Files
crewAI/src/crewai/agents/crew_agent_executor.py
Devin AI f9fe20ec76 fix: prevent kickoff hanging on LLM auth failures
- Move iteration counter increment before LLM call
- Add proper error handling for LLM failures
- Implement max iterations check and handling
- Add error messaging for failed LLM calls

This prevents the agent from hanging in an infinite loop when LLM
authentication fails by properly incrementing the iteration counter
and respecting the max_iterations limit.

Co-Authored-By: brandon@crewai.com <brandon@crewai.com>
2025-01-21 18:00:53 +00:00

517 lines
22 KiB
Python

import json
import re
from dataclasses import dataclass
from typing import Any, Dict, List, Union
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.agent_builder.base_agent_executor_mixin import CrewAgentExecutorMixin
from crewai.agents.parser import (
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE,
AgentAction,
AgentFinish,
CrewAgentParser,
OutputParserException,
)
from crewai.agents.tools_handler import ToolsHandler
from crewai.tools.base_tool import BaseTool
from crewai.tools.tool_usage import ToolUsage, ToolUsageErrorException
from crewai.utilities import I18N, Printer
from crewai.utilities.constants import MAX_LLM_RETRY, TRAINING_DATA_FILE
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
from crewai.utilities.logger import Logger
from crewai.utilities.training_handler import CrewTrainingHandler
@dataclass
class ToolResult:
result: Any
result_as_answer: bool
class CrewAgentExecutor(CrewAgentExecutorMixin):
_logger: Logger = Logger()
def __init__(
self,
llm: Any,
task: Any,
crew: Any,
agent: BaseAgent,
prompt: dict[str, str],
max_iter: int,
tools: List[BaseTool],
tools_names: str,
stop_words: List[str],
tools_description: str,
tools_handler: ToolsHandler,
step_callback: Any = None,
original_tools: List[Any] = [],
function_calling_llm: Any = None,
respect_context_window: bool = False,
request_within_rpm_limit: Any = None,
callbacks: List[Any] = [],
):
self._i18n: I18N = I18N()
self.llm = llm
self.task = task
self.agent = agent
self.crew = crew
self.prompt = prompt
self.tools = tools
self.tools_names = tools_names
self.stop = stop_words
self.max_iter = max_iter
self.callbacks = callbacks
self._printer: Printer = Printer()
self.tools_handler = tools_handler
self.original_tools = original_tools
self.step_callback = step_callback
self.use_stop_words = self.llm.supports_stop_words()
self.tools_description = tools_description
self.function_calling_llm = function_calling_llm
self.respect_context_window = respect_context_window
self.request_within_rpm_limit = request_within_rpm_limit
self.ask_for_human_input = False
self.messages: List[Dict[str, str]] = []
self.iterations = 0
self.log_error_after = 3
self.have_forced_answer = False
self.tool_name_to_tool_map: Dict[str, BaseTool] = {
tool.name: tool for tool in self.tools
}
if self.llm.stop:
self.llm.stop = list(set(self.llm.stop + self.stop))
else:
self.llm.stop = self.stop
def invoke(self, inputs: Dict[str, str]) -> Dict[str, Any]:
if "system" in self.prompt:
system_prompt = self._format_prompt(self.prompt.get("system", ""), inputs)
user_prompt = self._format_prompt(self.prompt.get("user", ""), inputs)
self.messages.append(self._format_msg(system_prompt, role="system"))
self.messages.append(self._format_msg(user_prompt))
else:
user_prompt = self._format_prompt(self.prompt.get("prompt", ""), inputs)
self.messages.append(self._format_msg(user_prompt))
self._show_start_logs()
self.ask_for_human_input = bool(inputs.get("ask_for_human_input", False))
formatted_answer = self._invoke_loop()
if self.ask_for_human_input:
formatted_answer = self._handle_human_feedback(formatted_answer)
self._create_short_term_memory(formatted_answer)
self._create_long_term_memory(formatted_answer)
return {"output": formatted_answer.output}
def _has_reached_max_iterations(self) -> bool:
"""Check if the maximum number of iterations has been reached."""
return self.iterations >= self.max_iter
def _handle_max_iterations_exceeded(self, formatted_answer) -> AgentFinish:
"""Handle the case when maximum iterations have been exceeded."""
error_msg = f"Agent has exceeded maximum iterations ({self.max_iter}). This could be due to repeated failures or infinite loops."
self._printer.print(content=error_msg, color="red")
return AgentFinish(
thought="Maximum iterations exceeded",
output=error_msg,
text=formatted_answer.text if formatted_answer else error_msg
)
def _invoke_loop(self, formatted_answer=None):
try:
while not isinstance(formatted_answer, AgentFinish):
if not self.request_within_rpm_limit or self.request_within_rpm_limit():
# Increment iteration counter before LLM call to prevent hanging
self.iterations += 1
try:
answer = self.llm.call(
self.messages,
callbacks=self.callbacks,
)
except Exception as llm_error:
self._printer.print(
content=f"LLM call failed: {str(llm_error)}",
color="red",
)
# Check if we've reached max iterations to avoid infinite loops
if self._has_reached_max_iterations():
return self._handle_max_iterations_exceeded(formatted_answer)
# Re-raise authentication and other critical errors
raise
if answer is None or answer == "":
self._printer.print(
content="Received None or empty response from LLM call.",
color="red",
)
raise ValueError(
"Invalid response from LLM call - None or empty."
)
if not self.use_stop_words:
try:
self._format_answer(answer)
except OutputParserException as e:
if (
FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE
in e.error
):
answer = answer.split("Observation:")[0].strip()
formatted_answer = self._format_answer(answer)
if isinstance(formatted_answer, AgentAction):
tool_result = self._execute_tool_and_check_finality(
formatted_answer
)
# Directly append the result to the messages if the
# tool is "Add image to content" in case of multimodal
# agents
if formatted_answer.tool == self._i18n.tools("add_image")["name"]:
self.messages.append(tool_result.result)
continue
else:
if self.step_callback:
self.step_callback(tool_result)
formatted_answer.text += f"\nObservation: {tool_result.result}"
formatted_answer.result = tool_result.result
if tool_result.result_as_answer:
return AgentFinish(
thought="",
output=tool_result.result,
text=formatted_answer.text,
)
self._show_logs(formatted_answer)
if self.step_callback:
self.step_callback(formatted_answer)
if self._should_force_answer():
if self.have_forced_answer:
return AgentFinish(
thought="",
output=self._i18n.errors(
"force_final_answer_error"
).format(formatted_answer.text),
text=formatted_answer.text,
)
else:
formatted_answer.text += (
f'\n{self._i18n.errors("force_final_answer")}'
)
self.have_forced_answer = True
self.messages.append(
self._format_msg(formatted_answer.text, role="assistant")
)
except OutputParserException as e:
self.messages.append({"role": "user", "content": e.error})
if self.iterations > self.log_error_after:
self._printer.print(
content=f"Error parsing LLM output, agent will retry: {e.error}",
color="red",
)
return self._invoke_loop(formatted_answer)
except Exception as e:
if LLMContextLengthExceededException(str(e))._is_context_limit_error(
str(e)
):
self._handle_context_length()
return self._invoke_loop(formatted_answer)
else:
raise e
self._show_logs(formatted_answer)
return formatted_answer
def _show_start_logs(self):
if self.agent is None:
raise ValueError("Agent cannot be None")
if self.agent.verbose or (
hasattr(self, "crew") and getattr(self.crew, "verbose", False)
):
agent_role = self.agent.role.split("\n")[0]
self._printer.print(
content=f"\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
self._printer.print(
content=f"\033[95m## Task:\033[00m \033[92m{self.task.description}\033[00m"
)
def _show_logs(self, formatted_answer: Union[AgentAction, AgentFinish]):
if self.agent is None:
raise ValueError("Agent cannot be None")
if self.agent.verbose or (
hasattr(self, "crew") and getattr(self.crew, "verbose", False)
):
agent_role = self.agent.role.split("\n")[0]
if isinstance(formatted_answer, AgentAction):
thought = re.sub(r"\n+", "\n", formatted_answer.thought)
formatted_json = json.dumps(
formatted_answer.tool_input,
indent=2,
ensure_ascii=False,
)
self._printer.print(
content=f"\n\n\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
if thought and thought != "":
self._printer.print(
content=f"\033[95m## Thought:\033[00m \033[92m{thought}\033[00m"
)
self._printer.print(
content=f"\033[95m## Using tool:\033[00m \033[92m{formatted_answer.tool}\033[00m"
)
self._printer.print(
content=f"\033[95m## Tool Input:\033[00m \033[92m\n{formatted_json}\033[00m"
)
self._printer.print(
content=f"\033[95m## Tool Output:\033[00m \033[92m\n{formatted_answer.result}\033[00m"
)
elif isinstance(formatted_answer, AgentFinish):
self._printer.print(
content=f"\n\n\033[1m\033[95m# Agent:\033[00m \033[1m\033[92m{agent_role}\033[00m"
)
self._printer.print(
content=f"\033[95m## Final Answer:\033[00m \033[92m\n{formatted_answer.output}\033[00m\n\n"
)
def _execute_tool_and_check_finality(self, agent_action: AgentAction) -> ToolResult:
tool_usage = ToolUsage(
tools_handler=self.tools_handler,
tools=self.tools,
original_tools=self.original_tools,
tools_description=self.tools_description,
tools_names=self.tools_names,
function_calling_llm=self.function_calling_llm,
task=self.task, # type: ignore[arg-type]
agent=self.agent,
action=agent_action,
)
tool_calling = tool_usage.parse(agent_action.text)
if isinstance(tool_calling, ToolUsageErrorException):
tool_result = tool_calling.message
return ToolResult(result=tool_result, result_as_answer=False)
else:
if tool_calling.tool_name.casefold().strip() in [
name.casefold().strip() for name in self.tool_name_to_tool_map
] or tool_calling.tool_name.casefold().replace("_", " ") in [
name.casefold().strip() for name in self.tool_name_to_tool_map
]:
tool_result = tool_usage.use(tool_calling, agent_action.text)
tool = self.tool_name_to_tool_map.get(tool_calling.tool_name)
if tool:
return ToolResult(
result=tool_result, result_as_answer=tool.result_as_answer
)
else:
tool_result = self._i18n.errors("wrong_tool_name").format(
tool=tool_calling.tool_name,
tools=", ".join([tool.name.casefold() for tool in self.tools]),
)
return ToolResult(result=tool_result, result_as_answer=False)
def _summarize_messages(self) -> None:
messages_groups = []
for message in self.messages:
content = message["content"]
cut_size = self.llm.get_context_window_size()
for i in range(0, len(content), cut_size):
messages_groups.append(content[i : i + cut_size])
summarized_contents = []
for group in messages_groups:
summary = self.llm.call(
[
self._format_msg(
self._i18n.slice("summarizer_system_message"), role="system"
),
self._format_msg(
self._i18n.slice("summarize_instruction").format(group=group),
),
],
callbacks=self.callbacks,
)
summarized_contents.append(summary)
merged_summary = " ".join(str(content) for content in summarized_contents)
self.messages = [
self._format_msg(
self._i18n.slice("summary").format(merged_summary=merged_summary)
)
]
def _handle_context_length(self) -> None:
if self.respect_context_window:
self._printer.print(
content="Context length exceeded. Summarizing content to fit the model context window.",
color="yellow",
)
self._summarize_messages()
else:
self._printer.print(
content="Context length exceeded. Consider using smaller text or RAG tools from crewai_tools.",
color="red",
)
raise SystemExit(
"Context length exceeded and user opted not to summarize. Consider using smaller text or RAG tools from crewai_tools."
)
def _handle_crew_training_output(
self, result: AgentFinish, human_feedback: str | None = None
) -> None:
"""Function to handle the process of the training data."""
agent_id = str(self.agent.id) # type: ignore
# Load training data
training_handler = CrewTrainingHandler(TRAINING_DATA_FILE)
training_data = training_handler.load()
# Check if training data exists, human input is not requested, and self.crew is valid
if training_data and not self.ask_for_human_input:
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if agent_id in training_data and isinstance(train_iteration, int):
training_data[agent_id][train_iteration][
"improved_output"
] = result.output
training_handler.save(training_data)
else:
self._printer.print(
content="Invalid train iteration type or agent_id not in training data.",
color="red",
)
else:
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
color="red",
)
if self.ask_for_human_input and human_feedback is not None:
training_data = {
"initial_output": result.output,
"human_feedback": human_feedback,
"agent": agent_id,
"agent_role": self.agent.role, # type: ignore
}
if self.crew is not None and hasattr(self.crew, "_train_iteration"):
train_iteration = self.crew._train_iteration
if isinstance(train_iteration, int):
CrewTrainingHandler(TRAINING_DATA_FILE).append(
train_iteration, agent_id, training_data
)
else:
self._printer.print(
content="Invalid train iteration type. Expected int.",
color="red",
)
else:
self._printer.print(
content="Crew is None or does not have _train_iteration attribute.",
color="red",
)
def _format_prompt(self, prompt: str, inputs: Dict[str, str]) -> str:
prompt = prompt.replace("{input}", inputs["input"])
prompt = prompt.replace("{tool_names}", inputs["tool_names"])
prompt = prompt.replace("{tools}", inputs["tools"])
return prompt
def _format_answer(self, answer: str) -> Union[AgentAction, AgentFinish]:
return CrewAgentParser(agent=self.agent).parse(answer)
def _format_msg(self, prompt: str, role: str = "user") -> Dict[str, str]:
prompt = prompt.rstrip()
return {"role": role, "content": prompt}
def _handle_human_feedback(self, formatted_answer: AgentFinish) -> AgentFinish:
"""
Handles the human feedback loop, allowing the user to provide feedback
on the agent's output and determining if additional iterations are needed.
Parameters:
formatted_answer (AgentFinish): The initial output from the agent.
Returns:
AgentFinish: The final output after incorporating human feedback.
"""
while self.ask_for_human_input:
human_feedback = self._ask_human_input(formatted_answer.output)
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer, human_feedback)
# Make an LLM call to verify if additional changes are requested based on human feedback
additional_changes_prompt = self._i18n.slice(
"human_feedback_classification"
).format(feedback=human_feedback)
retry_count = 0
llm_call_successful = False
additional_changes_response = None
while retry_count < MAX_LLM_RETRY and not llm_call_successful:
try:
additional_changes_response = (
self.llm.call(
[
self._format_msg(
additional_changes_prompt, role="system"
)
],
callbacks=self.callbacks,
)
.strip()
.lower()
)
llm_call_successful = True
except Exception as e:
retry_count += 1
self._printer.print(
content=f"Error during LLM call to classify human feedback: {e}. Retrying... ({retry_count}/{MAX_LLM_RETRY})",
color="red",
)
if not llm_call_successful:
self._printer.print(
content="Error processing feedback after multiple attempts.",
color="red",
)
self.ask_for_human_input = False
break
if additional_changes_response == "false":
self.ask_for_human_input = False
elif additional_changes_response == "true":
self.ask_for_human_input = True
# Add human feedback to messages
self.messages.append(self._format_msg(f"Feedback: {human_feedback}"))
# Invoke the loop again with updated messages
formatted_answer = self._invoke_loop()
if self.crew and self.crew._train:
self._handle_crew_training_output(formatted_answer)
else:
# Unexpected response
self._printer.print(
content=f"Unexpected response from LLM: '{additional_changes_response}'. Assuming no additional changes requested.",
color="red",
)
self.ask_for_human_input = False
return formatted_answer