mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-27 09:08:14 +00:00
Knowledge (#1567)
* initial knowledge * WIP * Adding core knowledge sources * Improve types and better support for file paths * added additional sources * fix linting * update yaml to include optional deps * adding in lorenze feedback * ensure embeddings are persisted * improvements all around Knowledge class * return this * properly reset memory * properly reset memory+knowledge * consolodation and improvements * linted * cleanup rm unused embedder * fix test * fix duplicate * generating cassettes for knowledge test * updated default embedder * None embedder to use default on pipeline cloning * improvements * fixed text_file_knowledge * mypysrc fixes * type check fixes * added extra cassette * just mocks * linted * mock knowledge query to not spin up db * linted * verbose run * put a flag * fix * adding docs * better docs * improvements from review * more docs * linted * rm print * more fixes * clearer docs * added docstrings and type hints for cli --------- Co-authored-by: João Moura <joaomdmoura@gmail.com> Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
This commit is contained in:
committed by
GitHub
parent
fde1ee45f9
commit
14a36d3f5e
132
src/crewai/knowledge/storage/knowledge_storage.py
Normal file
132
src/crewai/knowledge/storage/knowledge_storage.py
Normal file
@@ -0,0 +1,132 @@
|
||||
import contextlib
|
||||
import io
|
||||
import logging
|
||||
import chromadb
|
||||
import os
|
||||
from crewai.utilities.paths import db_storage_path
|
||||
from typing import Optional, List
|
||||
from typing import Dict, Any
|
||||
from crewai.utilities import EmbeddingConfigurator
|
||||
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
|
||||
import hashlib
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def suppress_logging(
|
||||
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
|
||||
level=logging.ERROR,
|
||||
):
|
||||
logger = logging.getLogger(logger_name)
|
||||
original_level = logger.getEffectiveLevel()
|
||||
logger.setLevel(level)
|
||||
with (
|
||||
contextlib.redirect_stdout(io.StringIO()),
|
||||
contextlib.redirect_stderr(io.StringIO()),
|
||||
contextlib.suppress(UserWarning),
|
||||
):
|
||||
yield
|
||||
logger.setLevel(original_level)
|
||||
|
||||
|
||||
class KnowledgeStorage(BaseKnowledgeStorage):
|
||||
"""
|
||||
Extends Storage to handle embeddings for memory entries, improving
|
||||
search efficiency.
|
||||
"""
|
||||
|
||||
collection: Optional[chromadb.Collection] = None
|
||||
|
||||
def __init__(self, embedder_config: Optional[Dict[str, Any]] = None):
|
||||
self._initialize_app(embedder_config or {})
|
||||
|
||||
def search(
|
||||
self,
|
||||
query: List[str],
|
||||
limit: int = 3,
|
||||
filter: Optional[dict] = None,
|
||||
score_threshold: float = 0.35,
|
||||
) -> List[Dict[str, Any]]:
|
||||
with suppress_logging():
|
||||
if self.collection:
|
||||
fetched = self.collection.query(
|
||||
query_texts=query,
|
||||
n_results=limit,
|
||||
where=filter,
|
||||
)
|
||||
results = []
|
||||
for i in range(len(fetched["ids"][0])): # type: ignore
|
||||
result = {
|
||||
"id": fetched["ids"][0][i], # type: ignore
|
||||
"metadata": fetched["metadatas"][0][i], # type: ignore
|
||||
"context": fetched["documents"][0][i], # type: ignore
|
||||
"score": fetched["distances"][0][i], # type: ignore
|
||||
}
|
||||
if result["score"] >= score_threshold: # type: ignore
|
||||
results.append(result)
|
||||
return results
|
||||
else:
|
||||
raise Exception("Collection not initialized")
|
||||
|
||||
def _initialize_app(self, embedder_config: Optional[Dict[str, Any]] = None):
|
||||
import chromadb
|
||||
from chromadb.config import Settings
|
||||
|
||||
self._set_embedder_config(embedder_config)
|
||||
|
||||
chroma_client = chromadb.PersistentClient(
|
||||
path=f"{db_storage_path()}/knowledge",
|
||||
settings=Settings(allow_reset=True),
|
||||
)
|
||||
|
||||
self.app = chroma_client
|
||||
|
||||
try:
|
||||
self.collection = self.app.get_or_create_collection(name="knowledge")
|
||||
except Exception:
|
||||
raise Exception("Failed to create or get collection")
|
||||
|
||||
def reset(self):
|
||||
if self.app:
|
||||
self.app.reset()
|
||||
|
||||
def save(
|
||||
self, documents: List[str], metadata: Dict[str, Any] | List[Dict[str, Any]]
|
||||
):
|
||||
if self.collection:
|
||||
metadatas = [metadata] if isinstance(metadata, dict) else metadata
|
||||
|
||||
ids = [
|
||||
hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents
|
||||
]
|
||||
|
||||
self.collection.upsert(
|
||||
documents=documents,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
else:
|
||||
raise Exception("Collection not initialized")
|
||||
|
||||
def _create_default_embedding_function(self):
|
||||
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
||||
OpenAIEmbeddingFunction,
|
||||
)
|
||||
|
||||
return OpenAIEmbeddingFunction(
|
||||
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
||||
)
|
||||
|
||||
def _set_embedder_config(
|
||||
self, embedder_config: Optional[Dict[str, Any]] = None
|
||||
) -> None:
|
||||
"""Set the embedding configuration for the knowledge storage.
|
||||
|
||||
Args:
|
||||
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
|
||||
If None or empty, defaults to the default embedding function.
|
||||
"""
|
||||
self.embedder_config = (
|
||||
EmbeddingConfigurator().configure_embedder(embedder_config)
|
||||
if embedder_config
|
||||
else self._create_default_embedding_function()
|
||||
)
|
||||
Reference in New Issue
Block a user