feat: add async execution support to agent executor

This commit is contained in:
Greyson Lalonde
2025-12-02 09:30:56 -05:00
parent 9c4126e0d8
commit 0c4a0e1fda
2 changed files with 218 additions and 12 deletions

View File

@@ -28,6 +28,7 @@ from crewai.hooks.llm_hooks import (
get_before_llm_call_hooks,
)
from crewai.utilities.agent_utils import (
aget_llm_response,
enforce_rpm_limit,
format_message_for_llm,
get_llm_response,
@@ -43,7 +44,10 @@ from crewai.utilities.agent_utils import (
from crewai.utilities.constants import TRAINING_DATA_FILE
from crewai.utilities.i18n import I18N, get_i18n
from crewai.utilities.printer import Printer
from crewai.utilities.tool_utils import execute_tool_and_check_finality
from crewai.utilities.tool_utils import (
aexecute_tool_and_check_finality,
execute_tool_and_check_finality,
)
from crewai.utilities.training_handler import CrewTrainingHandler
@@ -134,8 +138,8 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self.messages: list[LLMMessage] = []
self.iterations = 0
self.log_error_after = 3
self.before_llm_call_hooks: list[Callable] = []
self.after_llm_call_hooks: list[Callable] = []
self.before_llm_call_hooks: list[Callable[..., Any]] = []
self.after_llm_call_hooks: list[Callable[..., Any]] = []
self.before_llm_call_hooks.extend(get_before_llm_call_hooks())
self.after_llm_call_hooks.extend(get_after_llm_call_hooks())
if self.llm:
@@ -312,6 +316,154 @@ class CrewAgentExecutor(CrewAgentExecutorMixin):
self._show_logs(formatted_answer)
return formatted_answer
async def ainvoke(self, inputs: dict[str, Any]) -> dict[str, Any]:
"""Execute the agent asynchronously with given inputs.
Args:
inputs: Input dictionary containing prompt variables.
Returns:
Dictionary with agent output.
"""
if "system" in self.prompt:
system_prompt = self._format_prompt(
cast(str, self.prompt.get("system", "")), inputs
)
user_prompt = self._format_prompt(
cast(str, self.prompt.get("user", "")), inputs
)
self.messages.append(format_message_for_llm(system_prompt, role="system"))
self.messages.append(format_message_for_llm(user_prompt))
else:
user_prompt = self._format_prompt(self.prompt.get("prompt", ""), inputs)
self.messages.append(format_message_for_llm(user_prompt))
self._show_start_logs()
self.ask_for_human_input = bool(inputs.get("ask_for_human_input", False))
try:
formatted_answer = await self._ainvoke_loop()
except AssertionError:
self._printer.print(
content="Agent failed to reach a final answer. This is likely a bug - please report it.",
color="red",
)
raise
except Exception as e:
handle_unknown_error(self._printer, e)
raise
if self.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
self._create_external_memory(formatted_answer)
return {"output": formatted_answer.output}
async def _ainvoke_loop(self) -> AgentFinish:
"""Execute agent loop asynchronously until completion.
Returns:
Final answer from the agent.
"""
formatted_answer = None
while not isinstance(formatted_answer, AgentFinish):
try:
if has_reached_max_iterations(self.iterations, self.max_iter):
formatted_answer = handle_max_iterations_exceeded(
formatted_answer,
printer=self._printer,
i18n=self._i18n,
messages=self.messages,
llm=self.llm,
callbacks=self.callbacks,
)
break
enforce_rpm_limit(self.request_within_rpm_limit)
answer = await aget_llm_response(
llm=self.llm,
messages=self.messages,
callbacks=self.callbacks,
printer=self._printer,
from_task=self.task,
from_agent=self.agent,
response_model=self.response_model,
executor_context=self,
)
formatted_answer = process_llm_response(answer, self.use_stop_words) # type: ignore[assignment]
if isinstance(formatted_answer, AgentAction):
fingerprint_context = {}
if (
self.agent
and hasattr(self.agent, "security_config")
and hasattr(self.agent.security_config, "fingerprint")
):
fingerprint_context = {
"agent_fingerprint": str(
self.agent.security_config.fingerprint
)
}
tool_result = await aexecute_tool_and_check_finality(
agent_action=formatted_answer,
fingerprint_context=fingerprint_context,
tools=self.tools,
i18n=self._i18n,
agent_key=self.agent.key if self.agent else None,
agent_role=self.agent.role if self.agent else None,
tools_handler=self.tools_handler,
task=self.task,
agent=self.agent,
function_calling_llm=self.function_calling_llm,
crew=self.crew,
)
formatted_answer = self._handle_agent_action(
formatted_answer, tool_result
)
self._invoke_step_callback(formatted_answer) # type: ignore[arg-type]
self._append_message(formatted_answer.text) # type: ignore[union-attr,attr-defined]
except OutputParserError as e:
formatted_answer = handle_output_parser_exception( # type: ignore[assignment]
e=e,
messages=self.messages,
iterations=self.iterations,
log_error_after=self.log_error_after,
printer=self._printer,
)
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
raise e
if is_context_length_exceeded(e):
handle_context_length(
respect_context_window=self.respect_context_window,
printer=self._printer,
messages=self.messages,
llm=self.llm,
callbacks=self.callbacks,
i18n=self._i18n,
)
continue
handle_unknown_error(self._printer, e)
raise e
finally:
self.iterations += 1
if not isinstance(formatted_answer, AgentFinish):
raise RuntimeError(
"Agent execution ended without reaching a final answer. "
f"Got {type(formatted_answer).__name__} instead of AgentFinish."
)
self._show_logs(formatted_answer)
return formatted_answer
def _handle_agent_action(
self, formatted_answer: AgentAction, tool_result: ToolResult
) -> AgentAction | AgentFinish:

View File

@@ -242,17 +242,17 @@ def get_llm_response(
"""Call the LLM and return the response, handling any invalid responses.
Args:
llm: The LLM instance to call
messages: The messages to send to the LLM
callbacks: List of callbacks for the LLM call
printer: Printer instance for output
from_task: Optional task context for the LLM call
from_agent: Optional agent context for the LLM call
response_model: Optional Pydantic model for structured outputs
executor_context: Optional executor context for hook invocation
llm: The LLM instance to call.
messages: The messages to send to the LLM.
callbacks: List of callbacks for the LLM call.
printer: Printer instance for output.
from_task: Optional task context for the LLM call.
from_agent: Optional agent context for the LLM call.
response_model: Optional Pydantic model for structured outputs.
executor_context: Optional executor context for hook invocation.
Returns:
The response from the LLM as a string
The response from the LLM as a string.
Raises:
Exception: If an error occurs.
@@ -284,6 +284,60 @@ def get_llm_response(
return _setup_after_llm_call_hooks(executor_context, answer, printer)
async def aget_llm_response(
llm: LLM | BaseLLM,
messages: list[LLMMessage],
callbacks: list[TokenCalcHandler],
printer: Printer,
from_task: Task | None = None,
from_agent: Agent | LiteAgent | None = None,
response_model: type[BaseModel] | None = None,
executor_context: CrewAgentExecutor | None = None,
) -> str:
"""Call the LLM asynchronously and return the response.
Args:
llm: The LLM instance to call.
messages: The messages to send to the LLM.
callbacks: List of callbacks for the LLM call.
printer: Printer instance for output.
from_task: Optional task context for the LLM call.
from_agent: Optional agent context for the LLM call.
response_model: Optional Pydantic model for structured outputs.
executor_context: Optional executor context for hook invocation.
Returns:
The response from the LLM as a string.
Raises:
Exception: If an error occurs.
ValueError: If the response is None or empty.
"""
if executor_context is not None:
if not _setup_before_llm_call_hooks(executor_context, printer):
raise ValueError("LLM call blocked by before_llm_call hook")
messages = executor_context.messages
try:
answer = await llm.acall(
messages,
callbacks=callbacks,
from_task=from_task,
from_agent=from_agent, # type: ignore[arg-type]
response_model=response_model,
)
except Exception as e:
raise e
if not answer:
printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError("Invalid response from LLM call - None or empty.")
return _setup_after_llm_call_hooks(executor_context, answer, printer)
def process_llm_response(
answer: str, use_stop_words: bool
) -> AgentAction | AgentFinish: