mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 08:08:32 +00:00
99% done. Need to make docs match new example
This commit is contained in:
177
docs/concepts/lite-agent.mdx
Normal file
177
docs/concepts/lite-agent.mdx
Normal file
@@ -0,0 +1,177 @@
|
||||
---
|
||||
title: LiteAgent
|
||||
description: A lightweight, single-purpose agent for simple autonomous tasks within the CrewAI framework.
|
||||
icon: feather
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
A `LiteAgent` is a streamlined version of CrewAI's Agent, designed for simpler, standalone tasks that don't require the full complexity of a crew-based workflow. It's perfect for quick automations, single-purpose tasks, or when you need a lightweight solution.
|
||||
|
||||
<Tip>
|
||||
Think of a LiteAgent as a specialized worker that excels at individual tasks. While regular Agents are team players in a crew, LiteAgents are solo performers optimized for specific operations.
|
||||
</Tip>
|
||||
|
||||
## LiteAgent Attributes
|
||||
|
||||
| Attribute | Parameter | Type | Description |
|
||||
| :------------------------------------ | :----------------- | :---------------------- | :--------------------------------------------------------------------------------------------- |
|
||||
| **Role** | `role` | `str` | Defines the agent's function and expertise. |
|
||||
| **Goal** | `goal` | `str` | The specific objective that guides the agent's actions. |
|
||||
| **Backstory** | `backstory` | `str` | Provides context and personality to the agent. |
|
||||
| **LLM** _(optional)_ | `llm` | `Union[str, LLM, Any]` | Language model powering the agent. Defaults to "gpt-4". |
|
||||
| **Tools** _(optional)_ | `tools` | `List[BaseTool]` | Capabilities available to the agent. Defaults to an empty list. |
|
||||
| **Verbose** _(optional)_ | `verbose` | `bool` | Enable detailed execution logs. Default is False. |
|
||||
| **Response Format** _(optional)_ | `response_format` | `Type[BaseModel]` | Pydantic model for structured output. Optional. |
|
||||
|
||||
## Creating a LiteAgent
|
||||
|
||||
Here's a simple example of creating and using a LiteAgent in a flow:
|
||||
|
||||
```python
|
||||
from typing import List
|
||||
from pydantic import BaseModel, Field
|
||||
from crewai.flow.flow import Flow, start, listen
|
||||
from crewai.lite_agent import LiteAgent
|
||||
from crewai.tools import WebSearchTool
|
||||
|
||||
# Define a structured output format
|
||||
class MarketAnalysis(BaseModel):
|
||||
key_trends: List[str] = Field(description="List of identified market trends")
|
||||
market_size: str = Field(description="Estimated market size")
|
||||
competitors: List[str] = Field(description="Major competitors in the space")
|
||||
|
||||
# Define flow state
|
||||
class MarketResearchState(BaseModel):
|
||||
product: str = ""
|
||||
analysis: MarketAnalysis = None
|
||||
|
||||
# Create a flow class
|
||||
class MarketResearchFlow(Flow[MarketResearchState]):
|
||||
@start()
|
||||
def initialize_research(self, product: str):
|
||||
print(f"Starting market research for {product}")
|
||||
self.state.product = product
|
||||
|
||||
@listen(initialize_research)
|
||||
async def analyze_market(self):
|
||||
# Create a LiteAgent for market research
|
||||
analyst = LiteAgent(
|
||||
role="Market Research Analyst",
|
||||
goal=f"Analyze the market for {self.state.product}",
|
||||
backstory="You are an experienced market analyst with expertise in "
|
||||
"identifying market trends and opportunities.",
|
||||
tools=[WebSearchTool()],
|
||||
verbose=True,
|
||||
response_format=MarketAnalysis
|
||||
)
|
||||
|
||||
# Define the research query
|
||||
query = f"""
|
||||
Research the market for {self.state.product}. Include:
|
||||
1. Key market trends
|
||||
2. Market size
|
||||
3. Major competitors
|
||||
|
||||
Format your response according to the specified structure.
|
||||
"""
|
||||
|
||||
# Execute the analysis
|
||||
result = await analyst.kickoff_async(query)
|
||||
self.state.analysis = result.pydantic
|
||||
return result.pydantic
|
||||
|
||||
@listen(analyze_market)
|
||||
def present_results(self):
|
||||
analysis = self.state.analysis
|
||||
print("\nMarket Analysis Results")
|
||||
print("=====================")
|
||||
|
||||
print("\nKey Market Trends:")
|
||||
for trend in analysis.key_trends:
|
||||
print(f"- {trend}")
|
||||
|
||||
print(f"\nMarket Size: {analysis.market_size}")
|
||||
|
||||
print("\nMajor Competitors:")
|
||||
for competitor in analysis.competitors:
|
||||
print(f"- {competitor}")
|
||||
|
||||
# Usage example
|
||||
import asyncio
|
||||
|
||||
async def run_flow():
|
||||
flow = MarketResearchFlow()
|
||||
result = await flow.kickoff(inputs={"product": "AI-powered chatbots"})
|
||||
return result
|
||||
|
||||
# Run the flow
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(run_flow())
|
||||
|
||||
## Key Features
|
||||
|
||||
### 1. Simplified Setup
|
||||
Unlike regular Agents, LiteAgents are designed for quick setup and standalone operation. They don't require crew configuration or task management.
|
||||
|
||||
### 2. Structured Output
|
||||
LiteAgents support Pydantic models for response formatting, making it easy to get structured, type-safe data from your agent's operations.
|
||||
|
||||
### 3. Tool Integration
|
||||
Just like regular Agents, LiteAgents can use tools to enhance their capabilities:
|
||||
```python
|
||||
from crewai.tools import SerperDevTool, CalculatorTool
|
||||
|
||||
agent = LiteAgent(
|
||||
role="Research Assistant",
|
||||
goal="Find and analyze information",
|
||||
tools=[SerperDevTool(), CalculatorTool()],
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
### 4. Async Support
|
||||
LiteAgents support asynchronous execution through the `kickoff_async` method, making them suitable for non-blocking operations in your application.
|
||||
|
||||
## Response Formatting
|
||||
|
||||
LiteAgents support structured output through Pydantic models using the `response_format` parameter. This feature ensures type safety and consistent output structure, making it easier to work with agent responses in your application.
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
class SearchResult(BaseModel):
|
||||
title: str = Field(description="The title of the found content")
|
||||
summary: str = Field(description="A brief summary of the content")
|
||||
relevance_score: float = Field(description="Relevance score from 0 to 1")
|
||||
|
||||
agent = LiteAgent(
|
||||
role="Search Specialist",
|
||||
goal="Find and summarize relevant information",
|
||||
response_format=SearchResult
|
||||
)
|
||||
|
||||
result = await agent.kickoff_async("Find information about quantum computing")
|
||||
print(f"Title: {result.pydantic.title}")
|
||||
print(f"Summary: {result.pydantic.summary}")
|
||||
print(f"Relevance: {result.pydantic.relevance_score}")
|
||||
```
|
||||
|
||||
### Handling Responses
|
||||
|
||||
When using `response_format`, the agent's response will be available in two forms:
|
||||
|
||||
1. **Raw Response**: Access the unstructured string response
|
||||
```python
|
||||
result = await agent.kickoff_async("Analyze the market")
|
||||
print(result.raw) # Original LLM response
|
||||
```
|
||||
|
||||
2. **Structured Response**: Access the parsed Pydantic model
|
||||
```python
|
||||
print(result.pydantic) # Parsed response as Pydantic model
|
||||
print(result.pydantic.dict()) # Convert to dictionary
|
||||
```
|
||||
|
||||
81
examples/flow_lite_agent.py
Normal file
81
examples/flow_lite_agent.py
Normal file
@@ -0,0 +1,81 @@
|
||||
from typing import List, cast
|
||||
|
||||
from crewai_tools.tools.website_search.website_search_tool import WebsiteSearchTool
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from crewai.flow.flow import Flow, listen, start
|
||||
from crewai.lite_agent import LiteAgent
|
||||
|
||||
|
||||
# Define a structured output format
|
||||
class MarketAnalysis(BaseModel):
|
||||
key_trends: List[str] = Field(description="List of identified market trends")
|
||||
market_size: str = Field(description="Estimated market size")
|
||||
competitors: List[str] = Field(description="Major competitors in the space")
|
||||
|
||||
|
||||
# Define flow state
|
||||
class MarketResearchState(BaseModel):
|
||||
product: str = ""
|
||||
analysis: MarketAnalysis | None = None
|
||||
|
||||
|
||||
# Create a flow class
|
||||
class MarketResearchFlow(Flow[MarketResearchState]):
|
||||
@start()
|
||||
def initialize_research(self):
|
||||
print(f"Starting market research for {self.state.product}")
|
||||
|
||||
@listen(initialize_research)
|
||||
def analyze_market(self):
|
||||
# Create a LiteAgent for market research
|
||||
analyst = LiteAgent(
|
||||
role="Market Research Analyst",
|
||||
goal=f"Analyze the market for {self.state.product}",
|
||||
backstory="You are an experienced market analyst with expertise in "
|
||||
"identifying market trends and opportunities.",
|
||||
llm="gpt-4o",
|
||||
tools=[WebsiteSearchTool()],
|
||||
verbose=True,
|
||||
response_format=MarketAnalysis,
|
||||
)
|
||||
|
||||
# Define the research query
|
||||
query = f"""
|
||||
Research the market for {self.state.product}. Include:
|
||||
1. Key market trends
|
||||
2. Market size
|
||||
3. Major competitors
|
||||
|
||||
Format your response according to the specified structure.
|
||||
"""
|
||||
|
||||
# Execute the analysis
|
||||
result = analyst.kickoff(query)
|
||||
self.state.analysis = cast(MarketAnalysis, result.pydantic)
|
||||
return result.pydantic
|
||||
|
||||
@listen(analyze_market)
|
||||
def present_results(self):
|
||||
analysis = self.state.analysis
|
||||
if analysis is None:
|
||||
print("No analysis results available")
|
||||
return
|
||||
|
||||
print("\nMarket Analysis Results")
|
||||
print("=====================")
|
||||
|
||||
print("\nKey Market Trends:")
|
||||
for trend in analysis.key_trends:
|
||||
print(f"- {trend}")
|
||||
|
||||
print(f"\nMarket Size: {analysis.market_size}")
|
||||
|
||||
print("\nMajor Competitors:")
|
||||
for competitor in analysis.competitors:
|
||||
print(f"- {competitor}")
|
||||
|
||||
|
||||
# Usage example
|
||||
flow = MarketResearchFlow()
|
||||
result = flow.kickoff(inputs={"product": "AI-powered chatbots"})
|
||||
@@ -54,9 +54,6 @@ from crewai.utilities.events.tool_usage_events import (
|
||||
ToolUsageFinishedEvent,
|
||||
ToolUsageStartedEvent,
|
||||
)
|
||||
from crewai.utilities.exceptions.context_window_exceeding_exception import (
|
||||
LLMContextLengthExceededException,
|
||||
)
|
||||
from crewai.utilities.llm_utils import create_llm
|
||||
from crewai.utilities.printer import Printer
|
||||
from crewai.utilities.token_counter_callback import TokenCalcHandler
|
||||
@@ -116,8 +113,8 @@ class LiteAgent(BaseModel):
|
||||
role: str = Field(description="Role of the agent")
|
||||
goal: str = Field(description="Goal of the agent")
|
||||
backstory: str = Field(description="Backstory of the agent")
|
||||
llm: Union[str, InstanceOf[LLM], Any] = Field(
|
||||
description="Language model that will run the agent"
|
||||
llm: Optional[Union[str, InstanceOf[LLM], Any]] = Field(
|
||||
default=None, description="Language model that will run the agent"
|
||||
)
|
||||
tools: List[BaseTool] = Field(
|
||||
default_factory=list, description="Tools at agent's disposal"
|
||||
@@ -199,6 +196,117 @@ class LiteAgent(BaseModel):
|
||||
"""Return the original role for compatibility with tool interfaces."""
|
||||
return self.role
|
||||
|
||||
def kickoff(self, messages: Union[str, List[Dict[str, str]]]) -> LiteAgentOutput:
|
||||
"""
|
||||
Execute the agent with the given messages.
|
||||
|
||||
Args:
|
||||
messages: Either a string query or a list of message dictionaries.
|
||||
If a string is provided, it will be converted to a user message.
|
||||
If a list is provided, each dict should have 'role' and 'content' keys.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
"""
|
||||
# Create agent info for event emission
|
||||
agent_info = {
|
||||
"role": self.role,
|
||||
"goal": self.goal,
|
||||
"backstory": self.backstory,
|
||||
"tools": self._parsed_tools,
|
||||
"verbose": self.verbose,
|
||||
}
|
||||
|
||||
try:
|
||||
# Reset state for this run
|
||||
self._iterations = 0
|
||||
self.tools_results = []
|
||||
|
||||
# Format messages for the LLM
|
||||
self._messages = self._format_messages(messages)
|
||||
|
||||
# Emit event for agent execution start
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionStartedEvent(
|
||||
agent_info=agent_info,
|
||||
tools=self._parsed_tools,
|
||||
messages=messages,
|
||||
),
|
||||
)
|
||||
|
||||
# Execute the agent using invoke loop
|
||||
agent_finish = self._invoke_loop()
|
||||
|
||||
formatted_result: Optional[BaseModel] = None
|
||||
if self.response_format:
|
||||
try:
|
||||
# Cast to BaseModel to ensure type safety
|
||||
result = self.response_format.model_validate_json(
|
||||
agent_finish.output
|
||||
)
|
||||
if isinstance(result, BaseModel):
|
||||
formatted_result = result
|
||||
except Exception as e:
|
||||
self._printer.print(
|
||||
content=f"Failed to parse output into response format: {str(e)}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
# Calculate token usage metrics
|
||||
usage_metrics = self._token_process.get_summary()
|
||||
|
||||
# Create output
|
||||
output = LiteAgentOutput(
|
||||
raw=agent_finish.output,
|
||||
pydantic=formatted_result,
|
||||
agent_role=self.role,
|
||||
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
|
||||
)
|
||||
|
||||
# Emit completion event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionCompletedEvent(
|
||||
agent_info=agent_info,
|
||||
output=agent_finish.output,
|
||||
),
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
except Exception as e:
|
||||
self._printer.print(
|
||||
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
color="red",
|
||||
)
|
||||
handle_unknown_error(self._printer, e)
|
||||
# Emit error event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionErrorEvent(
|
||||
agent_info=agent_info,
|
||||
error=str(e),
|
||||
),
|
||||
)
|
||||
raise e
|
||||
|
||||
async def kickoff_async(
|
||||
self, messages: Union[str, List[Dict[str, str]]]
|
||||
) -> LiteAgentOutput:
|
||||
"""
|
||||
Execute the agent asynchronously with the given messages.
|
||||
|
||||
Args:
|
||||
messages: Either a string query or a list of message dictionaries.
|
||||
If a string is provided, it will be converted to a user message.
|
||||
If a list is provided, each dict should have 'role' and 'content' keys.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
"""
|
||||
return await asyncio.to_thread(self.kickoff, messages)
|
||||
|
||||
def _get_default_system_prompt(self) -> str:
|
||||
"""Get the default system prompt for the agent."""
|
||||
base_prompt = ""
|
||||
@@ -247,140 +355,13 @@ class LiteAgent(BaseModel):
|
||||
|
||||
return formatted_messages
|
||||
|
||||
def kickoff(self, messages: Union[str, List[Dict[str, str]]]) -> LiteAgentOutput:
|
||||
"""
|
||||
Execute the agent with the given messages.
|
||||
|
||||
Args:
|
||||
messages: Either a string query or a list of message dictionaries.
|
||||
If a string is provided, it will be converted to a user message.
|
||||
If a list is provided, each dict should have 'role' and 'content' keys.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
"""
|
||||
return asyncio.run(self.kickoff_async(messages))
|
||||
|
||||
async def kickoff_async(
|
||||
self, messages: Union[str, List[Dict[str, str]]]
|
||||
) -> LiteAgentOutput:
|
||||
"""
|
||||
Execute the agent asynchronously with the given messages.
|
||||
|
||||
Args:
|
||||
messages: Either a string query or a list of message dictionaries.
|
||||
If a string is provided, it will be converted to a user message.
|
||||
If a list is provided, each dict should have 'role' and 'content' keys.
|
||||
|
||||
Returns:
|
||||
LiteAgentOutput: The result of the agent execution.
|
||||
|
||||
Raises:
|
||||
Exception: If agent execution fails
|
||||
"""
|
||||
# Create agent info for event emission
|
||||
agent_info = {
|
||||
"role": self.role,
|
||||
"goal": self.goal,
|
||||
"backstory": self.backstory,
|
||||
"tools": self._parsed_tools,
|
||||
"verbose": self.verbose,
|
||||
}
|
||||
|
||||
try:
|
||||
# Reset state for this run
|
||||
self._iterations = 0
|
||||
self.tools_results = []
|
||||
|
||||
# Format messages for the LLM
|
||||
self._messages = self._format_messages(messages)
|
||||
|
||||
# Emit event for agent execution start
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionStartedEvent(
|
||||
agent_info=agent_info,
|
||||
tools=self._parsed_tools,
|
||||
messages=messages,
|
||||
),
|
||||
)
|
||||
|
||||
# Execute the agent using invoke loop
|
||||
try:
|
||||
agent_finish = await self._invoke_loop()
|
||||
except Exception as e:
|
||||
self._printer.print(
|
||||
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
|
||||
color="red",
|
||||
)
|
||||
handle_unknown_error(self._printer, e)
|
||||
# Emit error event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionErrorEvent(
|
||||
agent_info=agent_info,
|
||||
error=str(e),
|
||||
),
|
||||
)
|
||||
raise e
|
||||
|
||||
formatted_result: Optional[BaseModel] = None
|
||||
if self.response_format:
|
||||
try:
|
||||
# Cast to BaseModel to ensure type safety
|
||||
result = self.response_format.model_validate_json(
|
||||
agent_finish.output
|
||||
)
|
||||
if isinstance(result, BaseModel):
|
||||
formatted_result = result
|
||||
except Exception as e:
|
||||
self._printer.print(
|
||||
content=f"Failed to parse output into response format: {str(e)}",
|
||||
color="yellow",
|
||||
)
|
||||
|
||||
# Calculate token usage metrics
|
||||
usage_metrics = self._token_process.get_summary()
|
||||
|
||||
# Create output
|
||||
output = LiteAgentOutput(
|
||||
raw=agent_finish.output,
|
||||
pydantic=formatted_result,
|
||||
agent_role=self.role,
|
||||
usage_metrics=usage_metrics.model_dump() if usage_metrics else None,
|
||||
)
|
||||
|
||||
# Emit completion event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionCompletedEvent(
|
||||
agent_info=agent_info,
|
||||
output=agent_finish.output,
|
||||
),
|
||||
)
|
||||
|
||||
return output
|
||||
|
||||
except Exception as e:
|
||||
handle_unknown_error(self._printer, e)
|
||||
# Emit error event
|
||||
crewai_event_bus.emit(
|
||||
self,
|
||||
event=LiteAgentExecutionErrorEvent(
|
||||
agent_info=agent_info,
|
||||
error=str(e),
|
||||
),
|
||||
)
|
||||
raise e
|
||||
|
||||
async def _invoke_loop(self) -> AgentFinish:
|
||||
def _invoke_loop(self) -> AgentFinish:
|
||||
"""
|
||||
Run the agent's thought process until it reaches a conclusion or max iterations.
|
||||
|
||||
Returns:
|
||||
str: The final result of the agent execution.
|
||||
AgentFinish: The final result of the agent execution.
|
||||
"""
|
||||
|
||||
# Execute the agent loop
|
||||
formatted_answer = None
|
||||
while not isinstance(formatted_answer, AgentFinish):
|
||||
@@ -518,10 +499,6 @@ class LiteAgent(BaseModel):
|
||||
finally:
|
||||
self._iterations += 1
|
||||
|
||||
# During the invoke loop, formatted_answer alternates between AgentAction
|
||||
# (when the agent is using tools) and eventually becomes AgentFinish
|
||||
# (when the agent reaches a final answer). This assertion confirms we've
|
||||
# reached a final answer and helps type checking understand this transition.
|
||||
assert isinstance(formatted_answer, AgentFinish)
|
||||
self._show_logs(formatted_answer)
|
||||
return formatted_answer
|
||||
|
||||
Reference in New Issue
Block a user