Files
crewAI/tests/test_ollama_integration.py
Devin AI 7a19bfb4a9 Address code review feedback: improve model detection, parameter filtering, and test coverage
- Refactor _is_ollama_model to use constants for better maintainability
- Make parameter filtering more explicit with clear comments
- Add type hints for better code clarity
- Add comprehensive edge case tests for model detection
- Improve test docstrings with detailed descriptions
- Move integration test to proper tests/ directory structure
- Fix lint error in test script by adding assertion
- All tests passing locally with improved code quality

Co-Authored-By: João <joao@crewai.com>
2025-06-28 21:40:38 +00:00

107 lines
3.7 KiB
Python

"""
Integration tests for Ollama model handling.
This module tests the Ollama-specific functionality including response_format handling.
"""
from pydantic import BaseModel
from crewai.llm import LLM
from crewai import Agent
class GuideOutline(BaseModel):
title: str
sections: list[str]
def test_original_issue():
"""Test the original issue scenario from GitHub issue #3082."""
print("Testing original issue scenario...")
try:
llm = LLM(model="ollama/gemma3:latest", response_format=GuideOutline)
print("✅ LLM creation with response_format succeeded")
params = llm._prepare_completion_params("Test message")
if "response_format" not in params or params.get("response_format") is None:
print("✅ response_format correctly filtered out for Ollama model")
else:
print("❌ response_format was not filtered out")
agent = Agent(
role="Guide Creator",
goal="Create comprehensive guides",
backstory="You are an expert at creating structured guides",
llm=llm
)
print("✅ Agent creation with Ollama LLM succeeded")
assert agent.llm.model == "ollama/gemma3:latest"
except ValueError as e:
if "does not support response_format" in str(e):
print(f"❌ Original issue still exists: {e}")
return False
else:
print(f"❌ Unexpected ValueError: {e}")
return False
except Exception as e:
print(f"❌ Unexpected error: {e}")
return False
return True
def test_non_ollama_models():
"""Test that non-Ollama models still work with response_format."""
print("\nTesting non-Ollama models...")
try:
llm = LLM(model="gpt-4", response_format=GuideOutline)
params = llm._prepare_completion_params("Test message")
if params.get("response_format") == GuideOutline:
print("✅ Non-Ollama models still include response_format")
return True
else:
print("❌ Non-Ollama models missing response_format")
return False
except Exception as e:
print(f"❌ Error with non-Ollama model: {e}")
return False
def test_ollama_model_detection_edge_cases():
"""Test edge cases for Ollama model detection."""
print("\nTesting Ollama model detection edge cases...")
test_cases = [
("ollama/llama3.2:3b", True, "Standard ollama/ prefix"),
("OLLAMA/MODEL:TAG", True, "Uppercase ollama/ prefix"),
("ollama:custom-model", True, "ollama: prefix"),
("custom/ollama-model", False, "Contains 'ollama' but not prefix"),
("gpt-4", False, "Non-Ollama model"),
("anthropic/claude-3", False, "Different provider"),
("openai/gpt-4", False, "OpenAI model"),
]
all_passed = True
for model, expected, description in test_cases:
llm = LLM(model=model)
result = llm._is_ollama_model(model)
if result == expected:
print(f"{description}: {model} -> {result}")
else:
print(f"{description}: {model} -> {result} (expected {expected})")
all_passed = False
return all_passed
if __name__ == "__main__":
print("Testing Ollama response_format fix...")
success1 = test_original_issue()
success2 = test_non_ollama_models()
success3 = test_ollama_model_detection_edge_cases()
if success1 and success2 and success3:
print("\n🎉 All tests passed! The fix is working correctly.")
else:
print("\n💥 Some tests failed. The fix needs more work.")