Files
crewAI/docs/en/observability/langtrace.mdx
Tony Kipkemboi 1a1bb0ca3d docs: Docs updates (#3459)
* docs(cli): document device-code login and config reset guidance; renumber sections

* docs(cli): fix duplicate numbering (renumber Login/API Keys/Configuration sections)

* docs: Fix webhook documentation to include meta dict in all webhook payloads

- Add note explaining that meta objects from kickoff requests are included in all webhook payloads
- Update webhook examples to show proper payload structure including meta field
- Fix webhook examples to match actual API implementation
- Apply changes to English, Korean, and Portuguese documentation

Resolves the documentation gap where meta dict passing to webhooks was not documented despite being implemented in the API.

* WIP: CrewAI docs theme, changelog, GEO, localization

* docs(cli): fix merge markers; ensure mode: "wide"; convert ASCII tables to Markdown (en/pt-BR/ko)

* docs: add group icons across locales; split Automation/Integrations; update tools overviews and links
2025-09-05 17:40:11 -04:00

74 lines
2.5 KiB
Plaintext

---
title: Langtrace Integration
description: How to monitor cost, latency, and performance of CrewAI Agents using Langtrace, an external observability tool.
icon: chart-line
mode: "wide"
---
# Langtrace Overview
Langtrace is an open-source, external tool that helps you set up observability and evaluations for Large Language Models (LLMs), LLM frameworks, and Vector Databases.
While not built directly into CrewAI, Langtrace can be used alongside CrewAI to gain deep visibility into the cost, latency, and performance of your CrewAI Agents.
This integration allows you to log hyperparameters, monitor performance regressions, and establish a process for continuous improvement of your Agents.
![Overview of a select series of agent session runs](/images/langtrace1.png)
![Overview of agent traces](/images/langtrace2.png)
![Overview of llm traces in details](/images/langtrace3.png)
## Setup Instructions
<Steps>
<Step title="Sign up for Langtrace">
Sign up by visiting [https://langtrace.ai/signup](https://langtrace.ai/signup).
</Step>
<Step title="Create a project">
Set the project type to `CrewAI` and generate an API key.
</Step>
<Step title="Install Langtrace in your CrewAI project">
Use the following command:
```bash
pip install langtrace-python-sdk
```
</Step>
<Step title="Import Langtrace">
Import and initialize Langtrace at the beginning of your script, before any CrewAI imports:
```python
from langtrace_python_sdk import langtrace
langtrace.init(api_key='<LANGTRACE_API_KEY>')
# Now import CrewAI modules
from crewai import Agent, Task, Crew
```
</Step>
</Steps>
### Features and Their Application to CrewAI
1. **LLM Token and Cost Tracking**
- Monitor the token usage and associated costs for each CrewAI agent interaction.
2. **Trace Graph for Execution Steps**
- Visualize the execution flow of your CrewAI tasks, including latency and logs.
- Useful for identifying bottlenecks in your agent workflows.
3. **Dataset Curation with Manual Annotation**
- Create datasets from your CrewAI task outputs for future training or evaluation.
4. **Prompt Versioning and Management**
- Keep track of different versions of prompts used in your CrewAI agents.
- Useful for A/B testing and optimizing agent performance.
5. **Prompt Playground with Model Comparisons**
- Test and compare different prompts and models for your CrewAI agents before deployment.
6. **Testing and Evaluations**
- Set up automated tests for your CrewAI agents and tasks.