Files
crewAI/src/crewai/agents/agent_builder/base_agent.py
2024-09-26 14:55:33 -03:00

276 lines
11 KiB
Python

import uuid
from abc import ABC, abstractmethod
from copy import copy as shallow_copy
from hashlib import md5
from typing import Any, Dict, List, Optional, TypeVar
from pydantic import (
UUID4,
BaseModel,
Field,
InstanceOf,
PrivateAttr,
field_validator,
model_validator,
)
from pydantic_core import PydanticCustomError
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.agents.cache.cache_handler import CacheHandler
from crewai.agents.tools_handler import ToolsHandler
from crewai.utilities import I18N, Logger, RPMController
from crewai.utilities.config import process_config
T = TypeVar("T", bound="BaseAgent")
class BaseAgent(ABC, BaseModel):
"""Abstract Base Class for all third party agents compatible with CrewAI.
Attributes:
id (UUID4): Unique identifier for the agent.
role (str): Role of the agent.
goal (str): Objective of the agent.
backstory (str): Backstory of the agent.
cache (bool): Whether the agent should use a cache for tool usage.
config (Optional[Dict[str, Any]]): Configuration for the agent.
verbose (bool): Verbose mode for the Agent Execution.
max_rpm (Optional[int]): Maximum number of requests per minute for the agent execution.
allow_delegation (bool): Allow delegation of tasks to agents.
tools (Optional[List[Any]]): Tools at the agent's disposal.
max_iter (Optional[int]): Maximum iterations for an agent to execute a task.
agent_executor (InstanceOf): An instance of the CrewAgentExecutor class.
llm (Any): Language model that will run the agent.
crew (Any): Crew to which the agent belongs.
i18n (I18N): Internationalization settings.
cache_handler (InstanceOf[CacheHandler]): An instance of the CacheHandler class.
tools_handler (InstanceOf[ToolsHandler]): An instance of the ToolsHandler class.
max_tokens: Maximum number of tokens for the agent to generate in a response.
Methods:
execute_task(task: Any, context: Optional[str] = None, tools: Optional[List[Any]] = None) -> str:
Abstract method to execute a task.
create_agent_executor(tools=None) -> None:
Abstract method to create an agent executor.
_parse_tools(tools: List[Any]) -> List[Any]:
Abstract method to parse tools.
get_delegation_tools(agents: List["BaseAgent"]):
Abstract method to set the agents task tools for handling delegation and question asking to other agents in crew.
get_output_converter(llm, model, instructions):
Abstract method to get the converter class for the agent to create json/pydantic outputs.
interpolate_inputs(inputs: Dict[str, Any]) -> None:
Interpolate inputs into the agent description and backstory.
set_cache_handler(cache_handler: CacheHandler) -> None:
Set the cache handler for the agent.
increment_formatting_errors() -> None:
Increment formatting errors.
copy() -> "BaseAgent":
Create a copy of the agent.
set_rpm_controller(rpm_controller: RPMController) -> None:
Set the rpm controller for the agent.
set_private_attrs() -> "BaseAgent":
Set private attributes.
"""
__hash__ = object.__hash__ # type: ignore
_logger: Logger = PrivateAttr(default_factory=lambda: Logger(verbose=False))
_rpm_controller: Optional[RPMController] = PrivateAttr(default=None)
_request_within_rpm_limit: Any = PrivateAttr(default=None)
_original_role: Optional[str] = PrivateAttr(default=None)
_original_goal: Optional[str] = PrivateAttr(default=None)
_original_backstory: Optional[str] = PrivateAttr(default=None)
_token_process: TokenProcess = PrivateAttr(default_factory=TokenProcess)
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
formatting_errors: int = Field(
default=0, description="Number of formatting errors."
)
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent", default=None, exclude=True
)
cache: bool = Field(
default=True, description="Whether the agent should use a cache for tool usage."
)
verbose: bool = Field(
default=False, description="Verbose mode for the Agent Execution"
)
max_rpm: Optional[int] = Field(
default=None,
description="Maximum number of requests per minute for the agent execution to be respected.",
)
allow_delegation: bool = Field(
default=False,
description="Enable agent to delegate and ask questions among each other.",
)
tools: Optional[List[Any]] = Field(
default_factory=list, description="Tools at agents' disposal"
)
max_iter: Optional[int] = Field(
default=25, description="Maximum iterations for an agent to execute a task"
)
agent_executor: InstanceOf = Field(
default=None, description="An instance of the CrewAgentExecutor class."
)
llm: Any = Field(
default=None, description="Language model that will run the agent."
)
crew: Any = Field(default=None, description="Crew to which the agent belongs.")
i18n: I18N = Field(default=I18N(), description="Internationalization settings.")
cache_handler: InstanceOf[CacheHandler] = Field(
default=None, description="An instance of the CacheHandler class."
)
tools_handler: InstanceOf[ToolsHandler] = Field(
default=None, description="An instance of the ToolsHandler class."
)
max_tokens: Optional[int] = Field(
default=None, description="Maximum number of tokens for the agent's execution."
)
@model_validator(mode="before")
@classmethod
def process_model_config(cls, values):
return process_config(values, cls)
@model_validator(mode="after")
def validate_and_set_attributes(self):
# Validate required fields
for field in ["role", "goal", "backstory"]:
if getattr(self, field) is None:
raise ValueError(
f"{field} must be provided either directly or through config"
)
# Set private attributes
self._logger = Logger(verbose=self.verbose)
if self.max_rpm and not self._rpm_controller:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
if not self._token_process:
self._token_process = TokenProcess()
return self
@field_validator("id", mode="before")
@classmethod
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
if v:
raise PydanticCustomError(
"may_not_set_field", "This field is not to be set by the user.", {}
)
@model_validator(mode="after")
def set_private_attrs(self):
"""Set private attributes."""
self._logger = Logger(verbose=self.verbose)
if self.max_rpm and not self._rpm_controller:
self._rpm_controller = RPMController(
max_rpm=self.max_rpm, logger=self._logger
)
if not self._token_process:
self._token_process = TokenProcess()
return self
@property
def key(self):
source = [
self._original_role or self.role,
self._original_goal or self.goal,
self._original_backstory or self.backstory,
]
return md5("|".join(source).encode(), usedforsecurity=False).hexdigest()
@abstractmethod
def execute_task(
self,
task: Any,
context: Optional[str] = None,
tools: Optional[List[Any]] = None,
) -> str:
pass
@abstractmethod
def create_agent_executor(self, tools=None) -> None:
pass
@abstractmethod
def _parse_tools(self, tools: List[Any]) -> List[Any]:
pass
@abstractmethod
def get_delegation_tools(self, agents: List["BaseAgent"]) -> List[Any]:
"""Set the task tools that init BaseAgenTools class."""
pass
@abstractmethod
def get_output_converter(
self, llm: Any, text: str, model: type[BaseModel] | None, instructions: str
):
"""Get the converter class for the agent to create json/pydantic outputs."""
pass
def copy(self: T) -> T: # type: ignore # Signature of "copy" incompatible with supertype "BaseModel"
"""Create a deep copy of the Agent."""
exclude = {
"id",
"_logger",
"_rpm_controller",
"_request_within_rpm_limit",
"_token_process",
"agent_executor",
"tools",
"tools_handler",
"cache_handler",
"llm",
}
# Copy llm and clear callbacks
existing_llm = shallow_copy(self.llm)
copied_data = self.model_dump(exclude=exclude)
copied_data = {k: v for k, v in copied_data.items() if v is not None}
copied_agent = type(self)(**copied_data, llm=existing_llm, tools=self.tools)
return copied_agent
def interpolate_inputs(self, inputs: Dict[str, Any]) -> None:
"""Interpolate inputs into the agent description and backstory."""
if self._original_role is None:
self._original_role = self.role
if self._original_goal is None:
self._original_goal = self.goal
if self._original_backstory is None:
self._original_backstory = self.backstory
if inputs:
self.role = self._original_role.format(**inputs)
self.goal = self._original_goal.format(**inputs)
self.backstory = self._original_backstory.format(**inputs)
def set_cache_handler(self, cache_handler: CacheHandler) -> None:
"""Set the cache handler for the agent.
Args:
cache_handler: An instance of the CacheHandler class.
"""
self.tools_handler = ToolsHandler()
if self.cache:
self.cache_handler = cache_handler
self.tools_handler.cache = cache_handler
self.create_agent_executor()
def increment_formatting_errors(self) -> None:
self.formatting_errors += 1
def set_rpm_controller(self, rpm_controller: RPMController) -> None:
"""Set the rpm controller for the agent.
Args:
rpm_controller: An instance of the RPMController class.
"""
if not self._rpm_controller:
self._rpm_controller = rpm_controller
self.create_agent_executor()