* initial knowledge

* WIP

* Adding core knowledge sources

* Improve types and better support for file paths

* added additional sources

* fix linting

* update yaml to include optional deps

* adding in lorenze feedback

* ensure embeddings are persisted

* improvements all around Knowledge class

* return this

* properly reset memory

* properly reset memory+knowledge

* consolodation and improvements

* linted

* cleanup rm unused embedder

* fix test

* fix duplicate

* generating cassettes for knowledge test

* updated default embedder

* None embedder to use default on pipeline cloning

* improvements

* fixed text_file_knowledge

* mypysrc fixes

* type check fixes

* added extra cassette

* just mocks

* linted

* mock knowledge query to not spin up db

* linted

* verbose run

* put a flag

* fix

* adding docs

* better docs

* improvements from review

* more docs

* linted

* rm print

* more fixes

* clearer docs

* added docstrings and type hints for cli

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
This commit is contained in:
Brandon Hancock (bhancock_ai)
2024-11-20 18:40:08 -05:00
committed by GitHub
parent fde1ee45f9
commit 14a36d3f5e
37 changed files with 2302 additions and 266 deletions

View File

@@ -10,10 +10,11 @@ from crewai import Agent, Crew, Task
from crewai.agents.cache import CacheHandler
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.agents.parser import AgentAction, CrewAgentParser, OutputParserException
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.llm import LLM
from crewai.tools import tool
from crewai.tools.tool_calling import InstructorToolCalling
from crewai.tools.tool_usage import ToolUsage
from crewai.tools import tool
from crewai.tools.tool_usage_events import ToolUsageFinished
from crewai.utilities import RPMController
from crewai.utilities.events import Emitter
@@ -1574,3 +1575,42 @@ def test_agent_execute_task_with_ollama():
result = agent.execute_task(task)
assert len(result.split(".")) == 2
assert "AI" in result or "artificial intelligence" in result.lower()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_with_knowledge_sources():
# Create a knowledge source with some content
content = "Brandon's favorite color is blue and he likes Mexican food."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
with patch('crewai.knowledge.storage.knowledge_storage.KnowledgeStorage') as MockKnowledge:
mock_knowledge_instance = MockKnowledge.return_value
mock_knowledge_instance.sources = [string_source]
mock_knowledge_instance.query.return_value = [{
"content": content,
"metadata": {"preference": "personal"}
}]
agent = Agent(
role="Information Agent",
goal="Provide information based on knowledge sources",
backstory="You have access to specific knowledge sources.",
llm=LLM(model="gpt-4o-mini"),
)
# Create a task that requires the agent to use the knowledge
task = Task(
description="What is Brandon's favorite color?",
expected_output="Brandon's favorite color.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Assert that the agent provides the correct information
assert "blue" in result.raw.lower()

View File

@@ -0,0 +1,115 @@
interactions:
- request:
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
You have access to specific knowledge sources.\nYour personal goal is: Provide
information based on knowledge sources\nTo give my best complete final answer
to the task use the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: What is Brandon''s
favorite color?\n\nThis is the expect criteria for your final answer: Brandon''s
favorite color.\nyou MUST return the actual complete content as the final answer,
not a summary.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"], "stream": false}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '931'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.52.1
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.52.1
x-stainless-raw-response:
- 'true'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.11.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSQW7bMBC86xULXnqxAtmxI1e3FEWBtJekCXJpC4GmVhIdapcgqbhN4L8HlB1L
QVOgFwGa2RnOLPmcAAhdiQKEamVQnTXp5f3d9lsdbndh++C+757Or6/bm6uvn59WH/FGzKKCN1tU
4VV1prizBoNmOtDKoQwYXef5+SK7WK3ny4HouEITZY0N6ZLTTpNOF9limWZ5Ol8f1S1rhV4U8CMB
AHgevjEnVfhbFJDNXpEOvZcNiuI0BCAcm4gI6b32QVIQs5FUTAFpiH4FxDtQkqDRjwgSmhgbJPkd
OoCf9EWTNHA5/BfwyUmqmD54qOUjOx0QFBt2oD1sTI9n02Mc1r2XsSr1xhzx/Sm34cY63vgjf8Jr
Tdq3pUPpmWJGH9iKgd0nAL+G/fRvKgvruLOhDPyAFA3nF/nBT4zXMmHXRzJwkGaKr2bv+JUVBqmN
n2xYKKlarEbpeB2yrzRPiGTS+u8073kfmmtq/sd+JJRCG7AqrcNKq7eNxzGH8dX+a+y05SGw8H98
wK6sNTXorNOHN1PbMsuz1aZe5yoTyT55AQAA//8DAPaYLdRBAwAA
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 8e54a2a7d81467f7-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 20 Nov 2024 01:23:34 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=DoHo1Z11nN9bxkwZmJGnaxRhyrWE0UfyimYuUVRU6A4-1732065814-1.0.1.1-JVRvFrIJLHEq9OaFQS0qcgYcawE7t2XQ4Tpqd58n2Yfx3mvEqD34MJmooi1LtvdvjB2J8x1Rs.rCdXD.msLlKw;
path=/; expires=Wed, 20-Nov-24 01:53:34 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=n3RrNhFMqC3HtJ7n3e3agyxnM1YOQ6eKESz_eeXLtZA-1732065814630-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '344'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999790'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_8f1622677c64913753a595f679596614
status:
code: 200
message: OK
version: 1

View File

@@ -0,0 +1,232 @@
interactions:
- request:
body: !!binary |
Cv1YCiQKIgoMc2VydmljZS5uYW1lEhIKEGNyZXdBSS10ZWxlbWV0cnkS1FgKEgoQY3Jld2FpLnRl
bGVtZXRyeRLADQoQ5TzgW9QzcBbzMl1hJozLcxIIl3adf7U81wwqDENyZXcgQ3JlYXRlZDABOaAJ
txhffgkYQfiVuRhffgkYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVy
c2lvbhIICgYzLjEyLjVKLgoIY3Jld19rZXkSIgogM2Y4ZDVjM2FiODgyZDY4NjlkOTNjYjgxZjBl
MmVkNGFKMQoHY3Jld19pZBImCiRjYjRiY2Q1Zi0xYWJkLTQyYmYtOGQ1OC02ZmEzMDU3ZDFjOTZK
HAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdf
bnVtYmVyX29mX3Rhc2tzEgIYA0obChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSpIFCgtjcmV3
X2FnZW50cxKCBQr/BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIs
ICJpZCI6ICI1ZThjNTM1MS1jNWVlLTRhZGUtODY5MC1kM2RhOWI1NzI5YzciLCAicm9sZSI6ICJS
ZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6
IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwg
ImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZh
bHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5
YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICJhMTcwODczOC0yYWE2LTRk
ZmYtODFlNy00OGFkMDNjNWFjY2QiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/
IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxs
aW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8i
OiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0
IjogMiwgInRvb2xzX25hbWVzIjogW119XUrbBQoKY3Jld190YXNrcxLMBQrJBVt7ImtleSI6ICI2
Nzg0OWZmNzE3ZGJhZGFiYTFiOTVkNWYyZGZjZWVhMSIsICJpZCI6ICIyNzkxNTMxMy0wNDBhLTRk
ZWItOTVkMy1mNWVmMzg2Mjk3NTEiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IHRydWUsICJodW1hbl9p
bnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAi
OGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsi
a2V5IjogImZjNTZkZWEzOGM5OTc0YjZmNTVhMmUyOGMxNDk5ODg2IiwgImlkIjogIjc3NzQ3MmVl
LWYzNzAtNDQyZS05NWMyLWVlMGVkYzZiMTgyZiIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2Us
ICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2Vu
dF9rZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMi
OiBbXX0sIHsia2V5IjogIjk0YTgyNmMxOTMwNTU5Njg2YmFmYjQwOWVlODM4NzZmIiwgImlkIjog
ImM4OWEzODA2LTg5MDItNGQ2My1iYzA0LTdjMzRhZTJmM2UxNyIsICJhc3luY19leGVjdXRpb24/
IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiU2VuaW9yIFdy
aXRlciIsICJhZ2VudF9rZXkiOiAiOWE1MDE1ZWY0ODk1ZGM2Mjc4ZDU0ODE4YmE0NDZhZjciLCAi
dG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQSqupTllrk2mxgu2AqenZUhIIspWxig2+
1M0qDFRhc2sgQ3JlYXRlZDABOcCj1BhffgkYQfhq1RhffgkYSi4KCGNyZXdfa2V5EiIKIDNmOGQ1
YzNhYjg4MmQ2ODY5ZDkzY2I4MWYwZTJlZDRhSjEKB2NyZXdfaWQSJgokY2I0YmNkNWYtMWFiZC00
MmJmLThkNTgtNmZhMzA1N2QxYzk2Si4KCHRhc2tfa2V5EiIKIDY3ODQ5ZmY3MTdkYmFkYWJhMWI5
NWQ1ZjJkZmNlZWExSjEKB3Rhc2tfaWQSJgokMjc5MTUzMTMtMDQwYS00ZGViLTk1ZDMtZjVlZjM4
NjI5NzUxegIYAYUBAAEAABKOAgoQ3dJesXQA5ISCqVgmwvBMgRIIdrWBiVQuihcqDFRhc2sgQ3Jl
YXRlZDABOdjAch1ffgkYQVh8cx1ffgkYSi4KCGNyZXdfa2V5EiIKIDNmOGQ1YzNhYjg4MmQ2ODY5
ZDkzY2I4MWYwZTJlZDRhSjEKB2NyZXdfaWQSJgokY2I0YmNkNWYtMWFiZC00MmJmLThkNTgtNmZh
MzA1N2QxYzk2Si4KCHRhc2tfa2V5EiIKIGZjNTZkZWEzOGM5OTc0YjZmNTVhMmUyOGMxNDk5ODg2
SjEKB3Rhc2tfaWQSJgokNzc3NDcyZWUtZjM3MC00NDJlLTk1YzItZWUwZWRjNmIxODJmegIYAYUB
AAEAABKOAgoQCBmV+4VbArZNiL5MaefbahII1fRxaC46KKgqDFRhc2sgQ3JlYXRlZDABOaDs4SNf
fgkYQai74iNffgkYSi4KCGNyZXdfa2V5EiIKIDNmOGQ1YzNhYjg4MmQ2ODY5ZDkzY2I4MWYwZTJl
ZDRhSjEKB2NyZXdfaWQSJgokY2I0YmNkNWYtMWFiZC00MmJmLThkNTgtNmZhMzA1N2QxYzk2Si4K
CHRhc2tfa2V5EiIKIDk0YTgyNmMxOTMwNTU5Njg2YmFmYjQwOWVlODM4NzZmSjEKB3Rhc2tfaWQS
JgokYzg5YTM4MDYtODkwMi00ZDYzLWJjMDQtN2MzNGFlMmYzZTE3egIYAYUBAAEAABKiBwoQhITI
U8q3JLgneRv1MZQY8RIIF2CpEmiZsP4qDENyZXcgQ3JlYXRlZDABOZDBCytffgkYQTDFDStffgkY
ShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVyc2lvbhIICgYzLjEyLjVK
LgoIY3Jld19rZXkSIgogYTljYzVkNDMzOTViMjFiMTgxYzgwYmQ0MzUxY2NlYzhKMQoHY3Jld19p
ZBImCiQ2MTMwMWVmYS0yOGQ4LTQyNTItOWVjNi1iM2JmZDcyMWM0MzVKHAoMY3Jld19wcm9jZXNz
EgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tz
EgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgBStECCgtjcmV3X2FnZW50cxLBAgq+Alt7
ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6ICI3NWRjOTUw
OS02MjQ4LTQ0YWQtYTExZC1iZjdlZWVhOWI0NTQiLCAicm9sZSI6ICJSZXNlYXJjaGVyIiwgInZl
cmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlv
bl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5h
YmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5
X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUr+AQoKY3Jld190YXNrcxLvAQrsAVt7Imtl
eSI6ICJlOWU2YjcyYWFjMzI2NDU5ZGQ3MDY4ZjBiMTcxN2MxYyIsICJpZCI6ICIxOTBlMGQ1Zi0y
NDg1LTQ3N2ItYWIxNC1kMTlmNDE5YTFlYjQiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IHRydWUsICJo
dW1hbl9pbnB1dD8iOiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9r
ZXkiOiAiOGJkMjEzOWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMiOiBb
XX1degIYAYUBAAEAABKOAgoQxgDNe1lQGKnixKPk3O1TDBIISyqKkjcA7OYqDFRhc2sgQ3JlYXRl
ZDABOfCYJCtffgkYQZAlJStffgkYSi4KCGNyZXdfa2V5EiIKIGE5Y2M1ZDQzMzk1YjIxYjE4MWM4
MGJkNDM1MWNjZWM4SjEKB2NyZXdfaWQSJgokNjEzMDFlZmEtMjhkOC00MjUyLTllYzYtYjNiZmQ3
MjFjNDM1Si4KCHRhc2tfa2V5EiIKIGU5ZTZiNzJhYWMzMjY0NTlkZDcwNjhmMGIxNzE3YzFjSjEK
B3Rhc2tfaWQSJgokMTkwZTBkNWYtMjQ4NS00NzdiLWFiMTQtZDE5ZjQxOWExZWI0egIYAYUBAAEA
ABK/DQoQwwR54Z8nOGgj2VSb63WRwhIIonLT+7Mwj00qDENyZXcgQ3JlYXRlZDABObDfvzhffgkY
QfBvwjhffgkYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5weXRob25fdmVyc2lvbhII
CgYzLjEyLjVKLgoIY3Jld19rZXkSIgogNjZhOTYwZGM2OWZmZjU3OGIyNmM2MWQ0ZjdjNWE5ZmVK
MQoHY3Jld19pZBImCiQxNThhMTkzOS01OWUzLTRlODgtYTRkYi04M2IzN2U5MjgxZWVKHAoMY3Jl
d19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAAShoKFGNyZXdfbnVtYmVy
X29mX3Rhc2tzEgIYA0obChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgCSpIFCgtjcmV3X2FnZW50
cxKCBQr/BFt7ImtleSI6ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJpZCI6
ICI1ZThjNTM1MS1jNWVlLTRhZGUtODY5MC1kM2RhOWI1NzI5YzciLCAicm9sZSI6ICJSZXNlYXJj
aGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGws
ICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVn
YXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAi
bWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119LCB7ImtleSI6ICI5YTUwMTVl
ZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJpZCI6ICJhMTcwODczOC0yYWE2LTRkZmYtODFl
Ny00OGFkMDNjNWFjY2QiLCAicm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwgInZlcmJvc2U/IjogZmFs
c2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xs
bSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxz
ZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwg
InRvb2xzX25hbWVzIjogW119XUraBQoKY3Jld190YXNrcxLLBQrIBVt7ImtleSI6ICI5NDRhZWYw
YmFjODQwZjFjMjdiZDgzYTkzN2JjMzYxYiIsICJpZCI6ICIzN2FkNzI5MC04Yjg5LTRjNWEtYmNl
Zi03YzY0ZWJhMWM5NjciLCAiYXN5bmNfZXhlY3V0aW9uPyI6IHRydWUsICJodW1hbl9pbnB1dD8i
OiBmYWxzZSwgImFnZW50X3JvbGUiOiAiUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiOGJkMjEz
OWI1OTc1MTgxNTA2ZTQxZmQ5YzQ1NjNkNzUiLCAidG9vbHNfbmFtZXMiOiBbXX0sIHsia2V5Ijog
ImZjNTZkZWEzOGM5OTc0YjZmNTVhMmUyOGMxNDk5ODg2IiwgImlkIjogIjZhMmViMGY2LTgwZTIt
NDkxOC05Zjk3LWVhNDY3OTNkMjI2YyIsICJhc3luY19leGVjdXRpb24/IjogdHJ1ZSwgImh1bWFu
X2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6
ICI4YmQyMTM5YjU5NzUxODE1MDZlNDFmZDljNDU2M2Q3NSIsICJ0b29sc19uYW1lcyI6IFtdfSwg
eyJrZXkiOiAiOTRhODI2YzE5MzA1NTk2ODZiYWZiNDA5ZWU4Mzg3NmYiLCAiaWQiOiAiZGQ2Yzkz
NzAtOGYwNC00ZDFmLThjODMtMmFiM2IyYzIwYWI3IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxz
ZSwgImh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJTZW5pb3IgV3JpdGVyIiwg
ImFnZW50X2tleSI6ICI5YTUwMTVlZjQ4OTVkYzYyNzhkNTQ4MThiYTQ0NmFmNyIsICJ0b29sc19u
YW1lcyI6IFtdfV16AhgBhQEAAQAAErMHChBV+1WNQzpVlY6l4C/mUgHzEgi3vWQXjOQJ5CoMQ3Jl
dyBDcmVhdGVkMAE5sH1kPF9+CRhBaH1mPF9+CRhKGgoOY3Jld2FpX3ZlcnNpb24SCAoGMC44MC4w
ShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuNUouCghjcmV3X2tleRIiCiBlZTY3NDVkN2M4YWU4
MmUwMGRmOTRkZTBmN2Y4NzExOEoxCgdjcmV3X2lkEiYKJDAwOThmODNmLTdkNTAtNGI2Mi1hYmIy
LTJlNTc0N2ZlMWE4OUocCgxjcmV3X3Byb2Nlc3MSDAoKc2VxdWVudGlhbEoRCgtjcmV3X21lbW9y
eRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsKFWNyZXdfbnVtYmVyX29mX2FnZW50
cxICGAFK2QIKC2NyZXdfYWdlbnRzEskCCsYCW3sia2V5IjogImYzMzg2ZjZkOGRhNzVhYTQxNmE2
ZTMxMDA1M2Y3Njk4IiwgImlkIjogIjEzODI4ZDViLWIyOWMtNDllMy05NWVhLTkyOGQ2ZmZhY2I0
NSIsICJyb2xlIjogInt0b3BpY30gUmVzZWFyY2hlciIsICJ2ZXJib3NlPyI6IGZhbHNlLCAibWF4
X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rpb25fY2FsbGluZ19sbG0iOiAiIiwg
ImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2VuYWJsZWQ/IjogZmFsc2UsICJhbGxv
d19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRyeV9saW1pdCI6IDIsICJ0b29sc19u
YW1lcyI6IFtdfV1KhwIKCmNyZXdfdGFza3MS+AEK9QFbeyJrZXkiOiAiMDZhNzMyMjBmNDE0OGE0
YmJkNWJhY2IwZDBiNDRmY2UiLCAiaWQiOiAiNWM4MjM1ZmYtNWVjNy00NzFhLWI4NWEtNWFkZjk3
YzJkYzI3IiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwgImh1bWFuX2lucHV0PyI6IGZhbHNl
LCAiYWdlbnRfcm9sZSI6ICJ7dG9waWN9IFJlc2VhcmNoZXIiLCAiYWdlbnRfa2V5IjogImYzMzg2
ZjZkOGRhNzVhYTQxNmE2ZTMxMDA1M2Y3Njk4IiwgInRvb2xzX25hbWVzIjogW119XXoCGAGFAQAB
AAASjgIKEHOZ/a+LQwTLSkMO0sPwg9gSCL1SwQw1+0iKKgxUYXNrIENyZWF0ZWQwATl4kX48X34J
GEFIFn88X34JGEouCghjcmV3X2tleRIiCiBlZTY3NDVkN2M4YWU4MmUwMGRmOTRkZTBmN2Y4NzEx
OEoxCgdjcmV3X2lkEiYKJDAwOThmODNmLTdkNTAtNGI2Mi1hYmIyLTJlNTc0N2ZlMWE4OUouCgh0
YXNrX2tleRIiCiAwNmE3MzIyMGY0MTQ4YTRiYmQ1YmFjYjBkMGI0NGZjZUoxCgd0YXNrX2lkEiYK
JDVjODIzNWZmLTVlYzctNDcxYS1iODVhLTVhZGY5N2MyZGMyN3oCGAGFAQABAAASswcKEHZQCRd7
z4ZBCh4+06qs1r4SCNzrNsw+dn2zKgxDcmV3IENyZWF0ZWQwATlgWdtDX34JGEGIcN1DX34JGEoa
Cg5jcmV3YWlfdmVyc2lvbhIICgYwLjgwLjBKGgoOcHl0aG9uX3ZlcnNpb24SCAoGMy4xMi41Si4K
CGNyZXdfa2V5EiIKIGVlNjc0NWQ3YzhhZTgyZTAwZGY5NGRlMGY3Zjg3MTE4SjEKB2NyZXdfaWQS
JgokZTgzMTdjNzEtNmZiZS00MjI5LWE3MzctYTkxM2I0ZmU0ZTU0ShwKDGNyZXdfcHJvY2VzcxIM
CgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRjcmV3X251bWJlcl9vZl90YXNrcxIC
GAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrZAgoLY3Jld19hZ2VudHMSyQIKxgJbeyJr
ZXkiOiAiZjMzODZmNmQ4ZGE3NWFhNDE2YTZlMzEwMDUzZjc2OTgiLCAiaWQiOiAiNjAwMzU5OTYt
ZWU1ZS00YmZhLThmODctMGM1ZTY0OTBlMmE4IiwgInJvbGUiOiAie3RvcGljfSBSZXNlYXJjaGVy
IiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIwLCAibWF4X3JwbSI6IG51bGwsICJm
dW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdwdC00by1taW5pIiwgImRlbGVnYXRp
b25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhlY3V0aW9uPyI6IGZhbHNlLCAibWF4
X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119XUqHAgoKY3Jld190YXNrcxL4AQr1
AVt7ImtleSI6ICIwNmE3MzIyMGY0MTQ4YTRiYmQ1YmFjYjBkMGI0NGZjZSIsICJpZCI6ICI4MDc3
MDhjNS0yN2RkLTQ4ZDEtYTU0ZC1lZTRkNTZmMzBiZTQiLCAiYXN5bmNfZXhlY3V0aW9uPyI6IGZh
bHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9yb2xlIjogInt0b3BpY30gUmVzZWFy
Y2hlciIsICJhZ2VudF9rZXkiOiAiZjMzODZmNmQ4ZGE3NWFhNDE2YTZlMzEwMDUzZjc2OTgiLCAi
dG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAABKOAgoQtqHg5uy2kZsnJlJTYgmZoxIIlgUHkQ7m
LugqDFRhc2sgQ3JlYXRlZDABOTi470NffgkYQQg98ENffgkYSi4KCGNyZXdfa2V5EiIKIGVlNjc0
NWQ3YzhhZTgyZTAwZGY5NGRlMGY3Zjg3MTE4SjEKB2NyZXdfaWQSJgokZTgzMTdjNzEtNmZiZS00
MjI5LWE3MzctYTkxM2I0ZmU0ZTU0Si4KCHRhc2tfa2V5EiIKIDA2YTczMjIwZjQxNDhhNGJiZDVi
YWNiMGQwYjQ0ZmNlSjEKB3Rhc2tfaWQSJgokODA3NzA4YzUtMjdkZC00OGQxLWE1NGQtZWU0ZDU2
ZjMwYmU0egIYAYUBAAEAABKzBwoQpfKhpM9cCoiT5Mun1aoNQhII4HhX0QHHc/0qDENyZXcgQ3Jl
YXRlZDABORiH20lffgkYQcix3UlffgkYShoKDmNyZXdhaV92ZXJzaW9uEggKBjAuODAuMEoaCg5w
eXRob25fdmVyc2lvbhIICgYzLjEyLjVKLgoIY3Jld19rZXkSIgogZWU2NzQ1ZDdjOGFlODJlMDBk
Zjk0ZGUwZjdmODcxMThKMQoHY3Jld19pZBImCiRmZDk2MmQwMi0wNGY0LTQ3NDUtODc5YS02NTFm
MzFmMmZhOTZKHAoMY3Jld19wcm9jZXNzEgwKCnNlcXVlbnRpYWxKEQoLY3Jld19tZW1vcnkSAhAA
ShoKFGNyZXdfbnVtYmVyX29mX3Rhc2tzEgIYAUobChVjcmV3X251bWJlcl9vZl9hZ2VudHMSAhgB
StkCCgtjcmV3X2FnZW50cxLJAgrGAlt7ImtleSI6ICJmMzM4NmY2ZDhkYTc1YWE0MTZhNmUzMTAw
NTNmNzY5OCIsICJpZCI6ICIzNmZhMTEyZS02ZDVlLTRhMzgtODk0Yy01M2M5YjAzNTI5ODUiLCAi
cm9sZSI6ICJ7dG9waWN9IFJlc2VhcmNoZXIiLCAidmVyYm9zZT8iOiBmYWxzZSwgIm1heF9pdGVy
IjogMjAsICJtYXhfcnBtIjogbnVsbCwgImZ1bmN0aW9uX2NhbGxpbmdfbGxtIjogIiIsICJsbG0i
OiAiZ3B0LTRvLW1pbmkiLCAiZGVsZWdhdGlvbl9lbmFibGVkPyI6IGZhbHNlLCAiYWxsb3dfY29k
ZV9leGVjdXRpb24/IjogZmFsc2UsICJtYXhfcmV0cnlfbGltaXQiOiAyLCAidG9vbHNfbmFtZXMi
OiBbXX1dSocCCgpjcmV3X3Rhc2tzEvgBCvUBW3sia2V5IjogIjA2YTczMjIwZjQxNDhhNGJiZDVi
YWNiMGQwYjQ0ZmNlIiwgImlkIjogIjY3NTE3ZjY1LThhYzMtNDIyZi1hMmJhLTM4NDcyZDRkYmZl
NSIsICJhc3luY19leGVjdXRpb24/IjogZmFsc2UsICJodW1hbl9pbnB1dD8iOiBmYWxzZSwgImFn
ZW50X3JvbGUiOiAie3RvcGljfSBSZXNlYXJjaGVyIiwgImFnZW50X2tleSI6ICJmMzM4NmY2ZDhk
YTc1YWE0MTZhNmUzMTAwNTNmNzY5OCIsICJ0b29sc19uYW1lcyI6IFtdfV16AhgBhQEAAQAAEo4C
ChAzGUzQMDZOgJ090im3887lEgik7+/nVnqntioMVGFzayBDcmVhdGVkMAE5UO7rSV9+CRhBWEDs
SV9+CRhKLgoIY3Jld19rZXkSIgogZWU2NzQ1ZDdjOGFlODJlMDBkZjk0ZGUwZjdmODcxMThKMQoH
Y3Jld19pZBImCiRmZDk2MmQwMi0wNGY0LTQ3NDUtODc5YS02NTFmMzFmMmZhOTZKLgoIdGFza19r
ZXkSIgogMDZhNzMyMjBmNDE0OGE0YmJkNWJhY2IwZDBiNDRmY2VKMQoHdGFza19pZBImCiQ2NzUx
N2Y2NS04YWMzLTQyMmYtYTJiYS0zODQ3MmQ0ZGJmZTV6AhgBhQEAAQAAErMHChCB1TPvVbWX62DF
102NfOHLEghdZ/LjI40W8SoMQ3JldyBDcmVhdGVkMAE5sJDUT19+CRhBEHXWT19+CRhKGgoOY3Jl
d2FpX3ZlcnNpb24SCAoGMC44MC4wShoKDnB5dGhvbl92ZXJzaW9uEggKBjMuMTIuNUouCghjcmV3
X2tleRIiCiBlZTY3NDVkN2M4YWU4MmUwMGRmOTRkZTBmN2Y4NzExOEoxCgdjcmV3X2lkEiYKJDUx
YmI1NGQ0LWM4MTAtNDA0Yy04MTQzLWVmNTgwMTlhN2Q2OEocCgxjcmV3X3Byb2Nlc3MSDAoKc2Vx
dWVudGlhbEoRCgtjcmV3X21lbW9yeRICEABKGgoUY3Jld19udW1iZXJfb2ZfdGFza3MSAhgBShsK
FWNyZXdfbnVtYmVyX29mX2FnZW50cxICGAFK2QIKC2NyZXdfYWdlbnRzEskCCsYCW3sia2V5Ijog
ImYzMzg2ZjZkOGRhNzVhYTQxNmE2ZTMxMDA1M2Y3Njk4IiwgImlkIjogIjRlNTExYTRhLTM1Yzkt
NDA0NC1iMzBlLWM4OGZjZTJiMzc5YiIsICJyb2xlIjogInt0b3BpY30gUmVzZWFyY2hlciIsICJ2
ZXJib3NlPyI6IGZhbHNlLCAibWF4X2l0ZXIiOiAyMCwgIm1heF9ycG0iOiBudWxsLCAiZnVuY3Rp
b25fY2FsbGluZ19sbG0iOiAiIiwgImxsbSI6ICJncHQtNG8tbWluaSIsICJkZWxlZ2F0aW9uX2Vu
YWJsZWQ/IjogZmFsc2UsICJhbGxvd19jb2RlX2V4ZWN1dGlvbj8iOiBmYWxzZSwgIm1heF9yZXRy
eV9saW1pdCI6IDIsICJ0b29sc19uYW1lcyI6IFtdfV1KhwIKCmNyZXdfdGFza3MS+AEK9QFbeyJr
ZXkiOiAiMDZhNzMyMjBmNDE0OGE0YmJkNWJhY2IwZDBiNDRmY2UiLCAiaWQiOiAiOTIzMWJmZjIt
ODFmOS00MjU4LTgyMDktMjkzMjUyOWI1ZjlmIiwgImFzeW5jX2V4ZWN1dGlvbj8iOiBmYWxzZSwg
Imh1bWFuX2lucHV0PyI6IGZhbHNlLCAiYWdlbnRfcm9sZSI6ICJ7dG9waWN9IFJlc2VhcmNoZXIi
LCAiYWdlbnRfa2V5IjogImYzMzg2ZjZkOGRhNzVhYTQxNmE2ZTMxMDA1M2Y3Njk4IiwgInRvb2xz
X25hbWVzIjogW119XXoCGAGFAQABAAASjgIKECTO19lNFYzBivlrqiZfSxASCIAH8VhjiPfQKgxU
YXNrIENyZWF0ZWQwATnIr+NPX34JGEHQAeRPX34JGEouCghjcmV3X2tleRIiCiBlZTY3NDVkN2M4
YWU4MmUwMGRmOTRkZTBmN2Y4NzExOEoxCgdjcmV3X2lkEiYKJDUxYmI1NGQ0LWM4MTAtNDA0Yy04
MTQzLWVmNTgwMTlhN2Q2OEouCgh0YXNrX2tleRIiCiAwNmE3MzIyMGY0MTQ4YTRiYmQ1YmFjYjBk
MGI0NGZjZUoxCgd0YXNrX2lkEiYKJDkyMzFiZmYyLTgxZjktNDI1OC04MjA5LTI5MzI1MjliNWY5
ZnoCGAGFAQABAAASswcKEHGb7KITfOkYfQT7CRjWfUcSCIn6YlQJ1QVbKgxDcmV3IENyZWF0ZWQw
ATmYH/BYX34JGEEgJ/JYX34JGEoaCg5jcmV3YWlfdmVyc2lvbhIICgYwLjgwLjBKGgoOcHl0aG9u
X3ZlcnNpb24SCAoGMy4xMi41Si4KCGNyZXdfa2V5EiIKIGVlNjc0NWQ3YzhhZTgyZTAwZGY5NGRl
MGY3Zjg3MTE4SjEKB2NyZXdfaWQSJgokZDc5Y2UyMWUtYmU1Ny00NTdiLWExMzEtNjZkMDFmZjQx
ZTI2ShwKDGNyZXdfcHJvY2VzcxIMCgpzZXF1ZW50aWFsShEKC2NyZXdfbWVtb3J5EgIQAEoaChRj
cmV3X251bWJlcl9vZl90YXNrcxICGAFKGwoVY3Jld19udW1iZXJfb2ZfYWdlbnRzEgIYAUrZAgoL
Y3Jld19hZ2VudHMSyQIKxgJbeyJrZXkiOiAiZjMzODZmNmQ4ZGE3NWFhNDE2YTZlMzEwMDUzZjc2
OTgiLCAiaWQiOiAiNzRhNDUxNzgtNmExOS00N2RjLThlZjktZDdhZmQ5YzUwMDQ0IiwgInJvbGUi
OiAie3RvcGljfSBSZXNlYXJjaGVyIiwgInZlcmJvc2U/IjogZmFsc2UsICJtYXhfaXRlciI6IDIw
LCAibWF4X3JwbSI6IG51bGwsICJmdW5jdGlvbl9jYWxsaW5nX2xsbSI6ICIiLCAibGxtIjogImdw
dC00by1taW5pIiwgImRlbGVnYXRpb25fZW5hYmxlZD8iOiBmYWxzZSwgImFsbG93X2NvZGVfZXhl
Y3V0aW9uPyI6IGZhbHNlLCAibWF4X3JldHJ5X2xpbWl0IjogMiwgInRvb2xzX25hbWVzIjogW119
XUqHAgoKY3Jld190YXNrcxL4AQr1AVt7ImtleSI6ICIwNmE3MzIyMGY0MTQ4YTRiYmQ1YmFjYjBk
MGI0NGZjZSIsICJpZCI6ICJjZWZiYjE1ZS01Y2M4LTQwZTctYTViMS03ODkzYjJlZGFkYmQiLCAi
YXN5bmNfZXhlY3V0aW9uPyI6IGZhbHNlLCAiaHVtYW5faW5wdXQ/IjogZmFsc2UsICJhZ2VudF9y
b2xlIjogInt0b3BpY30gUmVzZWFyY2hlciIsICJhZ2VudF9rZXkiOiAiZjMzODZmNmQ4ZGE3NWFh
NDE2YTZlMzEwMDUzZjc2OTgiLCAidG9vbHNfbmFtZXMiOiBbXX1degIYAYUBAAEAAA==
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '11392'
Content-Type:
- application/x-protobuf
User-Agent:
- OTel-OTLP-Exporter-Python/1.27.0
method: POST
uri: https://telemetry.crewai.com:4319/v1/traces
response:
body:
string: "\n\0"
headers:
Content-Length:
- '2'
Content-Type:
- application/x-protobuf
Date:
- Tue, 19 Nov 2024 22:14:39 GMT
status:
code: 200
message: OK
version: 1

View File

Binary file not shown.

View File

@@ -0,0 +1,545 @@
"""Test Knowledge creation and querying functionality."""
from pathlib import Path
from unittest.mock import patch
from crewai.knowledge.source.csv_knowledge_source import CSVKnowledgeSource
from crewai.knowledge.source.excel_knowledge_source import ExcelKnowledgeSource
from crewai.knowledge.source.json_knowledge_source import JSONKnowledgeSource
from crewai.knowledge.source.pdf_knowledge_source import PDFKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
import pytest
@pytest.fixture(autouse=True)
def mock_vector_db():
"""Mock vector database operations."""
with patch("crewai.knowledge.storage.knowledge_storage.KnowledgeStorage") as mock:
# Mock the query method to return a predefined response
instance = mock.return_value
instance.query.return_value = [
{
"context": "Brandon's favorite color is blue and he likes Mexican food.",
"score": 0.9,
}
]
instance.reset.return_value = None
yield instance
@pytest.fixture(autouse=True)
def reset_knowledge_storage(mock_vector_db):
"""Fixture to reset knowledge storage before each test."""
yield
def test_single_short_string(mock_vector_db):
# Create a knowledge base with a single short string
content = "Brandon's favorite color is blue and he likes Mexican food."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
mock_vector_db.sources = [string_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite color?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("blue" in result["context"].lower() for result in results)
# Verify the mock was called
mock_vector_db.query.assert_called_once()
# @pytest.mark.vcr(filter_headers=["authorization"])
def test_single_2k_character_string(mock_vector_db):
# Create a 2k character string with various facts about Brandon
content = (
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
)
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
mock_vector_db.sources = [string_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite movie?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("inception" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_short_strings(mock_vector_db):
# Create multiple short string sources
contents = [
"Brandon loves hiking.",
"Brandon has a dog named Max.",
"Brandon enjoys painting landscapes.",
]
string_sources = [
StringKnowledgeSource(content=content, metadata={"preference": "personal"})
for content in contents
]
# Mock the vector db query response
mock_vector_db.query.return_value = [
{"context": "Brandon has a dog named Max.", "score": 0.9}
]
mock_vector_db.sources = string_sources
# Perform a query
query = "What is the name of Brandon's pet?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("max" in result["context"].lower() for result in results)
# Verify the mock was called
mock_vector_db.query.assert_called_once()
def test_multiple_2k_character_strings(mock_vector_db):
# Create multiple 2k character strings with various facts about Brandon
contents = [
(
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
)
* 2, # Repeat to ensure it's 2k characters
(
"Brandon loves traveling and has visited over 20 countries. "
"He is fluent in Spanish and often practices with his friends. "
"Brandon's favorite city is Barcelona, where he enjoys the architecture and culture. "
"He is a foodie and loves trying new cuisines, with a particular fondness for sushi. "
"Brandon is an avid cyclist and participates in local cycling events. "
"He is also a photographer and enjoys capturing landscapes and cityscapes. "
"Brandon is a tech enthusiast and follows the latest trends in gadgets and software. "
"He is also a fan of virtual reality and owns a VR headset. "
"Brandon's favorite book is 'The Hitchhiker's Guide to the Galaxy'. "
"He enjoys watching documentaries and learning about history and science. "
"Brandon is a coffee lover and has a collection of coffee mugs from different countries. "
"He is also a fan of jazz music and often attends live performances. "
"Brandon is a member of a local running club and participates in marathons. "
"He is also a volunteer at a local animal shelter and helps with dog walking. "
"Brandon's favorite holiday is Christmas, and he enjoys decorating his home. "
"He is also a fan of classic movies and has a collection of DVDs. "
"Brandon is a mentor for young professionals and enjoys giving career advice. "
"He is also a fan of puzzles and enjoys solving them in his free time. "
"Brandon's favorite sport is soccer, and he often plays with his friends. "
"He is also a fan of FC Barcelona and enjoys watching their matches. "
)
* 2, # Repeat to ensure it's 2k characters
]
string_sources = [
StringKnowledgeSource(content=content, metadata={"preference": "personal"})
for content in contents
]
mock_vector_db.sources = string_sources
mock_vector_db.query.return_value = [{"context": contents[1], "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite book?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any(
"the hitchhiker's guide to the galaxy" in result["context"].lower()
for result in results
)
mock_vector_db.query.assert_called_once()
def test_single_short_file(mock_vector_db, tmpdir):
# Create a single short text file
content = "Brandon's favorite sport is basketball."
file_path = Path(tmpdir.join("short_file.txt"))
with open(file_path, "w") as f:
f.write(content)
file_source = TextFileKnowledgeSource(
file_path=file_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [file_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What sport does Brandon like?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("basketball" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_single_2k_character_file(mock_vector_db, tmpdir):
# Create a single 2k character text file with various facts about Brandon
content = (
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
) * 2 # Repeat to ensure it's 2k characters
file_path = Path(tmpdir.join("long_file.txt"))
with open(file_path, "w") as f:
f.write(content)
file_source = TextFileKnowledgeSource(
file_path=file_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [file_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite movie?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("inception" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_short_files(mock_vector_db, tmpdir):
# Create multiple short text files
contents = [
{
"content": "Brandon works as a software engineer.",
"metadata": {"category": "profession", "source": "occupation"},
},
{
"content": "Brandon lives in New York.",
"metadata": {"category": "city", "source": "personal"},
},
{
"content": "Brandon enjoys cooking Italian food.",
"metadata": {"category": "hobby", "source": "personal"},
},
]
file_paths = []
for i, item in enumerate(contents):
file_path = Path(tmpdir.join(f"file_{i}.txt"))
with open(file_path, "w") as f:
f.write(item["content"])
file_paths.append((file_path, item["metadata"]))
file_sources = [
TextFileKnowledgeSource(file_path=path, metadata=metadata)
for path, metadata in file_paths
]
mock_vector_db.sources = file_sources
mock_vector_db.query.return_value = [
{"context": "Brandon lives in New York.", "score": 0.9}
]
# Perform a query
query = "What city does he reside in?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("new york" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_2k_character_files(mock_vector_db, tmpdir):
# Create multiple 2k character text files with various facts about Brandon
contents = [
(
"Brandon loves traveling and has visited over 20 countries. "
"He is fluent in Spanish and often practices with his friends. "
"Brandon's favorite city is Barcelona, where he enjoys the architecture and culture. "
"He is a foodie and loves trying new cuisines, with a particular fondness for sushi. "
"Brandon is an avid cyclist and participates in local cycling events. "
"He is also a photographer and enjoys capturing landscapes and cityscapes. "
"Brandon is a tech enthusiast and follows the latest trends in gadgets and software. "
"He is also a fan of virtual reality and owns a VR headset. "
"Brandon's favorite book is 'The Hitchhiker's Guide to the Galaxy'. "
"He enjoys watching documentaries and learning about history and science. "
"Brandon is a coffee lover and has a collection of coffee mugs from different countries. "
"He is also a fan of jazz music and often attends live performances. "
"Brandon is a member of a local running club and participates in marathons. "
"He is also a volunteer at a local animal shelter and helps with dog walking. "
"Brandon's favorite holiday is Christmas, and he enjoys decorating his home. "
"He is also a fan of classic movies and has a collection of DVDs. "
"Brandon is a mentor for young professionals and enjoys giving career advice. "
"He is also a fan of puzzles and enjoys solving them in his free time. "
"Brandon's favorite sport is soccer, and he often plays with his friends. "
"He is also a fan of FC Barcelona and enjoys watching their matches. "
)
* 2, # Repeat to ensure it's 2k characters
(
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
)
* 2, # Repeat to ensure it's 2k characters
]
file_paths = []
for i, content in enumerate(contents):
file_path = Path(tmpdir.join(f"long_file_{i}.txt"))
with open(file_path, "w") as f:
f.write(content)
file_paths.append(file_path)
file_sources = [
TextFileKnowledgeSource(file_path=path, metadata={"preference": "personal"})
for path in file_paths
]
mock_vector_db.sources = file_sources
mock_vector_db.query.return_value = [
{
"context": "Brandon's favorite book is 'The Hitchhiker's Guide to the Galaxy'.",
"score": 0.9,
}
]
# Perform a query
query = "What is Brandon's favorite book?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any(
"the hitchhiker's guide to the galaxy" in result["context"].lower()
for result in results
)
mock_vector_db.query.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hybrid_string_and_files(mock_vector_db, tmpdir):
# Create string sources
string_contents = [
"Brandon is learning French.",
"Brandon visited Paris last summer.",
]
string_sources = [
StringKnowledgeSource(content=content, metadata={"preference": "personal"})
for content in string_contents
]
# Create file sources
file_contents = [
"Brandon prefers tea over coffee.",
"Brandon's favorite book is 'The Alchemist'.",
]
file_paths = []
for i, content in enumerate(file_contents):
file_path = Path(tmpdir.join(f"file_{i}.txt"))
with open(file_path, "w") as f:
f.write(content)
file_paths.append(file_path)
file_sources = [
TextFileKnowledgeSource(file_path=path, metadata={"preference": "personal"})
for path in file_paths
]
# Combine string and file sources
mock_vector_db.sources = string_sources + file_sources
mock_vector_db.query.return_value = [{"context": file_contents[1], "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite book?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("the alchemist" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_pdf_knowledge_source(mock_vector_db):
# Get the directory of the current file
current_dir = Path(__file__).parent
# Construct the path to the PDF file
pdf_path = current_dir / "crewai_quickstart.pdf"
# Create a PDFKnowledgeSource
pdf_source = PDFKnowledgeSource(
file_path=pdf_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [pdf_source]
mock_vector_db.query.return_value = [
{"context": "crewai create crew latest-ai-development", "score": 0.9}
]
# Perform a query
query = "How do you create a crew?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any(
"crewai create crew latest-ai-development" in result["context"].lower()
for result in results
)
mock_vector_db.query.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_csv_knowledge_source(mock_vector_db, tmpdir):
"""Test CSVKnowledgeSource with a simple CSV file."""
# Create a CSV file with sample data
csv_content = [
["Name", "Age", "City"],
["Brandon", "30", "New York"],
["Alice", "25", "Los Angeles"],
["Bob", "35", "Chicago"],
]
csv_path = Path(tmpdir.join("data.csv"))
with open(csv_path, "w", encoding="utf-8") as f:
for row in csv_content:
f.write(",".join(row) + "\n")
# Create a CSVKnowledgeSource
csv_source = CSVKnowledgeSource(
file_path=csv_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [csv_source]
mock_vector_db.query.return_value = [
{"context": "Brandon is 30 years old.", "score": 0.9}
]
# Perform a query
query = "How old is Brandon?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("30" in result["context"] for result in results)
mock_vector_db.query.assert_called_once()
def test_json_knowledge_source(mock_vector_db, tmpdir):
"""Test JSONKnowledgeSource with a simple JSON file."""
# Create a JSON file with sample data
json_data = {
"people": [
{"name": "Brandon", "age": 30, "city": "New York"},
{"name": "Alice", "age": 25, "city": "Los Angeles"},
{"name": "Bob", "age": 35, "city": "Chicago"},
]
}
json_path = Path(tmpdir.join("data.json"))
with open(json_path, "w", encoding="utf-8") as f:
import json
json.dump(json_data, f)
# Create a JSONKnowledgeSource
json_source = JSONKnowledgeSource(
file_path=json_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [json_source]
mock_vector_db.query.return_value = [
{"context": "Alice lives in Los Angeles.", "score": 0.9}
]
# Perform a query
query = "Where does Alice reside?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("los angeles" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_excel_knowledge_source(mock_vector_db, tmpdir):
"""Test ExcelKnowledgeSource with a simple Excel file."""
# Create an Excel file with sample data
import pandas as pd
excel_data = {
"Name": ["Brandon", "Alice", "Bob"],
"Age": [30, 25, 35],
"City": ["New York", "Los Angeles", "Chicago"],
}
df = pd.DataFrame(excel_data)
excel_path = Path(tmpdir.join("data.xlsx"))
df.to_excel(excel_path, index=False)
# Create an ExcelKnowledgeSource
excel_source = ExcelKnowledgeSource(
file_path=excel_path, metadata={"preference": "personal"}
)
mock_vector_db.sources = [excel_source]
mock_vector_db.query.return_value = [
{"context": "Brandon is 30 years old.", "score": 0.9}
]
# Perform a query
query = "What is Brandon's age?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("30" in result["context"] for result in results)
mock_vector_db.query.assert_called_once()

View File

@@ -38,6 +38,7 @@ def mock_crew_factory():
crew = MockCrew()
crew.name = name
crew.knowledge = None
task_output = TaskOutput(
description="Test task", raw="Task output", agent="Test Agent"
@@ -67,6 +68,7 @@ def mock_crew_factory():
crew.process = Process.sequential
crew.config = None
crew.cache = True
crew.embedder = None
# Add non-empty agents and tasks
mock_agent = MagicMock(spec=Agent)