* initial knowledge

* WIP

* Adding core knowledge sources

* Improve types and better support for file paths

* added additional sources

* fix linting

* update yaml to include optional deps

* adding in lorenze feedback

* ensure embeddings are persisted

* improvements all around Knowledge class

* return this

* properly reset memory

* properly reset memory+knowledge

* consolodation and improvements

* linted

* cleanup rm unused embedder

* fix test

* fix duplicate

* generating cassettes for knowledge test

* updated default embedder

* None embedder to use default on pipeline cloning

* improvements

* fixed text_file_knowledge

* mypysrc fixes

* type check fixes

* added extra cassette

* just mocks

* linted

* mock knowledge query to not spin up db

* linted

* verbose run

* put a flag

* fix

* adding docs

* better docs

* improvements from review

* more docs

* linted

* rm print

* more fixes

* clearer docs

* added docstrings and type hints for cli

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
Co-authored-by: Lorenze Jay <lorenzejaytech@gmail.com>
This commit is contained in:
Brandon Hancock (bhancock_ai)
2024-11-20 18:40:08 -05:00
committed by GitHub
parent fde1ee45f9
commit 14a36d3f5e
37 changed files with 2302 additions and 266 deletions

View File

@@ -0,0 +1,44 @@
import csv
from typing import Dict, List
from pathlib import Path
from crewai.knowledge.source.base_file_knowledge_source import BaseFileKnowledgeSource
class CSVKnowledgeSource(BaseFileKnowledgeSource):
"""A knowledge source that stores and queries CSV file content using embeddings."""
def load_content(self) -> Dict[Path, str]:
"""Load and preprocess CSV file content."""
super().load_content() # Validate the file path
file_path = (
self.file_path[0] if isinstance(self.file_path, list) else self.file_path
)
file_path = Path(file_path) if isinstance(file_path, str) else file_path
with open(file_path, "r", encoding="utf-8") as csvfile:
reader = csv.reader(csvfile)
content = ""
for row in reader:
content += " ".join(row) + "\n"
return {file_path: content}
def add(self) -> None:
"""
Add CSV file content to the knowledge source, chunk it, compute embeddings,
and save the embeddings.
"""
content_str = (
str(self.content) if isinstance(self.content, dict) else self.content
)
new_chunks = self._chunk_text(content_str)
self.chunks.extend(new_chunks)
self.save_documents(metadata=self.metadata)
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]