Merge pull request #155 from juliette0704/feat/add_linkup_tool

add linkup tool
This commit is contained in:
João Moura
2024-12-29 12:21:00 -03:00
committed by GitHub
5 changed files with 136 additions and 0 deletions

View File

@@ -17,6 +17,7 @@ from .tools import (
FirecrawlSearchTool,
GithubSearchTool,
JSONSearchTool,
LinkupSearchTool,
LlamaIndexTool,
MDXSearchTool,
MultiOnTool,

View File

@@ -20,6 +20,7 @@ from .firecrawl_scrape_website_tool.firecrawl_scrape_website_tool import (
from .firecrawl_search_tool.firecrawl_search_tool import FirecrawlSearchTool
from .github_search_tool.github_search_tool import GithubSearchTool
from .json_search_tool.json_search_tool import JSONSearchTool
from .linkup_search_tool.linkup_search_tool import LinkupSearchTool
from .llamaindex_tool.llamaindex_tool import LlamaIndexTool
from .mdx_seach_tool.mdx_search_tool import MDXSearchTool
from .multion_tool.multion_tool import MultiOnTool

View File

@@ -0,0 +1,98 @@
# Linkup Search Tool
## Description
The `LinkupSearchTool` is a tool designed for integration with the CrewAI framework. It provides the ability to query the Linkup API for contextual information and retrieve structured results. This tool is ideal for enriching workflows with up-to-date and reliable information from Linkup.
---
## Features
- Perform API queries to the Linkup platform using customizable parameters (`query`, `depth`, `output_type`).
- Gracefully handles API errors and provides structured feedback.
- Returns well-structured results for seamless integration into CrewAI processes.
---
## Installation
### Prerequisites
- Linkup API Key
### Steps
1. ```shell
pip install 'crewai[tools]'
```
2. Create a `.env` file in your project root and add your Linkup API Key:
```plaintext
LINKUP_API_KEY=your_linkup_api_key
```
---
## Usage
### Basic Example
Here is how to use the `LinkupSearchTool` in a CrewAI project:
1. **Import and Initialize**:
```python
from tools.linkup_tools import LinkupSearchTool
import os
from dotenv import load_dotenv
load_dotenv()
linkup_tool = LinkupSearchTool(api_key=os.getenv("LINKUP_API_KEY"))
```
2. **Set Up an Agent and Task**:
```python
from crewai import Agent, Task, Crew
# Define the agent
research_agent = Agent(
role="Information Researcher",
goal="Fetch relevant results from Linkup.",
backstory="An expert in online information retrieval...",
tools=[linkup_tool],
verbose=True
)
# Define the task
search_task = Task(
expected_output="A detailed list of Nobel Prize-winning women in physics with their achievements.",
description="Search for women who have won the Nobel Prize in Physics.",
agent=research_agent
)
# Create and run the crew
crew = Crew(
agents=[research_agent],
tasks=[search_task]
)
result = crew.kickoff()
print(result)
```
### Advanced Configuration
You can customize the parameters for the `LinkupSearchTool`:
- `query`: The search term or phrase.
- `depth`: The search depth (`"standard"` by default).
- `output_type`: The type of output (`"searchResults"` by default).
Example:
```python
response = linkup_tool._run(
query="Women Nobel Prize Physics",
depth="standard",
output_type="searchResults"
)
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -0,0 +1,36 @@
from linkup import LinkupClient
from pydantic import PrivateAttr
class LinkupSearchTool:
name: str = "Linkup Search Tool"
description: str = "Performs an API call to Linkup to retrieve contextual information."
_client: LinkupClient = PrivateAttr()
def __init__(self, api_key: str):
"""
Initialize the tool with an API key.
"""
self._client = LinkupClient(api_key=api_key)
def _run(self, query: str, depth: str = "standard", output_type: str = "searchResults") -> dict:
"""
Executes a search using the Linkup API.
:param query: The query to search for.
:param depth: Search depth (default is "standard").
:param output_type: Desired result type (default is "searchResults").
:return: A dictionary containing the results or an error message.
"""
try:
response = self._client.search(
query=query,
depth=depth,
output_type=output_type
)
results = [
{"name": result.name, "url": result.url, "content": result.content}
for result in response.results
]
return {"success": True, "results": results}
except Exception as e:
return {"success": False, "error": str(e)}