agent else 'Desconhecido'}
- Tarefa: {context.task.description[:50] if context.task else 'Desconhecida'}...
- Entrada: {context.tool_input}
""")
return None
@after_tool_call
def debug_tool_result(context: ToolCallHookContext) -> None:
"""Debug de resultado de ferramenta."""
if context.tool_result:
result_preview = context.tool_result[:200]
print(f"✅ Preview do Resultado: {result_preview}...")
else:
print("⚠️ Nenhum resultado retornado")
return None
```
## Gerenciamento de Hooks
### Desregistrando Hooks
```python
from crewai.hooks import (
unregister_before_tool_call_hook,
unregister_after_tool_call_hook
)
# Desregistrar hook específico
def my_hook(context):
...
register_before_tool_call_hook(my_hook)
# Mais tarde...
success = unregister_before_tool_call_hook(my_hook)
print(f"Desregistrado: {success}")
```
### Limpando Hooks
```python
from crewai.hooks import (
clear_before_tool_call_hooks,
clear_after_tool_call_hooks,
clear_all_tool_call_hooks
)
# Limpar tipo específico de hook
count = clear_before_tool_call_hooks()
print(f"Limpou {count} hooks antes")
# Limpar todos os hooks de ferramenta
before_count, after_count = clear_all_tool_call_hooks()
print(f"Limpou {before_count} hooks antes e {after_count} hooks depois")
```
## Padrões Avançados
### Execução Condicional de Hook
```python
@before_tool_call
def conditional_blocking(context: ToolCallHookContext) -> bool | None:
"""Bloqueia apenas em condições específicas."""
# Bloquear apenas para agentes específicos
if context.agent and context.agent.role == "junior_agent":
if context.tool_name in ['delete_file', 'send_email']:
print(f"❌ Agentes júnior não podem usar {context.tool_name}")
return False
# Bloquear apenas durante tarefas específicas
if context.task and "sensível" in context.task.description.lower():
if context.tool_name == 'web_search':
print("❌ Busca na web bloqueada para tarefas sensíveis")
return False
return None
```
### Modificação de Entrada com Consciência de Contexto
```python
@before_tool_call
def enhance_tool_inputs(context: ToolCallHookContext) -> None:
"""Adiciona contexto baseado no papel do agente."""
# Adicionar contexto baseado no papel do agente
if context.agent and context.agent.role == "researcher":
if context.tool_name == 'web_search':
# Adicionar restrições de domínio para pesquisadores
context.tool_input['domains'] = ['edu', 'gov', 'org']
# Adicionar contexto baseado na tarefa
if context.task and "urgente" in context.task.description.lower():
if context.tool_name == 'send_email':
context.tool_input['priority'] = 'high'
return None
```
## Melhores Práticas
1. **Mantenha Hooks Focados**: Cada hook deve ter uma responsabilidade única
2. **Evite Computação Pesada**: Hooks executam em cada chamada de ferramenta
3. **Trate Erros Graciosamente**: Use try-except para prevenir falhas de hooks
4. **Use Type Hints**: Aproveite `ToolCallHookContext` para melhor suporte IDE
5. **Documente Condições de Bloqueio**: Deixe claro quando/por que ferramentas são bloqueadas
6. **Teste Hooks Independentemente**: Teste unitário de hooks antes de usar em produção
7. **Limpe Hooks em Testes**: Use `clear_all_tool_call_hooks()` entre execuções de teste
8. **Modifique In-Place**: Sempre modifique `context.tool_input` in-place, nunca substitua
9. **Registre Decisões Importantes**: Especialmente ao bloquear execução de ferramenta
10. **Considere Performance**: Cache validações caras quando possível
## Tratamento de Erros
```python
@before_tool_call
def safe_validation(context: ToolCallHookContext) -> bool | None:
try:
# Sua lógica de validação
if not validate_input(context.tool_input):
return False
except Exception as e:
print(f"⚠️ Erro no hook: {e}")
# Decida: permitir ou bloquear em erro
return None # Permitir execução apesar do erro
```
## Segurança de Tipos
```python
from crewai.hooks import ToolCallHookContext, BeforeToolCallHookType, AfterToolCallHookType
# Anotações de tipo explícitas
def my_before_hook(context: ToolCallHookContext) -> bool | None:
return None
def my_after_hook(context: ToolCallHookContext) -> str | None:
return None
# Registro type-safe
register_before_tool_call_hook(my_before_hook)
register_after_tool_call_hook(my_after_hook)
```
## Solução de Problemas
### Hook Não Está Executando
- Verifique se hook está registrado antes da execução da crew
- Verifique se hook anterior retornou `False` (bloqueia execução e hooks subsequentes)
- Garanta que assinatura do hook corresponda ao tipo esperado
### Modificações de Entrada Não Funcionam
- Use modificações in-place: `context.tool_input['key'] = value`
- Não substitua o dict: `context.tool_input = {}`
### Modificações de Resultado Não Funcionam
- Retorne a string modificada dos hooks posteriores
- Retornar `None` mantém o resultado original
- Garanta que a ferramenta realmente retornou um resultado
### Ferramenta Bloqueada Inesperadamente
- Verifique todos os hooks antes por condições de bloqueio
- Verifique ordem de execução do hook
- Adicione logging de debug para identificar qual hook está bloqueando
## Conclusão
Os Hooks de Chamada de Ferramenta fornecem capacidades poderosas para controlar e monitorar execução de ferramentas no CrewAI. Use-os para implementar guardrails de segurança, gates de aprovação, validação de entrada, sanitização de resultado, logging e análise. Combinados com tratamento adequado de erros e segurança de tipos, os hooks permitem sistemas de agentes seguros e prontos para produção com observabilidade abrangente.