docs: major docs updates (#2897)

This commit is contained in:
Tony Kipkemboi
2025-05-23 16:04:37 -04:00
committed by GitHub
parent be24559630
commit 2460f61d3e
111 changed files with 2952 additions and 1362 deletions

View File

@@ -0,0 +1,187 @@
---
title: Bedrock Invoke Agent Tool
description: Enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows
icon: aws
---
# `BedrockInvokeAgentTool`
The `BedrockInvokeAgentTool` enables CrewAI agents to invoke Amazon Bedrock Agents and leverage their capabilities within your workflows.
## Installation
```bash
uv pip install 'crewai[tools]'
```
## Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
- `boto3` and `python-dotenv` packages
- Access to Amazon Bedrock Agents
## Usage
Here's how to use the tool with a CrewAI agent:
```python {2, 4-8}
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize the tool
agent_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id"
)
# Create a CrewAI agent that uses the tool
aws_expert = Agent(
role='AWS Service Expert',
goal='Help users understand AWS services and quotas',
backstory='I am an expert in AWS services and can provide detailed information about them.',
tools=[agent_tool],
verbose=True
)
# Create a task for the agent
quota_task = Task(
description="Find out the current service quotas for EC2 in us-west-2 and explain any recent changes.",
agent=aws_expert
)
# Create a crew with the agent
crew = Crew(
agents=[aws_expert],
tasks=[quota_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|:---------|:-----|:---------|:--------|:------------|
| **agent_id** | `str` | Yes | None | The unique identifier of the Bedrock agent |
| **agent_alias_id** | `str` | Yes | None | The unique identifier of the agent alias |
| **session_id** | `str` | No | timestamp | The unique identifier of the session |
| **enable_trace** | `bool` | No | False | Whether to enable trace for debugging |
| **end_session** | `bool` | No | False | Whether to end the session after invocation |
| **description** | `str` | No | None | Custom description for the tool |
## Environment Variables
```bash
BEDROCK_AGENT_ID=your-agent-id # Alternative to passing agent_id
BEDROCK_AGENT_ALIAS_ID=your-agent-alias-id # Alternative to passing agent_alias_id
AWS_REGION=your-aws-region # Defaults to us-west-2
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
```
## Advanced Usage
### Multi-Agent Workflow with Session Management
```python {2, 4-22}
from crewai import Agent, Task, Crew, Process
from crewai_tools.aws.bedrock.agents.invoke_agent_tool import BedrockInvokeAgentTool
# Initialize tools with session management
initial_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
followup_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id"
)
final_tool = BedrockInvokeAgentTool(
agent_id="your-agent-id",
agent_alias_id="your-agent-alias-id",
session_id="custom-session-id",
end_session=True
)
# Create agents for different stages
researcher = Agent(
role='AWS Service Researcher',
goal='Gather information about AWS services',
backstory='I am specialized in finding detailed AWS service information.',
tools=[initial_tool]
)
analyst = Agent(
role='Service Compatibility Analyst',
goal='Analyze service compatibility and requirements',
backstory='I analyze AWS services for compatibility and integration possibilities.',
tools=[followup_tool]
)
summarizer = Agent(
role='Technical Documentation Writer',
goal='Create clear technical summaries',
backstory='I specialize in creating clear, concise technical documentation.',
tools=[final_tool]
)
# Create tasks
research_task = Task(
description="Find all available AWS services in us-west-2 region.",
agent=researcher
)
analysis_task = Task(
description="Analyze which services support IPv6 and their implementation requirements.",
agent=analyst
)
summary_task = Task(
description="Create a summary of IPv6-compatible services and their key features.",
agent=summarizer
)
# Create a crew with the agents and tasks
crew = Crew(
agents=[researcher, analyst, summarizer],
tasks=[research_task, analysis_task, summary_task],
process=Process.sequential,
verbose=2
)
# Run the crew
result = crew.kickoff()
```
## Use Cases
### Hybrid Multi-Agent Collaborations
- Create workflows where CrewAI agents collaborate with managed Bedrock agents running as services in AWS
- Enable scenarios where sensitive data processing happens within your AWS environment while other agents operate externally
- Bridge on-premises CrewAI agents with cloud-based Bedrock agents for distributed intelligence workflows
### Data Sovereignty and Compliance
- Keep data-sensitive agentic workflows within your AWS environment while allowing external CrewAI agents to orchestrate tasks
- Maintain compliance with data residency requirements by processing sensitive information only within your AWS account
- Enable secure multi-agent collaborations where some agents cannot access your organization's private data
### Seamless AWS Service Integration
- Access any AWS service through Amazon Bedrock Actions without writing complex integration code
- Enable CrewAI agents to interact with AWS services through natural language requests
- Leverage pre-built Bedrock agent capabilities to interact with AWS services like Bedrock Knowledge Bases, Lambda, and more
### Scalable Hybrid Agent Architectures
- Offload computationally intensive tasks to managed Bedrock agents while lightweight tasks run in CrewAI
- Scale agent processing by distributing workloads between local CrewAI agents and cloud-based Bedrock agents
### Cross-Organizational Agent Collaboration
- Enable secure collaboration between your organization's CrewAI agents and partner organizations' Bedrock agents
- Create workflows where external expertise from Bedrock agents can be incorporated without exposing sensitive data
- Build agent ecosystems that span organizational boundaries while maintaining security and data control

View File

@@ -0,0 +1,165 @@
---
title: 'Bedrock Knowledge Base Retriever'
description: 'Retrieve information from Amazon Bedrock Knowledge Bases using natural language queries'
icon: aws
---
# `BedrockKBRetrieverTool`
The `BedrockKBRetrieverTool` enables CrewAI agents to retrieve information from Amazon Bedrock Knowledge Bases using natural language queries.
## Installation
```bash
uv pip install 'crewai[tools]'
```
## Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
- `boto3` and `python-dotenv` packages
- Access to Amazon Bedrock Knowledge Base
## Usage
Here's how to use the tool with a CrewAI agent:
```python {2, 4-17}
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.knowledge_base.retriever_tool import BedrockKBRetrieverTool
# Initialize the tool
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
number_of_results=5
)
# Create a CrewAI agent that uses the tool
researcher = Agent(
role='Knowledge Base Researcher',
goal='Find information about company policies',
backstory='I am a researcher specialized in retrieving and analyzing company documentation.',
tools=[kb_tool],
verbose=True
)
# Create a task for the agent
research_task = Task(
description="Find our company's remote work policy and summarize the key points.",
agent=researcher
)
# Create a crew with the agent
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
```
## Tool Arguments
| Argument | Type | Required | Default | Description |
|:---------|:-----|:---------|:---------|:-------------|
| **knowledge_base_id** | `str` | Yes | None | The unique identifier of the knowledge base (0-10 alphanumeric characters) |
| **number_of_results** | `int` | No | 5 | Maximum number of results to return |
| **retrieval_configuration** | `dict` | No | None | Custom configurations for the knowledge base query |
| **guardrail_configuration** | `dict` | No | None | Content filtering settings |
| **next_token** | `str` | No | None | Token for pagination |
## Environment Variables
```bash
BEDROCK_KB_ID=your-knowledge-base-id # Alternative to passing knowledge_base_id
AWS_REGION=your-aws-region # Defaults to us-east-1
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
```
## Response Format
The tool returns results in JSON format:
```json
{
"results": [
{
"content": "Retrieved text content",
"content_type": "text",
"source_type": "S3",
"source_uri": "s3://bucket/document.pdf",
"score": 0.95,
"metadata": {
"additional": "metadata"
}
}
],
"nextToken": "pagination-token",
"guardrailAction": "NONE"
}
```
## Advanced Usage
### Custom Retrieval Configuration
```python
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
retrieval_configuration={
"vectorSearchConfiguration": {
"numberOfResults": 10,
"overrideSearchType": "HYBRID"
}
}
)
policy_expert = Agent(
role='Policy Expert',
goal='Analyze company policies in detail',
backstory='I am an expert in corporate policy analysis with deep knowledge of regulatory requirements.',
tools=[kb_tool]
)
```
## Supported Data Sources
- Amazon S3
- Confluence
- Salesforce
- SharePoint
- Web pages
- Custom document locations
- Amazon Kendra
- SQL databases
## Use Cases
### Enterprise Knowledge Integration
- Enable CrewAI agents to access your organization's proprietary knowledge without exposing sensitive data
- Allow agents to make decisions based on your company's specific policies, procedures, and documentation
- Create agents that can answer questions based on your internal documentation while maintaining data security
### Specialized Domain Knowledge
- Connect CrewAI agents to domain-specific knowledge bases (legal, medical, technical) without retraining models
- Leverage existing knowledge repositories that are already maintained in your AWS environment
- Combine CrewAI's reasoning with domain-specific information from your knowledge bases
### Data-Driven Decision Making
- Ground CrewAI agent responses in your actual company data rather than general knowledge
- Ensure agents provide recommendations based on your specific business context and documentation
- Reduce hallucinations by retrieving factual information from your knowledge bases
### Scalable Information Access
- Access terabytes of organizational knowledge without embedding it all into your models
- Dynamically query only the relevant information needed for specific tasks
- Leverage AWS's scalable infrastructure to handle large knowledge bases efficiently
### Compliance and Governance
- Ensure CrewAI agents provide responses that align with your company's approved documentation
- Create auditable trails of information sources used by your agents
- Maintain control over what information sources your agents can access

View File

@@ -0,0 +1,50 @@
---
title: "Overview"
description: "Interact with cloud services, storage systems, and cloud-based AI platforms"
icon: "face-smile"
---
These tools enable your agents to interact with cloud services, access cloud storage, and leverage cloud-based AI platforms for scalable operations.
## **Available Tools**
<CardGroup cols={2}>
<Card title="S3 Reader Tool" icon="cloud" href="/tools/cloud-storage/s3readertool">
Read files and data from Amazon S3 buckets.
</Card>
<Card title="S3 Writer Tool" icon="cloud-arrow-up" href="/tools/cloud-storage/s3writertool">
Write and upload files to Amazon S3 storage.
</Card>
<Card title="Bedrock Invoke Agent" icon="aws" href="/tools/cloud-storage/bedrockinvokeagenttool">
Invoke Amazon Bedrock agents for AI-powered tasks.
</Card>
<Card title="Bedrock KB Retriever" icon="database" href="/tools/cloud-storage/bedrockkbretriever">
Retrieve information from Amazon Bedrock knowledge bases.
</Card>
</CardGroup>
## **Common Use Cases**
- **File Storage**: Store and retrieve files from cloud storage systems
- **Data Backup**: Backup important data to cloud storage
- **AI Services**: Access cloud-based AI models and services
- **Knowledge Retrieval**: Query cloud-hosted knowledge bases
- **Scalable Operations**: Leverage cloud infrastructure for processing
```python
from crewai_tools import S3ReaderTool, S3WriterTool, BedrockInvokeAgentTool
# Create cloud tools
s3_reader = S3ReaderTool()
s3_writer = S3WriterTool()
bedrock_agent = BedrockInvokeAgentTool()
# Add to your agent
agent = Agent(
role="Cloud Operations Specialist",
tools=[s3_reader, s3_writer, bedrock_agent],
goal="Manage cloud resources and AI services"
)

View File

@@ -0,0 +1,144 @@
---
title: S3 Reader Tool
description: The `S3ReaderTool` enables CrewAI agents to read files from Amazon S3 buckets.
icon: aws
---
# `S3ReaderTool`
## Description
The `S3ReaderTool` is designed to read files from Amazon S3 buckets. This tool allows CrewAI agents to access and retrieve content stored in S3, making it ideal for workflows that require reading data, configuration files, or any other content stored in AWS S3 storage.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add boto3
```
## Steps to Get Started
To effectively use the `S3ReaderTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using the command above.
2. **Configure AWS Credentials**: Set up your AWS credentials as environment variables.
3. **Initialize the Tool**: Create an instance of the tool.
4. **Specify S3 Path**: Provide the S3 path to the file you want to read.
## Example
The following example demonstrates how to use the `S3ReaderTool` to read a file from an S3 bucket:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools.aws.s3 import S3ReaderTool
# Initialize the tool
s3_reader_tool = S3ReaderTool()
# Define an agent that uses the tool
file_reader_agent = Agent(
role="File Reader",
goal="Read files from S3 buckets",
backstory="An expert in retrieving and processing files from cloud storage.",
tools=[s3_reader_tool],
verbose=True,
)
# Example task to read a configuration file
read_task = Task(
description="Read the configuration file from {my_bucket} and summarize its contents.",
expected_output="A summary of the configuration file contents.",
agent=file_reader_agent,
)
# Create and run the crew
crew = Crew(agents=[file_reader_agent], tasks=[read_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/config/app-config.json"})
```
## Parameters
The `S3ReaderTool` accepts the following parameter when used by an agent:
- **file_path**: Required. The S3 file path in the format `s3://bucket-name/file-name`.
## AWS Credentials
The tool requires AWS credentials to access S3 buckets. You can configure these credentials using environment variables:
- **CREW_AWS_REGION**: The AWS region where your S3 bucket is located. Default is `us-east-1`.
- **CREW_AWS_ACCESS_KEY_ID**: Your AWS access key ID.
- **CREW_AWS_SEC_ACCESS_KEY**: Your AWS secret access key.
## Usage
When using the `S3ReaderTool` with an agent, the agent will need to provide the S3 file path:
```python Code
# Example of using the tool with an agent
file_reader_agent = Agent(
role="File Reader",
goal="Read files from S3 buckets",
backstory="An expert in retrieving and processing files from cloud storage.",
tools=[s3_reader_tool],
verbose=True,
)
# Create a task for the agent to read a specific file
read_config_task = Task(
description="Read the application configuration file from {my_bucket} and extract the database connection settings.",
expected_output="The database connection settings from the configuration file.",
agent=file_reader_agent,
)
# Run the task
crew = Crew(agents=[file_reader_agent], tasks=[read_config_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/config/app-config.json"})
```
## Error Handling
The `S3ReaderTool` includes error handling for common S3 issues:
- Invalid S3 path format
- Missing or inaccessible files
- Permission issues
- AWS credential problems
When an error occurs, the tool will return an error message that includes details about the issue.
## Implementation Details
The `S3ReaderTool` uses the AWS SDK for Python (boto3) to interact with S3:
```python Code
class S3ReaderTool(BaseTool):
name: str = "S3 Reader Tool"
description: str = "Reads a file from Amazon S3 given an S3 file path"
def _run(self, file_path: str) -> str:
try:
bucket_name, object_key = self._parse_s3_path(file_path)
s3 = boto3.client(
's3',
region_name=os.getenv('CREW_AWS_REGION', 'us-east-1'),
aws_access_key_id=os.getenv('CREW_AWS_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('CREW_AWS_SEC_ACCESS_KEY')
)
# Read file content from S3
response = s3.get_object(Bucket=bucket_name, Key=object_key)
file_content = response['Body'].read().decode('utf-8')
return file_content
except ClientError as e:
return f"Error reading file from S3: {str(e)}"
```
## Conclusion
The `S3ReaderTool` provides a straightforward way to read files from Amazon S3 buckets. By enabling agents to access content stored in S3, it facilitates workflows that require cloud-based file access. This tool is particularly useful for data processing, configuration management, and any task that involves retrieving information from AWS S3 storage.

View File

@@ -0,0 +1,150 @@
---
title: S3 Writer Tool
description: The `S3WriterTool` enables CrewAI agents to write content to files in Amazon S3 buckets.
icon: aws
---
# `S3WriterTool`
## Description
The `S3WriterTool` is designed to write content to files in Amazon S3 buckets. This tool allows CrewAI agents to create or update files in S3, making it ideal for workflows that require storing data, saving configuration files, or persisting any other content to AWS S3 storage.
## Installation
To use this tool, you need to install the required dependencies:
```shell
uv add boto3
```
## Steps to Get Started
To effectively use the `S3WriterTool`, follow these steps:
1. **Install Dependencies**: Install the required packages using the command above.
2. **Configure AWS Credentials**: Set up your AWS credentials as environment variables.
3. **Initialize the Tool**: Create an instance of the tool.
4. **Specify S3 Path and Content**: Provide the S3 path where you want to write the file and the content to be written.
## Example
The following example demonstrates how to use the `S3WriterTool` to write content to a file in an S3 bucket:
```python Code
from crewai import Agent, Task, Crew
from crewai_tools.aws.s3 import S3WriterTool
# Initialize the tool
s3_writer_tool = S3WriterTool()
# Define an agent that uses the tool
file_writer_agent = Agent(
role="File Writer",
goal="Write content to files in S3 buckets",
backstory="An expert in storing and managing files in cloud storage.",
tools=[s3_writer_tool],
verbose=True,
)
# Example task to write a report
write_task = Task(
description="Generate a summary report of the quarterly sales data and save it to {my_bucket}.",
expected_output="Confirmation that the report was successfully saved to S3.",
agent=file_writer_agent,
)
# Create and run the crew
crew = Crew(agents=[file_writer_agent], tasks=[write_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/reports/quarterly-summary.txt"})
```
## Parameters
The `S3WriterTool` accepts the following parameters when used by an agent:
- **file_path**: Required. The S3 file path in the format `s3://bucket-name/file-name`.
- **content**: Required. The content to write to the file.
## AWS Credentials
The tool requires AWS credentials to access S3 buckets. You can configure these credentials using environment variables:
- **CREW_AWS_REGION**: The AWS region where your S3 bucket is located. Default is `us-east-1`.
- **CREW_AWS_ACCESS_KEY_ID**: Your AWS access key ID.
- **CREW_AWS_SEC_ACCESS_KEY**: Your AWS secret access key.
## Usage
When using the `S3WriterTool` with an agent, the agent will need to provide both the S3 file path and the content to write:
```python Code
# Example of using the tool with an agent
file_writer_agent = Agent(
role="File Writer",
goal="Write content to files in S3 buckets",
backstory="An expert in storing and managing files in cloud storage.",
tools=[s3_writer_tool],
verbose=True,
)
# Create a task for the agent to write a specific file
write_config_task = Task(
description="""
Create a configuration file with the following database settings:
- host: db.example.com
- port: 5432
- username: app_user
- password: secure_password
Save this configuration as JSON to {my_bucket}.
""",
expected_output="Confirmation that the configuration file was successfully saved to S3.",
agent=file_writer_agent,
)
# Run the task
crew = Crew(agents=[file_writer_agent], tasks=[write_config_task])
result = crew.kickoff(inputs={"my_bucket": "s3://my-bucket/config/db-config.json"})
```
## Error Handling
The `S3WriterTool` includes error handling for common S3 issues:
- Invalid S3 path format
- Permission issues (e.g., no write access to the bucket)
- AWS credential problems
- Bucket does not exist
When an error occurs, the tool will return an error message that includes details about the issue.
## Implementation Details
The `S3WriterTool` uses the AWS SDK for Python (boto3) to interact with S3:
```python Code
class S3WriterTool(BaseTool):
name: str = "S3 Writer Tool"
description: str = "Writes content to a file in Amazon S3 given an S3 file path"
def _run(self, file_path: str, content: str) -> str:
try:
bucket_name, object_key = self._parse_s3_path(file_path)
s3 = boto3.client(
's3',
region_name=os.getenv('CREW_AWS_REGION', 'us-east-1'),
aws_access_key_id=os.getenv('CREW_AWS_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('CREW_AWS_SEC_ACCESS_KEY')
)
s3.put_object(Bucket=bucket_name, Key=object_key, Body=content.encode('utf-8'))
return f"Successfully wrote content to {file_path}"
except ClientError as e:
return f"Error writing file to S3: {str(e)}"
```
## Conclusion
The `S3WriterTool` provides a straightforward way to write content to files in Amazon S3 buckets. By enabling agents to create and update files in S3, it facilitates workflows that require cloud-based file storage. This tool is particularly useful for data persistence, configuration management, report generation, and any task that involves storing information in AWS S3 storage.