Enhance BaseLLM documentation and add model parameter validation

Co-Authored-By: Joe Moura <joao@crewai.com>
This commit is contained in:
Devin AI
2025-05-19 14:53:18 +00:00
parent 8c4f6e3db9
commit 2266980274
2 changed files with 58 additions and 8 deletions

View File

@@ -18,6 +18,15 @@ To create a custom LLM implementation, you need to:
- `get_context_window_size()`: The context window size of the LLM
3. Ensure you pass a model identifier string to the BaseLLM constructor using `super().__init__(model="your-model-name")`
## Required Parameters
When creating custom LLM implementations, the following parameters are essential:
- `model`: String identifier for your model implementation.
- Required in the BaseLLM constructor
- Example values: `"gpt-4-custom"`, `"anthropic-claude-custom"`, `"custom-llm-v1.0"`
- Used to identify the model in logs, metrics, and other components
## Example: Basic Custom LLM
```python
@@ -25,8 +34,14 @@ from crewai import BaseLLM
from typing import Any, Dict, List, Optional, Union
class CustomLLM(BaseLLM):
"""A custom LLM implementation with basic API key authentication.
Args:
api_key (str): API key for the LLM service.
endpoint (str): Endpoint URL for the LLM service.
"""
def __init__(self, api_key: str, endpoint: str):
super().__init__(model="custom-model") # Initialize with required model parameter
super().__init__(model="custom-llm-v1.0") # Initialize with required model parameter
if not api_key or not isinstance(api_key, str):
raise ValueError("Invalid API key: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
@@ -196,7 +211,7 @@ Always validate input parameters to prevent runtime errors:
```python
def __init__(self, api_key: str, endpoint: str):
super().__init__(model="custom-model") # Initialize with required model parameter
super().__init__(model="custom-api-llm-v1.0") # Initialize with required model parameter
if not api_key or not isinstance(api_key, str):
raise ValueError("Invalid API key: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
@@ -239,8 +254,14 @@ from crewai import BaseLLM, Agent, Task
from typing import Any, Dict, List, Optional, Union
class JWTAuthLLM(BaseLLM):
"""A custom LLM implementation with JWT-based authentication.
Args:
jwt_token (str): JWT token for authentication.
endpoint (str): Endpoint URL for the LLM service.
"""
def __init__(self, jwt_token: str, endpoint: str):
super().__init__(model="custom-jwt-model") # Initialize with required model parameter
super().__init__(model="jwt-auth-llm-v1.0") # Initialize with required model parameter
if not jwt_token or not isinstance(jwt_token, str):
raise ValueError("Invalid JWT token: must be a non-empty string")
if not endpoint or not isinstance(endpoint, str):
@@ -387,8 +408,14 @@ import logging
from typing import Any, Dict, List, Optional, Union
class LoggingLLM(BaseLLM):
"""A custom LLM implementation with logging capabilities.
Args:
api_key (str): API key for the LLM service.
endpoint (str): Endpoint URL for the LLM service.
"""
def __init__(self, api_key: str, endpoint: str):
super().__init__(model="custom-logging-model") # Initialize with required model parameter
super().__init__(model="logging-llm-v1.0") # Initialize with required model parameter
self.api_key = api_key
self.endpoint = endpoint
self.logger = logging.getLogger("crewai.llm.custom")
@@ -420,13 +447,21 @@ import time
from typing import Any, Dict, List, Optional, Union
class RateLimitedLLM(BaseLLM):
"""A custom LLM implementation with rate limiting capabilities.
Args:
api_key (str): API key for the LLM service.
endpoint (str): Endpoint URL for the LLM service.
requests_per_minute (int, optional): Maximum number of requests allowed per minute.
Defaults to 60.
"""
def __init__(
self,
api_key: str,
endpoint: str,
requests_per_minute: int = 60
):
super().__init__(model="custom-rate-limited-model") # Initialize with required model parameter
super().__init__(model="rate-limited-llm-v1.0") # Initialize with required model parameter
self.api_key = api_key
self.endpoint = endpoint
self.requests_per_minute = requests_per_minute
@@ -468,8 +503,14 @@ import time
from typing import Any, Dict, List, Optional, Union
class MetricsCollectingLLM(BaseLLM):
"""A custom LLM implementation with metrics collection capabilities.
Args:
api_key (str): API key for the LLM service.
endpoint (str): Endpoint URL for the LLM service.
"""
def __init__(self, api_key: str, endpoint: str):
super().__init__(model="custom-metrics-model") # Initialize with required model parameter
super().__init__(model="metrics-llm-v1.0") # Initialize with required model parameter
self.api_key = api_key
self.endpoint = endpoint
self.metrics: Dict[str, Any] = {

View File

@@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional, Union
from typing import Any, Dict, List, Optional, Union
class BaseLLM(ABC):
@@ -27,7 +27,7 @@ class BaseLLM(ABC):
self,
model: str,
temperature: Optional[float] = None,
):
) -> None:
"""Initialize the BaseLLM with default attributes.
This constructor sets default values for attributes that are expected
@@ -36,7 +36,16 @@ class BaseLLM(ABC):
All custom LLM implementations should call super().__init__(model="model_name"),
where "model_name" is a string identifier for your model. This parameter
is required and cannot be omitted.
Args:
model (str): Required. A string identifier for the model.
temperature (Optional[float]): The sampling temperature to use.
Raises:
ValueError: If the model parameter is not provided or empty.
"""
if not model:
raise ValueError("model parameter is required and must be a non-empty string")
self.model = model
self.temperature = temperature
self.stop = []