Files
crewAI/src/crewai/agent.py
Braelyn Boynton fd7de7f2eb Revert "Revert "cleanup""
This reverts commit cea33d9a5d.
2024-04-19 19:08:22 -07:00

372 lines
14 KiB
Python

import os
import uuid
from typing import Any, Dict, List, Optional, Tuple
from langchain.agents.agent import RunnableAgent
from langchain.agents.tools import tool as LangChainTool
from langchain.tools.render import render_text_description
from langchain_core.agents import AgentAction
from langchain_core.callbacks import BaseCallbackHandler
from langchain_openai import ChatOpenAI
from pydantic import (
UUID4,
BaseModel,
ConfigDict,
Field,
InstanceOf,
PrivateAttr,
field_validator,
model_validator,
)
from pydantic_core import PydanticCustomError
from crewai.agents import CacheHandler, CrewAgentExecutor, CrewAgentParser, ToolsHandler
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.utilities import I18N, Logger, Prompts, RPMController
from crewai.utilities.token_counter_callback import TokenCalcHandler, TokenProcess
from agentops.agent import track_agent
@track_agent()
class Agent(BaseModel):
"""Represents an agent in a system.
Each agent has a role, a goal, a backstory, and an optional language model (llm).
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.
Attributes:
agent_executor: An instance of the CrewAgentExecutor class.
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
config: Dict representation of agent configuration.
llm: The language model that will run the agent.
function_calling_llm: The language model that will the tool calling for this agent, it overrides the crew function_calling_llm.
max_iter: Maximum number of iterations for an agent to execute a task.
memory: Whether the agent should have memory or not.
max_rpm: Maximum number of requests per minute for the agent execution to be respected.
verbose: Whether the agent execution should be in verbose mode.
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
callbacks: A list of callback functions from the langchain library that are triggered during the agent's execution process
"""
__hash__ = object.__hash__ # type: ignore
_logger: Logger = PrivateAttr()
_rpm_controller: RPMController = PrivateAttr(default=None)
_request_within_rpm_limit: Any = PrivateAttr(default=None)
_token_process: TokenProcess = TokenProcess()
agent_ops_agent_name: str = None
agent_ops_agent_id: str = None
formatting_errors: int = 0
model_config = ConfigDict(arbitrary_types_allowed=True)
id: UUID4 = Field(
default_factory=uuid.uuid4,
frozen=True,
description="Unique identifier for the object, not set by user.",
)
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
cache: bool = Field(
default=True,
description="Whether the agent should use a cache for tool usage.",
)
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent",
default=None,
)
max_rpm: Optional[int] = Field(
default=None,
description="Maximum number of requests per minute for the agent execution to be respected.",
)
verbose: bool = Field(
default=False, description="Verbose mode for the Agent Execution"
)
allow_delegation: bool = Field(
default=True, description="Allow delegation of tasks to agents"
)
tools: Optional[List[Any]] = Field(
default_factory=list, description="Tools at agents disposal"
)
max_iter: Optional[int] = Field(
default=25, description="Maximum iterations for an agent to execute a task"
)
max_execution_time: Optional[int] = Field(
default=None,
description="Maximum execution time for an agent to execute a task",
)
agent_executor: InstanceOf[CrewAgentExecutor] = Field(
default=None, description="An instance of the CrewAgentExecutor class."
)
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
tools_handler: InstanceOf[ToolsHandler] = Field(
default=None, description="An instance of the ToolsHandler class."
)
cache_handler: InstanceOf[CacheHandler] = Field(
default=None, description="An instance of the CacheHandler class."
)
step_callback: Optional[Any] = Field(
default=None,
description="Callback to be executed after each step of the agent execution.",
)
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
llm: Any = Field(
default_factory=lambda: ChatOpenAI(
model=os.environ.get("OPENAI_MODEL_NAME", "gpt-4")
),
description="Language model that will run the agent.",
)
function_calling_llm: Optional[Any] = Field(
description="Language model that will run the agent.", default=None
)
callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
default=None, description="Callback to be executed"
)
_original_role: str | None = None
_original_goal: str | None = None
_original_backstory: str | None = None
def __init__(__pydantic_self__, **data):
config = data.pop("config", {})
super().__init__(**config, **data)
__pydantic_self__.agent_ops_agent_name = __pydantic_self__.role
@field_validator("id", mode="before")
@classmethod
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
if v:
raise PydanticCustomError(
"may_not_set_field", "This field is not to be set by the user.", {}
)
@model_validator(mode="after")
def set_attributes_based_on_config(self) -> "Agent":
"""Set attributes based on the agent configuration."""
if self.config:
for key, value in self.config.items():
setattr(self, key, value)
return self
@model_validator(mode="after")
def set_private_attrs(self):
"""Set private attributes."""
self._logger = Logger(self.verbose)
if self.max_rpm and not self._rpm_controller:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
return self
@model_validator(mode="after")
def set_agent_executor(self) -> "Agent":
"""set agent executor is set."""
if hasattr(self.llm, "model_name"):
token_handler = TokenCalcHandler(self.llm.model_name, self._token_process)
# Ensure self.llm.callbacks is a list
if not isinstance(self.llm.callbacks, list):
self.llm.callbacks = []
# Check if an instance of TokenCalcHandler already exists in the list
if not any(isinstance(handler, TokenCalcHandler) for handler in self.llm.callbacks):
self.llm.callbacks.append(token_handler)
if not self.agent_executor:
if not self.cache_handler:
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
return self
def execute_task(
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> str:
"""Execute a task with the agent.
Args:
task: Task to execute.
context: Context to execute the task in.
tools: Tools to use for the task.
Returns:
Output of the agent
"""
if self.tools_handler:
self.tools_handler.last_used_tool = {}
task_prompt = task.prompt()
if context:
task_prompt = self.i18n.slice("task_with_context").format(
task=task_prompt, context=context
)
if self.crew and self.crew.memory:
contextual_memory = ContextualMemory(
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
tools = tools or self.tools
parsed_tools = self._parse_tools(tools)
self.create_agent_executor(tools=tools)
self.agent_executor.tools = parsed_tools
self.agent_executor.task = task
self.agent_executor.tools_description = render_text_description(parsed_tools)
self.agent_executor.tools_names = self.__tools_names(parsed_tools)
result = self.agent_executor.invoke(
{
"input": task_prompt,
"tool_names": self.agent_executor.tools_names,
"tools": self.agent_executor.tools_description,
}
)["output"]
if self.max_rpm:
self._rpm_controller.stop_rpm_counter()
return result
def set_cache_handler(self, cache_handler: CacheHandler) -> None:
"""Set the cache handler for the agent.
Args:
cache_handler: An instance of the CacheHandler class.
"""
self.tools_handler = ToolsHandler()
if self.cache:
self.cache_handler = cache_handler
self.tools_handler.cache = cache_handler
self.create_agent_executor()
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
"""Set the rpm controller for the agent.
Args:
rpm_controller: An instance of the RPMController class.
"""
if not self._rpm_controller:
self._rpm_controller = rpm_controller
self.create_agent_executor()
def create_agent_executor(self, tools=None) -> None:
"""Create an agent executor for the agent.
Returns:
An instance of the CrewAgentExecutor class.
"""
tools = tools or self.tools
agent_args = {
"input": lambda x: x["input"],
"tools": lambda x: x["tools"],
"tool_names": lambda x: x["tool_names"],
"agent_scratchpad": lambda x: self.format_log_to_str(
x["intermediate_steps"]
),
}
executor_args = {
"llm": self.llm,
"i18n": self.i18n,
"crew": self.crew,
"crew_agent": self,
"tools": self._parse_tools(tools),
"verbose": self.verbose,
"original_tools": tools,
"handle_parsing_errors": True,
"max_iterations": self.max_iter,
"max_execution_time": self.max_execution_time,
"step_callback": self.step_callback,
"tools_handler": self.tools_handler,
"function_calling_llm": self.function_calling_llm,
"callbacks": self.callbacks,
}
if self._rpm_controller:
executor_args[
"request_within_rpm_limit"
] = self._rpm_controller.check_or_wait
prompt = Prompts(i18n=self.i18n, tools=tools).task_execution()
execution_prompt = prompt.partial(
goal=self.goal,
role=self.role,
backstory=self.backstory,
)
bind = self.llm.bind(stop=[self.i18n.slice("observation")])
inner_agent = agent_args | execution_prompt | bind | CrewAgentParser(agent=self)
self.agent_executor = CrewAgentExecutor(
agent=RunnableAgent(runnable=inner_agent), **executor_args
)
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolate inputs into the agent description and backstory."""
if self._original_role is None:
self._original_role = self.role
if self._original_goal is None:
self._original_goal = self.goal
if self._original_backstory is None:
self._original_backstory = self.backstory
if inputs:
self.role = self._original_role.format(**inputs)
self.goal = self._original_goal.format(**inputs)
self.backstory = self._original_backstory.format(**inputs)
def increment_formatting_errors(self) -> None:
"""Count the formatting errors of the agent."""
self.formatting_errors += 1
def format_log_to_str(
self,
intermediate_steps: List[Tuple[AgentAction, str]],
observation_prefix: str = "Observation: ",
llm_prefix: str = "",
) -> str:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\n{observation_prefix}{observation}\n{llm_prefix}"
return thoughts
def _parse_tools(self, tools: List[Any]) -> List[LangChainTool]:
"""Parse tools to be used for the task."""
# tentatively try to import from crewai_tools import BaseTool as CrewAITool
tools_list = []
try:
from crewai_tools import BaseTool as CrewAITool
for tool in tools:
if isinstance(tool, CrewAITool):
tools_list.append(tool.to_langchain())
else:
tools_list.append(tool)
except ModuleNotFoundError:
for tool in tools:
tools_list.append(tool)
return tools_list
@staticmethod
def __tools_names(tools) -> str:
return ", ".join([t.name for t in tools])
def __repr__(self):
return f"Agent(role={self.role}, goal={self.goal}, backstory={self.backstory})"