Files
crewAI/docs/pt-BR/enterprise/guides/deploy-to-amp.mdx
nicoferdi96 5645cbb22e CrewAI AMP Deployment Guidelines (#4205)
* doc changes for better deplyment guidelines and checklist

* chore: remove .claude folder from version control

The .claude folder contains local Claude Code skills and configuration
that should not be tracked in the repository. Already in .gitignore.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

* Better project structure for flows

* docs.json updated structure

* Ko and Pt traslations for deploying guidelines to AMP

* fix broken links

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
2026-01-15 16:32:20 +01:00

439 lines
14 KiB
Plaintext

---
title: "Deploy para AMP"
description: "Implante seu Crew ou Flow no CrewAI AMP"
icon: "rocket"
mode: "wide"
---
<Note>
Depois de criar um Crew ou Flow localmente (ou pelo Crew Studio), o próximo passo é
implantá-lo na plataforma CrewAI AMP. Este guia cobre múltiplos métodos de
implantação para ajudá-lo a escolher a melhor abordagem para o seu fluxo de trabalho.
</Note>
## Pré-requisitos
<CardGroup cols={2}>
<Card title="Projeto Pronto para Implantação" icon="check-circle">
Você deve ter um Crew ou Flow funcionando localmente com sucesso.
Siga nosso [guia de preparação](/pt-BR/enterprise/guides/prepare-for-deployment) para verificar a estrutura do seu projeto.
</Card>
<Card title="Repositório GitHub" icon="github">
Seu código deve estar em um repositório do GitHub (para o método de integração com GitHub).
</Card>
</CardGroup>
<Info>
**Crews vs Flows**: Ambos os tipos de projeto podem ser implantados como "automações" no CrewAI AMP.
O processo de implantação é o mesmo, mas eles têm estruturas de projeto diferentes.
Veja [Preparar para Implantação](/pt-BR/enterprise/guides/prepare-for-deployment) para detalhes.
</Info>
## Opção 1: Implantar Usando o CrewAI CLI
A CLI fornece a maneira mais rápida de implantar Crews ou Flows desenvolvidos localmente na plataforma AMP.
A CLI detecta automaticamente o tipo do seu projeto a partir do `pyproject.toml` e faz o build adequadamente.
<Steps>
<Step title="Instale o CrewAI CLI">
Se ainda não tiver, instale o CrewAI CLI:
```bash
pip install crewai[tools]
```
<Tip>
A CLI vem com o pacote principal CrewAI, mas o extra `[tools]` garante todas as dependências de implantação.
</Tip>
</Step>
<Step title="Autentique-se na Plataforma Enterprise">
Primeiro, você precisa autenticar sua CLI com a plataforma CrewAI AMP:
```bash
# Se já possui uma conta CrewAI AMP, ou deseja criar uma:
crewai login
```
Ao executar qualquer um dos comandos, a CLI irá:
1. Exibir uma URL e um código de dispositivo único
2. Abrir seu navegador para a página de autenticação
3. Solicitar a confirmação do dispositivo
4. Completar o processo de autenticação
Após a autenticação bem-sucedida, você verá uma mensagem de confirmação no terminal!
</Step>
<Step title="Criar uma Implantação">
No diretório do seu projeto, execute:
```bash
crewai deploy create
```
Este comando irá:
1. Detectar informações do seu repositório GitHub
2. Identificar variáveis de ambiente no seu arquivo `.env` local
3. Transferir essas variáveis com segurança para a plataforma Enterprise
4. Criar uma nova implantação com um identificador único
Com a criação bem-sucedida, você verá uma mensagem como:
```shell
Deployment created successfully!
Name: your_project_name
Deployment ID: 01234567-89ab-cdef-0123-456789abcdef
Current Status: Deploy Enqueued
```
</Step>
<Step title="Acompanhe o Progresso da Implantação">
Acompanhe o status da implantação com:
```bash
crewai deploy status
```
Para ver logs detalhados do processo de build:
```bash
crewai deploy logs
```
<Tip>
A primeira implantação normalmente leva de 10 a 15 minutos, pois as imagens dos containers são construídas. As próximas implantações são bem mais rápidas.
</Tip>
</Step>
</Steps>
## Comandos Adicionais da CLI
O CrewAI CLI oferece vários comandos para gerenciar suas implantações:
```bash
# Liste todas as suas implantações
crewai deploy list
# Consulte o status de uma implantação
crewai deploy status
# Veja os logs da implantação
crewai deploy logs
# Envie atualizações após alterações no código
crewai deploy push
# Remova uma implantação
crewai deploy remove <deployment_id>
```
## Opção 2: Implantar Diretamente pela Interface Web
Você também pode implantar seus Crews ou Flows diretamente pela interface web do CrewAI AMP conectando sua conta do GitHub. Esta abordagem não requer utilizar a CLI na sua máquina local. A plataforma detecta automaticamente o tipo do seu projeto e trata o build adequadamente.
<Steps>
<Step title="Enviar para o GitHub">
Você precisa enviar seu crew para um repositório do GitHub. Caso ainda não tenha criado um crew, você pode [seguir este tutorial](/pt-BR/quickstart).
</Step>
<Step title="Conectando o GitHub ao CrewAI AMP">
1. Faça login em [CrewAI AMP](https://app.crewai.com)
2. Clique no botão "Connect GitHub"
<Frame>
![Botão Connect GitHub](/images/enterprise/connect-github.png)
</Frame>
</Step>
<Step title="Selecionar o Repositório">
Após conectar sua conta GitHub, você poderá selecionar qual repositório deseja implantar:
<Frame>
![Selecionar Repositório](/images/enterprise/select-repo.png)
</Frame>
</Step>
<Step title="Definir as Variáveis de Ambiente">
Antes de implantar, você precisará configurar as variáveis de ambiente para conectar ao seu provedor de LLM ou outros serviços:
1. Você pode adicionar variáveis individualmente ou em lote
2. Digite suas variáveis no formato `KEY=VALUE` (uma por linha)
<Frame>
![Definir Variáveis de Ambiente](/images/enterprise/set-env-variables.png)
</Frame>
</Step>
<Step title="Implante Seu Crew">
1. Clique no botão "Deploy" para iniciar o processo de implantação
2. Você pode monitorar o progresso pela barra de progresso
3. A primeira implantação geralmente demora de 10 a 15 minutos; as próximas serão mais rápidas
<Frame>
![Progresso da Implantação](/images/enterprise/deploy-progress.png)
</Frame>
Após a conclusão, você verá:
- A URL exclusiva do seu crew
- Um Bearer token para proteger sua API crew
- Um botão "Delete" caso precise remover a implantação
</Step>
</Steps>
## Opção 3: Reimplantar Usando API (Integração CI/CD)
Para implantações automatizadas em pipelines CI/CD, você pode usar a API do CrewAI para acionar reimplantações de crews existentes. Isso é particularmente útil para GitHub Actions, Jenkins ou outros workflows de automação.
<Steps>
<Step title="Obtenha Seu Token de Acesso Pessoal">
Navegue até as configurações da sua conta CrewAI AMP para gerar um token de API:
1. Acesse [app.crewai.com](https://app.crewai.com)
2. Clique em **Settings** → **Account** → **Personal Access Token**
3. Gere um novo token e copie-o com segurança
4. Armazene este token como um secret no seu sistema CI/CD
</Step>
<Step title="Encontre o UUID da Sua Automação">
Localize o identificador único do seu crew implantado:
1. Acesse **Automations** no seu dashboard CrewAI AMP
2. Selecione sua automação/crew existente
3. Clique em **Additional Details**
4. Copie o **UUID** - este identifica sua implantação específica do crew
</Step>
<Step title="Acione a Reimplantação via API">
Use o endpoint da API de Deploy para acionar uma reimplantação:
```bash
curl -i -X POST \
-H "Authorization: Bearer YOUR_PERSONAL_ACCESS_TOKEN" \
https://app.crewai.com/crewai_plus/api/v1/crews/YOUR-AUTOMATION-UUID/deploy
# HTTP/2 200
# content-type: application/json
#
# {
# "uuid": "your-automation-uuid",
# "status": "Deploy Enqueued",
# "public_url": "https://your-crew-deployment.crewai.com",
# "token": "your-bearer-token"
# }
```
<Info>
Se sua automação foi criada originalmente conectada ao Git, a API automaticamente puxará as últimas alterações do seu repositório antes de reimplantar.
</Info>
</Step>
<Step title="Exemplo de Integração com GitHub Actions">
Aqui está um workflow do GitHub Actions com gatilhos de implantação mais complexos:
```yaml
name: Deploy CrewAI Automation
on:
push:
branches: [ main ]
pull_request:
types: [ labeled ]
release:
types: [ published ]
jobs:
deploy:
runs-on: ubuntu-latest
if: |
(github.event_name == 'push' && github.ref == 'refs/heads/main') ||
(github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'deploy')) ||
(github.event_name == 'release')
steps:
- name: Trigger CrewAI Redeployment
run: |
curl -X POST \
-H "Authorization: Bearer ${{ secrets.CREWAI_PAT }}" \
https://app.crewai.com/crewai_plus/api/v1/crews/${{ secrets.CREWAI_AUTOMATION_UUID }}/deploy
```
<Tip>
Adicione `CREWAI_PAT` e `CREWAI_AUTOMATION_UUID` como secrets do repositório. Para implantações de PR, adicione um label "deploy" para acionar o workflow.
</Tip>
</Step>
</Steps>
## Interaja com Sua Automação Implantada
Após a implantação, você pode acessar seu crew através de:
1. **REST API**: A plataforma gera um endpoint HTTPS exclusivo com estas rotas principais:
- `/inputs`: Lista os parâmetros de entrada requeridos
- `/kickoff`: Inicia uma execução com os inputs fornecidos
- `/status/{kickoff_id}`: Consulta o status da execução
2. **Interface Web**: Acesse [app.crewai.com](https://app.crewai.com) para visualizar:
- **Aba Status**: Informações da implantação, detalhes do endpoint da API e token de autenticação
- **Aba Run**: Visualização da estrutura do seu crew
- **Aba Executions**: Histórico de todas as execuções
- **Aba Metrics**: Análises de desempenho
- **Aba Traces**: Insights detalhados das execuções
### Dispare uma Execução
No dashboard Enterprise, você pode:
1. Clicar no nome do seu crew para abrir seus detalhes
2. Selecionar "Trigger Crew" na interface de gerenciamento
3. Inserir os inputs necessários no modal exibido
4. Monitorar o progresso à medida que a execução avança pelo pipeline
### Monitoramento e Análises
A plataforma Enterprise oferece recursos abrangentes de observabilidade:
- **Gestão das Execuções**: Acompanhe execuções ativas e concluídas
- **Traces**: Quebra detalhada de cada execução
- **Métricas**: Uso de tokens, tempos de execução e custos
- **Visualização em Linha do Tempo**: Representação visual das sequências de tarefas
### Funcionalidades Avançadas
A plataforma Enterprise também oferece:
- **Gerenciamento de Variáveis de Ambiente**: Armazene e gerencie com segurança as chaves de API
- **Conexões com LLM**: Configure integrações com diversos provedores de LLM
- **Repositório Custom Tools**: Crie, compartilhe e instale ferramentas
- **Crew Studio**: Monte crews via interface de chat sem escrever código
## Solução de Problemas em Falhas de Implantação
Se sua implantação falhar, verifique estes problemas comuns:
### Falhas de Build
#### Arquivo uv.lock Ausente
**Sintoma**: Build falha no início com erros de resolução de dependências
**Solução**: Gere e faça commit do arquivo lock:
```bash
uv lock
git add uv.lock
git commit -m "Add uv.lock for deployment"
git push
```
<Warning>
O arquivo `uv.lock` é obrigatório para todas as implantações. Sem ele, a plataforma
não consegue instalar suas dependências de forma confiável.
</Warning>
#### Estrutura de Projeto Incorreta
**Sintoma**: Erros "Could not find entry point" ou "Module not found"
**Solução**: Verifique se seu projeto corresponde à estrutura esperada:
- **Tanto Crews quanto Flows**: Devem ter ponto de entrada em `src/project_name/main.py`
- **Crews**: Usam uma função `run()` como ponto de entrada
- **Flows**: Usam uma função `kickoff()` como ponto de entrada
Veja [Preparar para Implantação](/pt-BR/enterprise/guides/prepare-for-deployment) para diagramas de estrutura detalhados.
#### Decorador CrewBase Ausente
**Sintoma**: Erros "Crew not found", "Config not found" ou erros de configuração de agent/task
**Solução**: Certifique-se de que **todas** as classes crew usam o decorador `@CrewBase`:
```python
from crewai.project import CrewBase, agent, crew, task
@CrewBase # Este decorador é OBRIGATÓRIO
class YourCrew():
"""Descrição do seu crew"""
@agent
def my_agent(self) -> Agent:
return Agent(
config=self.agents_config['my_agent'], # type: ignore[index]
verbose=True
)
# ... resto da definição do crew
```
<Info>
Isso se aplica a Crews independentes E crews embutidos dentro de projetos Flow.
Toda classe crew precisa do decorador.
</Info>
#### Tipo Incorreto no pyproject.toml
**Sintoma**: Build tem sucesso mas falha em runtime, ou comportamento inesperado
**Solução**: Verifique se a seção `[tool.crewai]` corresponde ao tipo do seu projeto:
```toml
# Para projetos Crew:
[tool.crewai]
type = "crew"
# Para projetos Flow:
[tool.crewai]
type = "flow"
```
### Falhas de Runtime
#### Falhas de Conexão com LLM
**Sintoma**: Erros de chave API, "model not found" ou falhas de autenticação
**Solução**:
1. Verifique se a chave API do seu provedor LLM está corretamente definida nas variáveis de ambiente
2. Certifique-se de que os nomes das variáveis de ambiente correspondem ao que seu código espera
3. Teste localmente com exatamente as mesmas variáveis de ambiente antes de implantar
#### Erros de Execução do Crew
**Sintoma**: Crew inicia mas falha durante a execução
**Solução**:
1. Verifique os logs de execução no dashboard AMP (aba Traces)
2. Verifique se todas as ferramentas têm as chaves API necessárias configuradas
3. Certifique-se de que as configurações de agents em `agents.yaml` são válidas
4. Verifique se há erros de sintaxe nas configurações de tasks em `tasks.yaml`
<Card title="Precisa de Ajuda?" icon="headset" href="mailto:support@crewai.com">
Entre em contato com nossa equipe de suporte para ajuda com questões de
implantação ou dúvidas sobre a plataforma AMP.
</Card>