Files
crewAI/tests/crew_test.py
João Moura e77442cf34 Removing LangChain and Rebuilding Executor (#1322)
* rebuilding executor

* removing langchain

* Making all tests good

* fixing types and adding ability for nor using system prompts

* improving types

* pleasing the types gods

* pleasing the types gods

* fixing parser, tools and executor

* making sure all tests pass

* final pass

* fixing type

* Updating Docs

* preparing to cut new version
2024-09-16 14:14:04 -03:00

2578 lines
100 KiB
Python

"""Test Agent creation and execution basic functionality."""
import hashlib
import json
from concurrent.futures import Future
from unittest import mock
from unittest.mock import MagicMock, patch
import pydantic_core
import pytest
from crewai.agent import Agent
from crewai.agents.cache import CacheHandler
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.conditional_task import ConditionalTask
from crewai.tasks.output_format import OutputFormat
from crewai.tasks.task_output import TaskOutput
from crewai.types.usage_metrics import UsageMetrics
from crewai.utilities import Logger
from crewai.utilities.rpm_controller import RPMController
from crewai.utilities.task_output_storage_handler import TaskOutputStorageHandler
ceo = Agent(
role="CEO",
goal="Make sure the writers in your company produce amazing content.",
backstory="You're an long time CEO of a content creation agency with a Senior Writer on the team. You're now working on a new project and want to make sure the content produced is amazing.",
allow_delegation=True,
)
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
writer = Agent(
role="Senior Writer",
goal="Write the best content about AI and AI agents.",
backstory="You're a senior writer, specialized in technology, software engineering, AI and startups. You work as a freelancer and are now working on writing content for a new customer.",
allow_delegation=False,
)
def test_crew_config_conditional_requirement():
with pytest.raises(ValueError):
Crew(process=Process.sequential)
config = json.dumps(
{
"agents": [
{
"role": "Senior Researcher",
"goal": "Make the best research and analysis on content about AI and AI agents",
"backstory": "You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
},
{
"role": "Senior Writer",
"goal": "Write the best content about AI and AI agents.",
"backstory": "You're a senior writer, specialized in technology, software engineering, AI and startups. You work as a freelancer and are now working on writing content for a new customer.",
},
],
"tasks": [
{
"description": "Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
"expected_output": "Bullet point list of 5 important events.",
"agent": "Senior Researcher",
},
{
"description": "Write a 1 amazing paragraph highlight for each idea that showcases how good an article about this topic could be, check references if necessary or search for more content but make sure it's unique, interesting and well written. Return the list of ideas with their paragraph and your notes.",
"expected_output": "A 4 paragraph article about AI.",
"agent": "Senior Writer",
},
],
}
)
parsed_config = json.loads(config)
try:
crew = Crew(process=Process.sequential, config=config)
except ValueError:
pytest.fail("Unexpected ValidationError raised")
assert [agent.role for agent in crew.agents] == [
agent["role"] for agent in parsed_config["agents"]
]
assert [task.description for task in crew.tasks] == [
task["description"] for task in parsed_config["tasks"]
]
def test_async_task_cannot_include_sequential_async_tasks_in_context():
task1 = Task(
description="Task 1",
async_execution=True,
expected_output="output",
agent=researcher,
)
task2 = Task(
description="Task 2",
async_execution=True,
expected_output="output",
agent=researcher,
context=[task1],
)
task3 = Task(
description="Task 3",
async_execution=True,
expected_output="output",
agent=researcher,
context=[task2],
)
task4 = Task(
description="Task 4",
expected_output="output",
agent=writer,
)
task5 = Task(
description="Task 5",
async_execution=True,
expected_output="output",
agent=researcher,
context=[task4],
)
# This should raise an error because task2 is async and has task1 in its context without a sync task in between
with pytest.raises(
ValueError,
match="Task 'Task 2' is asynchronous and cannot include other sequential asynchronous tasks in its context.",
):
Crew(tasks=[task1, task2, task3, task4, task5], agents=[researcher, writer])
# This should not raise an error because task5 has a sync task (task4) in its context
try:
Crew(tasks=[task1, task4, task5], agents=[researcher, writer])
except ValueError:
pytest.fail("Unexpected ValidationError raised")
def test_context_no_future_tasks():
task2 = Task(
description="Task 2",
expected_output="output",
agent=researcher,
)
task3 = Task(
description="Task 3",
expected_output="output",
agent=researcher,
context=[task2],
)
task4 = Task(
description="Task 4",
expected_output="output",
agent=researcher,
)
task1 = Task(
description="Task 1",
expected_output="output",
agent=researcher,
context=[task4],
)
# This should raise an error because task1 has a context dependency on a future task (task4)
with pytest.raises(
ValueError,
match="Task 'Task 1' has a context dependency on a future task 'Task 4', which is not allowed.",
):
Crew(tasks=[task1, task2, task3, task4], agents=[researcher, writer])
def test_crew_config_with_wrong_keys():
no_tasks_config = json.dumps(
{
"agents": [
{
"role": "Senior Researcher",
"goal": "Make the best research and analysis on content about AI and AI agents",
"backstory": "You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
}
]
}
)
no_agents_config = json.dumps(
{
"tasks": [
{
"description": "Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
"agent": "Senior Researcher",
}
]
}
)
with pytest.raises(ValueError):
Crew(process=Process.sequential, config='{"wrong_key": "wrong_value"}')
with pytest.raises(ValueError):
Crew(process=Process.sequential, config=no_tasks_config)
with pytest.raises(ValueError):
Crew(process=Process.sequential, config=no_agents_config)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_creation():
tasks = [
Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
),
Task(
description="Write a 1 amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="A 4 paragraph article about AI.",
agent=writer,
),
]
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=tasks,
)
result = crew.kickoff()
expected_string_output = "**The Ethical Implications of AI in Warfare**\n\nAI in warfare raises profound ethical questions that extend far beyond the battlefield. Autonomous weapons systems, capable of making split-second decisions without human input, challenge our traditional notions of accountability. Who is to blame when an AI decides to strike? This article could delve into the current policies governing AI in military applications, scrutinizing the frameworks that aim to regulate autonomous weapons. Real-world examples, like the use of drones and AI-based surveillance, could provide a grounded view of these technologies in action. The potential for misuse by rogue states or non-state actors makes the need for comprehensive ethical guidelines all the more urgent. The debate could span legal, moral, and practical considerations, making this a multifaceted and highly relevant topic in today's world.\n\n**AI in Mental Health: Promises and Perils**\n\nThe integration of AI in mental health care presents a double-edged sword. On one hand, AI-driven tools like chatbots and predictive analytics can revolutionize diagnosis and treatment, making mental health care more accessible and personalized. On the other hand, these innovations come with significant ethical dilemmas. Can a machine truly understand the nuance and depth of human emotion? Issues of privacy, data security, and the impersonal nature of machine empathy are critical concerns. This article could explore case studies of AI applications in mental health, examining both their successes and pitfalls. The evolving patient-therapist relationship in an age of machine learning could offer intriguing insights into how we value human touch and expertise in one of the most sensitive areas of healthcare.\n\n**The Role of AI in Climate Change Mitigation**\n\nAI has emerged as a powerful ally in the fight against climate change, offering innovative solutions that were unimaginable a few years ago. From optimizing energy consumption to predicting extreme weather events, AI is at the forefront of environmental sustainability. This article could highlight ground-breaking projects where AI has made a tangible impact, such as Google's DeepMind reducing data center energy usage by 40%. However, the challenges are as significant as the opportunities. The reliance on data, the carbon footprint of large-scale AI operations, and the need for interdisciplinary collaboration pose substantial hurdles. By examining the intersection of AI and environmental science, this piece could offer a balanced view of the potential and limitations of technology in addressing one of the most urgent issues of our time.\n\n**AI and the Future of Work: Redefining Employment and Skills**\n\nAs AI continues to transform industries, the future of work is being redefined before our eyes. Automation and machine learning are not just eliminating jobs but also creating new ones, requiring a shift in skillsets and educational paradigms. This article could explore how different sectors, from manufacturing to healthcare, are adapting to AI-driven changes. The narrative could include personal stories of individuals who have navigated this transition, highlighting both the opportunities and challenges. Discussions around economic disparities, the digital divide, and the future of education would provide a comprehensive look at how society must evolve to keep pace with technological advancements. This topic is not just about the future of employment but also about the future of human potential and economic equality."
assert str(result) == expected_string_output
assert result.raw == expected_string_output
assert isinstance(result, CrewOutput)
assert len(result.tasks_output) == len(tasks)
assert result.raw == expected_string_output
@pytest.mark.vcr(filter_headers=["authorization"])
def test_sync_task_execution():
from unittest.mock import patch
tasks = [
Task(
description="Give me a list of 5 interesting ideas to explore for an article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
),
Task(
description="Write an amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="A 4 paragraph article about AI.",
agent=writer,
),
]
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=tasks,
)
mock_task_output = TaskOutput(
description="Mock description", raw="mocked output", agent="mocked agent"
)
# Because we are mocking execute_sync, we never hit the underlying _execute_core
# which sets the output attribute of the task
for task in tasks:
task.output = mock_task_output
with patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync:
crew.kickoff()
# Assert that execute_sync was called for each task
assert mock_execute_sync.call_count == len(tasks)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_process():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
crew = Crew(
agents=[researcher, writer],
process=Process.hierarchical,
manager_llm="gpt-4o",
tasks=[task],
)
result = crew.kickoff()
assert (
result.raw
== "1. **The Evolution of AI Agents: From Simple Bots to Autonomous Digital Assistants**\n - The journey of AI agents from rudimentary chatbots to fully autonomous digital assistants symbolizes the monumental strides made in artificial intelligence over the past few decades. Initially, AI agents were simple programmed entities, capable of executing only basic tasks such as answering FAQs or setting up reminders. However, advancements in machine learning, natural language processing, and neural networks have transformed these simplistic bots into sophisticated digital assistants like Siri, Alexa, and Google Assistant. These modern-day AI agents not only understand and respond to complex human commands but also predict user needs and adapt their behavior over time, making them indispensable in both personal and professional settings. They epitomize how far AI technologies have come and hint at an even more integrated and autonomous future.\n\n2. **AI in Healthcare: Revolutionizing Diagnosis, Treatment, and Patient Care**\n - Artificial Intelligence is revolutionizing healthcare by enhancing diagnostic accuracy, personalizing treatment plans, and improving overall patient care. With their ability to analyze vast datasets quickly and accurately, AI-driven tools are aiding doctors in early and precise diagnosis of diseases, including cancers and rare genetic disorders. Additionally, AI algorithms are being employed to tailor treatment plans based on individual patient data, lifestyle, and genetic information, ensuring more effective and personalized healthcare. Beyond diagnosis and treatment, AI is also optimizing hospital operations, from predicting patient admission rates to managing logistics and resources. The integration of AI in healthcare not only promises to augment the capabilities of medical professionals but also aims to provide better health outcomes, reduced costs, and increased accessibility to quality care.\n\n3. **Ethics in AI: Navigating the Moral Dilemmas of Autonomous Systems**\n - As AI systems become more autonomous and pervasive, they bring to the forefront pressing ethical dilemmas that society must navigate. These ethical challenges range from issues of bias and fairness in AI decisions to questions about the accountability and transparency of AI actions. For instance, how do we ensure that AI algorithms do not perpetuate existing societal biases in areas like hiring or law enforcement? Who is held responsible when an autonomous vehicle causes an accident? Additionally, there are concerns around privacy and the potential misuse of AI technologies for surveillance or coercion. Addressing these moral quandaries requires a concerted effort from policymakers, technologists, and ethicists to create robust frameworks and guidelines that ensure the ethical development and deployment of AI systems. Striking a balance between innovation and ethical considerations is crucial for building trust and securing the societal benefits of AI.\n\n4. **Startups Leveraging AI: Success Stories and Lessons Learned**\n - In the competitive landscape of startups, those leveraging AI have demonstrated remarkable success, offering innovative solutions and setting new industry benchmarks. Companies like OpenAI, which focuses on artificial general intelligence, and UiPath, specializing in robotic process automation, have not only disrupted their respective fields but also attracted substantial investment and market interest. These startups exemplify how AI can be harnessed to solve complex problems, improve efficiency, and unlock new business opportunities. However, their journeys offer valuable lessons, such as the importance of a clear vision, the need for scalable and robust AI models, and the critical role of ethical considerations in AI development. By examining these success stories, aspiring entrepreneurs can glean insights into navigating the challenges of building AI-centric businesses and the immense potential that AI holds for driving future innovations.\n\n5. **The Future of Human-AI Collaboration: Opportunities and Challenges**\n - The future of human-AI collaboration is poised to unlock unprecedented opportunities while presenting unique challenges that need to be thoughtfully addressed. As AI continues to mature, it will increasingly complement human capabilities, leading to enhanced productivity, creativity, and problem-solving across various domains. For instance, in workplaces, AI can handle repetitive tasks, allowing humans to focus on more strategic and creative activities. In scientific research, AI can analyze and interpret data at a scale beyond human capacity, driving new discoveries. However, this collaboration also raises challenges such as re-skilling the workforce to adapt to AI technologies, ensuring equitable access to AI advancements, and addressing ethical concerns related to autonomy and decision-making. Successfully navigating these challenges will require continuous dialogue, multidisciplinary collaboration, and a commitment to integrating human values into AI development. This balanced approach will be crucial in realizing the full potential of human-AI synergy."
)
def test_manager_llm_requirement_for_hierarchical_process():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
with pytest.raises(pydantic_core._pydantic_core.ValidationError):
Crew(
agents=[researcher, writer],
process=Process.hierarchical,
tasks=[task],
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_manager_agent_delegating_to_assigned_task_agent():
"""
Test that the manager agent delegates to the assigned task agent.
"""
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
agent=researcher,
)
crew = Crew(
agents=[researcher, writer],
process=Process.hierarchical,
manager_llm="gpt-4o",
tasks=[task],
)
crew.kickoff()
# Check if the manager agent has the correct tools
assert crew.manager_agent is not None
assert crew.manager_agent.tools is not None
assert len(crew.manager_agent.tools) == 2
assert (
"Delegate a specific task to one of the following coworkers: Researcher\n"
in crew.manager_agent.tools[0].description
)
assert (
"Ask a specific question to one of the following coworkers: Researcher\n"
in crew.manager_agent.tools[1].description
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_manager_agent_delegating_to_all_agents():
"""
Test that the manager agent delegates to all agents when none are specified.
"""
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
crew = Crew(
agents=[researcher, writer],
process=Process.hierarchical,
manager_llm="gpt-4o",
tasks=[task],
)
crew.kickoff()
assert crew.manager_agent is not None
assert crew.manager_agent.tools is not None
assert len(crew.manager_agent.tools) == 2
assert (
"Delegate a specific task to one of the following coworkers: Researcher, Senior Writer\n"
in crew.manager_agent.tools[0].description
)
assert (
"Ask a specific question to one of the following coworkers: Researcher, Senior Writer\n"
in crew.manager_agent.tools[1].description
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_with_delegating_agents():
tasks = [
Task(
description="Produce and amazing 1 paragraph draft of an article about AI Agents.",
expected_output="A 4 paragraph article about AI.",
agent=ceo,
)
]
crew = Crew(
agents=[ceo, writer],
process=Process.sequential,
tasks=tasks,
)
result = crew.kickoff()
assert (
result.raw
== "Artificial Intelligence (AI) is one of the most transformative technologies of the 21st century, poised to revolutionize numerous industries and everyday life. At its core, AI involves the development of computer systems that can perform tasks typically requiring human intelligence. These tasks include learning, reasoning, problem-solving, perception, and language understanding. The advent of AI has contributed to significant advancements in various fields such as healthcare, finance, transportation, and entertainment, making it an integral part of modern society.\n\nAI agents, or software programs that act autonomously to perform tasks, are an essential subset of AI technology. These agents function based on a set of rules or algorithms designed to interpret and respond to data in their environment. They are increasingly used in diverse applications, from virtual customer service representatives to complex predictive analytics in business. For instance, AI agents can analyze vast datasets to predict market trends, optimize supply chains, or even personalize user experiences on digital platforms. The versatility and efficiency of AI agents make them invaluable tools in enhancing productivity and driving innovation across numerous sectors.\n\nThe current applications of AI are vast and ever-expanding. In healthcare, AI-powered diagnostic tools are improving the accuracy of disease detection and enabling personalized treatment plans. In the financial sector, AI algorithms detect fraudulent transactions and manage investment portfolios with greater precision than traditional methods. Autonomous vehicles, another prominent application, are reshaping the transportation industry by promising safer and more efficient travel. Additionally, AI is playing a crucial role in entertainment, with recommendation engines in streaming services providing customized content to audiences, thereby transforming how media is consumed.\n\nLooking to the future, the potential implications of AI are both promising and challenging. On one hand, AI has the potential to drive unprecedented economic growth, enhance the quality of life, and solve some of humanity's most pressing problems, such as climate change and global health crises. However, these advancements also come with ethical considerations and potential risks. Issues such as data privacy, job displacement due to automation, and the need for robust regulatory frameworks require careful deliberation. As we integrate AI deeper into our lives, it is crucial to strike a balance between harnessing its benefits and addressing its challenges to ensure it serves the greater good.\n\nIn conclusion, AI and AI agents are dynamic forces that are already reshaping industries and have the potential to profoundly impact the future. By understanding and effectively leveraging these technologies, society can unlock new opportunities and tackle complex challenges. As we move forward, responsible development, deployment, and regulation of AI will be essential in maximizing its benefits while mitigating associated risks."
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_verbose_output(capsys):
tasks = [
Task(
description="Research AI advancements.",
expected_output="A full report on AI advancements.",
agent=researcher,
),
Task(
description="Write about AI in healthcare.",
expected_output="A 4 paragraph article about AI.",
agent=writer,
),
]
crew = Crew(
agents=[researcher, writer],
tasks=tasks,
process=Process.sequential,
verbose=True,
)
crew.kickoff()
captured = capsys.readouterr()
expected_strings = [
"\x1b[1m\x1b[95m# Agent:\x1b[00m \x1b[1m\x1b[92mResearcher",
"\x1b[00m\n\x1b[95m## Task:\x1b[00m \x1b[92mResearch AI advancements.",
"\x1b[1m\x1b[95m# Agent:\x1b[00m \x1b[1m\x1b[92mSenior Writer",
"\x1b[95m## Task:\x1b[00m \x1b[92mWrite about AI in healthcare.",
"\n\n\x1b[1m\x1b[95m# Agent:\x1b[00m \x1b[1m\x1b[92mResearcher",
"\x1b[00m\n\x1b[95m## Final Answer:",
"\n\n\x1b[1m\x1b[95m# Agent:\x1b[00m \x1b[1m\x1b[92mSenior Writer",
"\x1b[00m\n\x1b[95m## Final Answer:",
]
for expected_string in expected_strings:
assert expected_string in captured.out
# Now test with verbose set to False
crew.verbose = False
crew._logger = Logger(verbose=False)
crew.kickoff()
captured = capsys.readouterr()
assert captured.out == ""
@pytest.mark.vcr(filter_headers=["authorization"])
def test_cache_hitting_between_agents():
from unittest.mock import call, patch
from crewai_tools import tool
@tool
def multiplier(first_number: int, second_number: int) -> float:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
tasks = [
Task(
description="What is 2 tims 6? Return only the number.",
expected_output="the result of multiplication",
tools=[multiplier],
agent=ceo,
),
Task(
description="What is 2 times 6? Return only the number.",
expected_output="the result of multiplication",
tools=[multiplier],
agent=researcher,
),
]
crew = Crew(
agents=[ceo, researcher],
tasks=tasks,
)
with patch.object(CacheHandler, "read") as read:
read.return_value = "12"
crew.kickoff()
assert read.call_count == 2, "read was not called exactly twice"
# Check if read was called with the expected arguments
expected_calls = [
call(tool="multiplier", input={"first_number": 2, "second_number": 6}),
call(tool="multiplier", input={"first_number": 2, "second_number": 6}),
]
read.assert_has_calls(expected_calls, any_order=False)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_api_calls_throttling(capsys):
from unittest.mock import patch
from crewai_tools import tool
@tool
def get_final_answer() -> float:
"""Get the final answer but don't give it yet, just re-use this
tool non-stop."""
return 42
agent = Agent(
role="Very helpful assistant",
goal="Comply with necessary changes",
backstory="You obey orders",
max_iter=2,
allow_delegation=False,
verbose=True,
llm="gpt-4o",
)
task = Task(
description="Don't give a Final Answer unless explicitly told it's time to give the absolute best final answer.",
expected_output="The final answer.",
tools=[get_final_answer],
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], max_rpm=1, verbose=True)
with patch.object(RPMController, "_wait_for_next_minute") as moveon:
moveon.return_value = True
crew.kickoff()
captured = capsys.readouterr()
assert "Max RPM reached, waiting for next minute to start." in captured.out
moveon.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_kickoff_usage_metrics():
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
assert len(results) == len(inputs)
for result in results:
# Assert that all required keys are in usage_metrics and their values are not None
assert result.token_usage.total_tokens > 0
assert result.token_usage.prompt_tokens > 0
assert result.token_usage.completion_tokens > 0
assert result.token_usage.successful_requests > 0
def test_agents_rpm_is_never_set_if_crew_max_RPM_is_not_set():
agent = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
allow_delegation=False,
verbose=True,
)
task = Task(
description="just say hi!",
expected_output="your greeting",
agent=agent,
)
Crew(agents=[agent], tasks=[task], verbose=True)
assert agent._rpm_controller is None
@pytest.mark.vcr(filter_headers=["authorization"])
def test_sequential_async_task_execution_completion():
list_ideas = Task(
description="Give me a list of 5 interesting ideas to explore for an article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
async_execution=True,
)
list_important_history = Task(
description="Research the history of AI and give me the 5 most important events that shaped the technology.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
)
write_article = Task(
description="Write an article about the history of AI and its most important events.",
expected_output="A 4 paragraph article about AI.",
agent=writer,
context=[list_ideas, list_important_history],
)
sequential_crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[list_ideas, list_important_history, write_article],
)
sequential_result = sequential_crew.kickoff()
assert sequential_result.raw.startswith(
"The history of artificial intelligence (AI) is a fascinating journey marked by pioneering milestones and groundbreaking innovations."
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_single_task_with_async_execution():
researcher_agent = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
list_ideas = Task(
description="Generate a list of 5 interesting ideas to explore for an article, where each bulletpoint is under 15 words.",
expected_output="Bullet point list of 5 important events. No additional commentary.",
agent=researcher_agent,
async_execution=True,
)
crew = Crew(
agents=[researcher_agent],
process=Process.sequential,
tasks=[list_ideas],
)
result = crew.kickoff()
assert result.raw.startswith(
"- Ethical considerations in deploying AI in healthcare."
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_three_task_with_async_execution():
researcher_agent = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
bullet_list = Task(
description="Generate a list of 5 interesting ideas to explore for an article, where each bulletpoint is under 15 words.",
expected_output="Bullet point list of 5 important events. No additional commentary.",
agent=researcher_agent,
async_execution=True,
)
numbered_list = Task(
description="Generate a list of 5 interesting ideas to explore for an article, where each bulletpoint is under 15 words.",
expected_output="Numbered list of 5 important events. No additional commentary.",
agent=researcher_agent,
async_execution=True,
)
letter_list = Task(
description="Generate a list of 5 interesting ideas to explore for an article, where each bulletpoint is under 15 words.",
expected_output="Numbered list using [A), B), C)] list of 5 important events. No additional commentary.",
agent=researcher_agent,
async_execution=True,
)
# Expected result is that we will get an error
# because a crew can end only end with one or less
# async tasks
with pytest.raises(pydantic_core._pydantic_core.ValidationError) as error:
Crew(
agents=[researcher_agent],
process=Process.sequential,
tasks=[bullet_list, numbered_list, letter_list],
)
assert error.value.errors()[0]["type"] == "async_task_count"
assert (
"The crew must end with at most one asynchronous task."
in error.value.errors()[0]["msg"]
)
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.asyncio
async def test_crew_async_kickoff():
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
agent = Agent(
role="mock agent",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
mock_task_output = (
CrewOutput(
raw="Test output from Crew 1",
tasks_output=[],
token_usage=UsageMetrics(
total_tokens=100,
prompt_tokens=10,
completion_tokens=90,
successful_requests=1,
),
json_dict={"output": "crew1"},
pydantic=None,
),
)
with patch.object(Crew, "kickoff_async", return_value=mock_task_output):
results = await crew.kickoff_for_each_async(inputs=inputs)
assert len(results) == len(inputs)
for result in results:
# Assert that all required keys are in usage_metrics and their values are not None
assert result[0].token_usage.total_tokens > 0 # type: ignore
assert result[0].token_usage.prompt_tokens > 0 # type: ignore
assert result[0].token_usage.completion_tokens > 0 # type: ignore
assert result[0].token_usage.successful_requests > 0 # type: ignore
@pytest.mark.vcr(filter_headers=["authorization"])
def test_async_task_execution_call_count():
from unittest.mock import MagicMock, patch
list_ideas = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
async_execution=True,
)
list_important_history = Task(
description="Research the history of AI and give me the 5 most important events that shaped the technology.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
async_execution=True,
)
write_article = Task(
description="Write an article about the history of AI and its most important events.",
expected_output="A 4 paragraph article about AI.",
agent=writer,
)
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=[list_ideas, list_important_history, write_article],
)
# Create a valid TaskOutput instance to mock the return value
mock_task_output = TaskOutput(
description="Mock description", raw="mocked output", agent="mocked agent"
)
# Create a MagicMock Future instance
mock_future = MagicMock(spec=Future)
mock_future.result.return_value = mock_task_output
# Directly set the output attribute for each task
list_ideas.output = mock_task_output
list_important_history.output = mock_task_output
write_article.output = mock_task_output
with patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync, patch.object(
Task, "execute_async", return_value=mock_future
) as mock_execute_async:
crew.kickoff()
assert mock_execute_async.call_count == 2
assert mock_execute_sync.call_count == 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_kickoff_for_each_single_input():
"""Tests if kickoff_for_each works with a single input."""
inputs = [{"topic": "dog"}]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
assert len(results) == 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_kickoff_for_each_multiple_inputs():
"""Tests if kickoff_for_each works with multiple inputs."""
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=inputs)
assert len(results) == len(inputs)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_kickoff_for_each_empty_input():
"""Tests if kickoff_for_each handles an empty input list."""
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
results = crew.kickoff_for_each(inputs=[])
assert results == []
@pytest.mark.vcr(filter_headers=["authorization"])
def test_kickoff_for_each_invalid_input():
"""Tests if kickoff_for_each raises TypeError for invalid input types."""
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
with pytest.raises(TypeError):
# Pass a string instead of a list
crew.kickoff_for_each("invalid input")
@pytest.mark.vcr(filter_headers=["authorization"])
def test_kickoff_for_each_error_handling():
"""Tests error handling in kickoff_for_each when kickoff raises an error."""
from unittest.mock import patch
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
expected_outputs = [
"Dogs are loyal companions and popular pets.",
"Cats are independent and low-maintenance pets.",
"Apples are a rich source of dietary fiber and vitamin C.",
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
with patch.object(Crew, "kickoff") as mock_kickoff:
mock_kickoff.side_effect = expected_outputs[:2] + [
Exception("Simulated kickoff error")
]
with pytest.raises(Exception, match="Simulated kickoff error"):
crew.kickoff_for_each(inputs=inputs)
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.asyncio
async def test_kickoff_async_basic_functionality_and_output():
"""Tests the basic functionality and output of kickoff_async."""
from unittest.mock import patch
inputs = {"topic": "dog"}
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
# Create the crew
crew = Crew(
agents=[agent],
tasks=[task],
)
expected_output = "This is a sample output from kickoff."
with patch.object(Crew, "kickoff", return_value=expected_output) as mock_kickoff:
result = await crew.kickoff_async(inputs)
assert isinstance(result, str), "Result should be a string"
assert result == expected_output, "Result should match expected output"
mock_kickoff.assert_called_once_with(inputs)
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.asyncio
async def test_async_kickoff_for_each_async_basic_functionality_and_output():
"""Tests the basic functionality and output of kickoff_for_each_async."""
inputs = [
{"topic": "dog"},
{"topic": "cat"},
{"topic": "apple"},
]
# Define expected outputs for each input
expected_outputs = [
"Dogs are loyal companions and popular pets.",
"Cats are independent and low-maintenance pets.",
"Apples are a rich source of dietary fiber and vitamin C.",
]
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
async def mock_kickoff_async(**kwargs):
input_data = kwargs.get("inputs")
index = [input_["topic"] for input_ in inputs].index(input_data["topic"])
return expected_outputs[index]
with patch.object(
Crew, "kickoff_async", side_effect=mock_kickoff_async
) as mock_kickoff_async:
crew = Crew(agents=[agent], tasks=[task])
results = await crew.kickoff_for_each_async(inputs)
assert len(results) == len(inputs)
assert results == expected_outputs
for input_data in inputs:
mock_kickoff_async.assert_any_call(inputs=input_data)
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.mark.asyncio
async def test_async_kickoff_for_each_async_empty_input():
"""Tests if akickoff_for_each_async handles an empty input list."""
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="1 bullet point about {topic} that's under 15 words.",
agent=agent,
)
# Create the crew
crew = Crew(
agents=[agent],
tasks=[task],
)
# Call the function we are testing
results = await crew.kickoff_for_each_async([])
# Assertion
assert results == [], "Result should be an empty list when input is empty"
def test_set_agents_step_callback():
from unittest.mock import patch
researcher_agent = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
list_ideas = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher_agent,
async_execution=True,
)
crew = Crew(
agents=[researcher_agent],
process=Process.sequential,
tasks=[list_ideas],
step_callback=lambda: None,
)
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
crew.kickoff()
assert researcher_agent.step_callback is not None
def test_dont_set_agents_step_callback_if_already_set():
from unittest.mock import patch
def agent_callback(_):
pass
def crew_callback(_):
pass
researcher_agent = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
step_callback=agent_callback,
)
list_ideas = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher_agent,
async_execution=True,
)
crew = Crew(
agents=[researcher_agent],
process=Process.sequential,
tasks=[list_ideas],
step_callback=crew_callback,
)
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
crew.kickoff()
assert researcher_agent.step_callback is not crew_callback
assert researcher_agent.step_callback is agent_callback
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_function_calling_llm():
from unittest.mock import patch, Mock
from crewai_tools import tool
import instructor
llm = "gpt-4o"
@tool
def learn_about_AI() -> str:
"""Useful for when you need to learn about AI to write an paragraph about it."""
return "AI is a very broad field."
agent1 = Agent(
role="test role",
goal="test goal",
backstory="test backstory",
tools=[learn_about_AI],
llm="gpt-4o-mini",
function_calling_llm=llm,
)
essay = Task(
description="Write and then review an small paragraph on AI until it's AMAZING",
expected_output="The final paragraph.",
agent=agent1,
)
tasks = [essay]
crew = Crew(agents=[agent1], tasks=tasks)
with patch.object(instructor, "from_litellm") as mock_from_litellm:
mock_client = Mock()
mock_from_litellm.return_value = mock_client
mock_chat = Mock()
mock_client.chat = mock_chat
mock_completions = Mock()
mock_chat.completions = mock_completions
mock_create = Mock()
mock_completions.create = mock_create
crew.kickoff()
mock_from_litellm.assert_called()
mock_create.assert_called()
calls = mock_create.call_args_list
assert any(
call.kwargs.get("model") == "gpt-4o" for call in calls
), "Instructor was not created with the expected model"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_task_with_no_arguments():
from crewai_tools import tool
@tool
def return_data() -> str:
"Useful to get the sales related data"
return "January: 5, February: 10, March: 15, April: 20, May: 25"
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
tools=[return_data],
allow_delegation=False,
)
task = Task(
description="Look at the available data and give me a sense on the total number of sales.",
expected_output="The total number of sales as an integer",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
result = crew.kickoff()
assert result.raw == "January: 5, February: 10, March: 15, April: 20, May: 25"
def test_code_execution_flag_adds_code_tool_upon_kickoff():
from crewai_tools import CodeInterpreterTool
programmer = Agent(
role="Programmer",
goal="Write code to solve problems.",
backstory="You're a programmer who loves to solve problems with code.",
allow_delegation=False,
allow_code_execution=True,
)
task = Task(
description="How much is 2 + 2?",
expected_output="The result of the sum as an integer.",
agent=programmer,
)
crew = Crew(agents=[programmer], tasks=[task])
with patch.object(Agent, "execute_task") as executor:
executor.return_value = "ok"
crew.kickoff()
assert len(programmer.tools) == 1
assert programmer.tools[0].__class__ == CodeInterpreterTool
@pytest.mark.vcr(filter_headers=["authorization"])
def test_delegation_is_not_enabled_if_there_are_only_one_agent():
researcher = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=True,
)
task = Task(
description="Look at the available data and give me a sense on the total number of sales.",
expected_output="The total number of sales as an integer",
agent=researcher,
)
crew = Crew(agents=[researcher], tasks=[task])
crew.kickoff()
assert task.tools == []
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agents_do_not_get_delegation_tools_with_there_is_only_one_agent():
agent = Agent(
role="Researcher",
goal="Be super empathetic.",
backstory="You're love to sey howdy.",
allow_delegation=False,
)
task = Task(description="say howdy", expected_output="Howdy!", agent=agent)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
assert result.raw == "Howdy!"
assert len(agent.tools) == 0
@pytest.mark.vcr(filter_headers=["authorization"])
def test_sequential_crew_creation_tasks_without_agents():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
# agent=researcher, # not having an agent on the task should throw an error
)
# Expected Output: The sequential crew should fail to create because the task is missing an agent
with pytest.raises(pydantic_core._pydantic_core.ValidationError) as exec_info:
Crew(
tasks=[task],
agents=[researcher],
process=Process.sequential,
)
assert exec_info.value.errors()[0]["type"] == "missing_agent_in_task"
assert (
"Agent is missing in the task with the following description"
in exec_info.value.errors()[0]["msg"]
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_agent_usage_metrics_are_captured_for_hierarchical_process():
agent = Agent(
role="Researcher",
goal="Be super empathetic.",
backstory="You're love to sey howdy.",
allow_delegation=False,
)
task = Task(description="Ask the researched to say hi!", expected_output="Howdy!")
crew = Crew(
agents=[agent], tasks=[task], process=Process.hierarchical, manager_llm="gpt-4o"
)
result = crew.kickoff()
assert result.raw == "Howdy!"
assert result.token_usage == UsageMetrics(
total_tokens=2654,
prompt_tokens=2510,
completion_tokens=144,
successful_requests=5,
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_crew_creation_tasks_with_agents():
"""
Agents are not required for tasks in a hierarchical process but sometimes they are still added
This test makes sure that the manager still delegates the task to the agent even if the agent is passed in the task
"""
task = Task(
description="Write one amazing paragraph about AI.",
expected_output="A single paragraph with 4 sentences.",
agent=writer,
)
crew = Crew(
tasks=[task],
agents=[writer, researcher],
process=Process.hierarchical,
manager_llm="gpt-4o",
)
crew.kickoff()
assert crew.manager_agent is not None
assert crew.manager_agent.tools is not None
assert crew.manager_agent.tools[0].description.startswith(
"Delegate a specific task to one of the following coworkers: Senior Writer"
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_crew_creation_tasks_with_async_execution():
"""
Agents are not required for tasks in a hierarchical process but sometimes they are still added
This test makes sure that the manager still delegates the task to the agent even if the agent is passed in the task
"""
task = Task(
description="Write one amazing paragraph about AI.",
expected_output="A single paragraph with 4 sentences.",
agent=writer,
async_execution=True,
)
crew = Crew(
tasks=[task],
agents=[writer, researcher, ceo],
process=Process.hierarchical,
manager_llm="gpt-4o",
)
crew.kickoff()
assert crew.manager_agent is not None
assert crew.manager_agent.tools is not None
assert crew.manager_agent.tools[0].description.startswith(
"Delegate a specific task to one of the following coworkers: Senior Writer\n"
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_crew_creation_tasks_with_sync_last():
"""
Agents are not required for tasks in a hierarchical process but sometimes they are still added
This test makes sure that the manager still delegates the task to the agent even if the agent is passed in the task
"""
task = Task(
description="Write one amazing paragraph about AI.",
expected_output="A single paragraph with 4 sentences.",
agent=writer,
async_execution=True,
)
task2 = Task(
description="Write one amazing paragraph about AI.",
expected_output="A single paragraph with 4 sentences.",
async_execution=False,
)
crew = Crew(
tasks=[task, task2],
agents=[writer, researcher, ceo],
process=Process.hierarchical,
manager_llm="gpt-4o",
)
crew.kickoff()
assert crew.manager_agent is not None
assert crew.manager_agent.tools is not None
assert crew.manager_agent.tools[0].description.startswith(
"Delegate a specific task to one of the following coworkers: Senior Writer, Researcher, CEO\n"
)
def test_crew_inputs_interpolate_both_agents_and_tasks():
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="{points} bullet points about {topic}.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
inputs = {"topic": "AI", "points": 5}
crew._interpolate_inputs(inputs=inputs) # Manual call for now
assert crew.tasks[0].description == "Give me an analysis around AI."
assert crew.tasks[0].expected_output == "5 bullet points about AI."
assert crew.agents[0].role == "AI Researcher"
assert crew.agents[0].goal == "Express hot takes on AI."
assert crew.agents[0].backstory == "You have a lot of experience with AI."
def test_crew_inputs_interpolate_both_agents_and_tasks_diff():
from unittest.mock import patch
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="{points} bullet points about {topic}.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
with patch.object(Agent, "execute_task") as execute:
with patch.object(
Agent, "interpolate_inputs", wraps=agent.interpolate_inputs
) as interpolate_agent_inputs:
with patch.object(
Task, "interpolate_inputs", wraps=task.interpolate_inputs
) as interpolate_task_inputs:
execute.return_value = "ok"
crew.kickoff(inputs={"topic": "AI", "points": 5})
interpolate_agent_inputs.assert_called()
interpolate_task_inputs.assert_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_does_not_interpolate_without_inputs():
from unittest.mock import patch
agent = Agent(
role="{topic} Researcher",
goal="Express hot takes on {topic}.",
backstory="You have a lot of experience with {topic}.",
)
task = Task(
description="Give me an analysis around {topic}.",
expected_output="{points} bullet points about {topic}.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
with patch.object(Agent, "interpolate_inputs") as interpolate_agent_inputs:
with patch.object(Task, "interpolate_inputs") as interpolate_task_inputs:
crew.kickoff()
interpolate_agent_inputs.assert_not_called()
interpolate_task_inputs.assert_not_called()
# def test_crew_partial_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"topic": "AI"})
# inputs = {"topic": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around AI."
# assert crew.tasks[0].expected_output == "{points} bullet points about AI."
# assert crew.agents[0].role == "AI Researcher"
# assert crew.agents[0].goal == "Express hot takes on AI."
# assert crew.agents[0].backstory == "You have a lot of experience with AI."
# def test_crew_invalid_inputs():
# agent = Agent(
# role="{topic} Researcher",
# goal="Express hot takes on {topic}.",
# backstory="You have a lot of experience with {topic}.",
# )
# task = Task(
# description="Give me an analysis around {topic}.",
# expected_output="{points} bullet points about {topic}.",
# )
# crew = Crew(agents=[agent], tasks=[task], inputs={"subject": "AI"})
# inputs = {"subject": "AI"}
# crew._interpolate_inputs(inputs=inputs) # Manual call for now
# assert crew.tasks[0].description == "Give me an analysis around {topic}."
# assert crew.tasks[0].expected_output == "{points} bullet points about {topic}."
# assert crew.agents[0].role == "{topic} Researcher"
# assert crew.agents[0].goal == "Express hot takes on {topic}."
# assert crew.agents[0].backstory == "You have a lot of experience with {topic}."
def test_task_callback_on_crew():
from unittest.mock import MagicMock, patch
researcher_agent = Agent(
role="Researcher",
goal="Make the best research and analysis on content about AI and AI agents",
backstory="You're an expert researcher, specialized in technology, software engineering, AI and startups. You work as a freelancer and is now working on doing research and analysis for a new customer.",
allow_delegation=False,
)
list_ideas = Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher_agent,
async_execution=True,
)
mock_callback = MagicMock()
crew = Crew(
agents=[researcher_agent],
process=Process.sequential,
tasks=[list_ideas],
task_callback=mock_callback,
)
with patch.object(Agent, "execute_task") as execute:
execute.return_value = "ok"
crew.kickoff()
assert list_ideas.callback is not None
mock_callback.assert_called_once()
args, _ = mock_callback.call_args
assert isinstance(args[0], TaskOutput)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tools_with_custom_caching():
from unittest.mock import patch
from crewai_tools import tool
@tool
def multiplcation_tool(first_number: int, second_number: int) -> int:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
def cache_func(args, result):
cache = result % 2 == 0
return cache
multiplcation_tool.cache_function = cache_func
writer1 = Agent(
role="Writer",
goal="You write lessons of math for kids.",
backstory="You're an expert in writing and you love to teach kids but you know nothing of math.",
tools=[multiplcation_tool],
allow_delegation=False,
)
writer2 = Agent(
role="Writer",
goal="You write lessons of math for kids.",
backstory="You're an expert in writing and you love to teach kids but you know nothing of math.",
tools=[multiplcation_tool],
allow_delegation=False,
)
task1 = Task(
description="What is 2 times 6? Return only the number after using the multiplication tool.",
expected_output="the result of multiplication",
agent=writer1,
)
task2 = Task(
description="What is 3 times 1? Return only the number after using the multiplication tool.",
expected_output="the result of multiplication",
agent=writer1,
)
task3 = Task(
description="What is 2 times 6? Return only the number after using the multiplication tool.",
expected_output="the result of multiplication",
agent=writer2,
)
task4 = Task(
description="What is 3 times 1? Return only the number after using the multiplication tool.",
expected_output="the result of multiplication",
agent=writer2,
)
crew = Crew(agents=[writer1, writer2], tasks=[task1, task2, task3, task4])
with patch.object(
CacheHandler, "add", wraps=crew._cache_handler.add
) as add_to_cache:
with patch.object(CacheHandler, "read", wraps=crew._cache_handler.read) as _:
result = crew.kickoff()
add_to_cache.assert_called_once_with(
tool="multiplcation_tool",
input={"first_number": 2, "second_number": 6},
output=12,
)
assert result.raw == "3"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_using_contextual_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
goal="You research about math.",
backstory="You're an expert in research and you love to learn new things.",
allow_delegation=False,
)
task1 = Task(
description="Research a topic to teach a kid aged 6 about math.",
expected_output="A topic, explanation, angle, and examples.",
agent=math_researcher,
)
crew = Crew(
agents=[math_researcher],
tasks=[task1],
memory=True,
)
with patch.object(ContextualMemory, "build_context_for_task") as contextual_mem:
crew.kickoff()
contextual_mem.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_disabled_memory_using_contextual_memory():
from unittest.mock import patch
math_researcher = Agent(
role="Researcher",
goal="You research about math.",
backstory="You're an expert in research and you love to learn new things.",
allow_delegation=False,
)
task1 = Task(
description="Research a topic to teach a kid aged 6 about math.",
expected_output="A topic, explanation, angle, and examples.",
agent=math_researcher,
)
crew = Crew(
agents=[math_researcher],
tasks=[task1],
memory=False,
)
with patch.object(ContextualMemory, "build_context_for_task") as contextual_mem:
crew.kickoff()
contextual_mem.assert_not_called()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_log_file_output(tmp_path):
test_file = tmp_path / "logs.txt"
tasks = [
Task(
description="Say Hi",
expected_output="The word: Hi",
agent=researcher,
)
]
crew = Crew(agents=[researcher], tasks=tasks, output_log_file=str(test_file))
crew.kickoff()
assert test_file.exists()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_manager_agent():
from unittest.mock import patch
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
manager = Agent(
role="Manager",
goal="Manage the crew and ensure the tasks are completed efficiently.",
backstory="You're an experienced manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
allow_delegation=False,
)
crew = Crew(
agents=[researcher, writer],
process=Process.hierarchical,
manager_agent=manager,
tasks=[task],
)
mock_task_output = TaskOutput(
description="Mock description", raw="mocked output", agent="mocked agent"
)
# Because we are mocking execute_sync, we never hit the underlying _execute_core
# which sets the output attribute of the task
task.output = mock_task_output
with patch.object(
Task, "execute_sync", return_value=mock_task_output
) as mock_execute_sync:
crew.kickoff()
assert manager.allow_delegation is True
mock_execute_sync.assert_called()
def test_manager_agent_in_agents_raises_exception():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
manager = Agent(
role="Manager",
goal="Manage the crew and ensure the tasks are completed efficiently.",
backstory="You're an experienced manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
allow_delegation=False,
)
with pytest.raises(pydantic_core._pydantic_core.ValidationError):
Crew(
agents=[researcher, writer, manager],
process=Process.hierarchical,
manager_agent=manager,
tasks=[task],
)
def test_manager_agent_with_tools_raises_exception():
from crewai_tools import tool
@tool
def testing_tool(first_number: int, second_number: int) -> int:
"""Useful for when you need to multiply two numbers together."""
return first_number * second_number
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
manager = Agent(
role="Manager",
goal="Manage the crew and ensure the tasks are completed efficiently.",
backstory="You're an experienced manager, skilled in overseeing complex projects and guiding teams to success. Your role is to coordinate the efforts of the crew members, ensuring that each task is completed on time and to the highest standard.",
allow_delegation=False,
tools=[testing_tool],
)
crew = Crew(
agents=[researcher, writer],
process=Process.hierarchical,
manager_agent=manager,
tasks=[task],
)
with pytest.raises(Exception):
crew.kickoff()
@patch("crewai.crew.Crew.kickoff")
@patch("crewai.crew.CrewTrainingHandler")
@patch("crewai.crew.TaskEvaluator")
def test_crew_train_success(task_evaluator, crew_training_handler, kickoff):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
agent=researcher,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task],
)
crew.train(
n_iterations=2, inputs={"topic": "AI"}, filename="trained_agents_data.pkl"
)
task_evaluator.assert_has_calls(
[
mock.call(researcher),
mock.call().evaluate_training_data(
training_data=crew_training_handler().load(),
agent_id=str(researcher.id),
),
mock.call().evaluate_training_data().model_dump(),
mock.call(writer),
mock.call().evaluate_training_data(
training_data=crew_training_handler().load(),
agent_id=str(writer.id),
),
mock.call().evaluate_training_data().model_dump(),
]
)
crew_training_handler.assert_has_calls(
[
mock.call("training_data.pkl"),
mock.call().load(),
mock.call("trained_agents_data.pkl"),
mock.call().save_trained_data(
agent_id="Researcher",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
),
mock.call("trained_agents_data.pkl"),
mock.call().save_trained_data(
agent_id="Senior Writer",
trained_data=task_evaluator().evaluate_training_data().model_dump(),
),
mock.call(),
mock.call().load(),
mock.call(),
mock.call().load(),
]
)
kickoff.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
def test_crew_train_error():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article",
expected_output="5 bullet points with a paragraph for each idea.",
agent=researcher,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task],
)
with pytest.raises(TypeError) as e:
crew.train()
assert "train() missing 1 required positional argument: 'n_iterations'" in str(
e
)
def test__setup_for_training():
researcher.allow_delegation = True
writer.allow_delegation = True
agents = [researcher, writer]
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article",
expected_output="5 bullet points with a paragraph for each idea.",
agent=researcher,
)
crew = Crew(
agents=agents,
tasks=[task],
)
assert crew._train is False
assert task.human_input is False
for agent in agents:
assert agent.allow_delegation is True
crew._setup_for_training("trained_agents_data.pkl")
assert crew._train is True
assert task.human_input is True
for agent in agents:
assert agent.allow_delegation is False
@pytest.mark.vcr(filter_headers=["authorization"])
def test_replay_feature():
list_ideas = Task(
description="Generate a list of 5 interesting ideas to explore for an article, where each bulletpoint is under 15 words.",
expected_output="Bullet point list of 5 important events. No additional commentary.",
agent=researcher,
)
write = Task(
description="Write a sentence about the events",
expected_output="A sentence about the events",
agent=writer,
context=[list_ideas],
)
crew = Crew(
agents=[researcher, writer],
tasks=[list_ideas, write],
process=Process.sequential,
)
with patch.object(Task, "execute_sync") as mock_execute_task:
mock_execute_task.return_value = TaskOutput(
description="Mock description",
raw="Mocked output for list of ideas",
agent="Researcher",
json_dict=None,
output_format=OutputFormat.RAW,
pydantic=None,
summary="Mocked output for list of ideas",
)
crew.kickoff()
crew.replay(str(write.id))
# Ensure context was passed correctly
assert mock_execute_task.call_count == 3
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_replay_error():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article",
expected_output="5 bullet points with a paragraph for each idea.",
agent=researcher,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task],
)
with pytest.raises(TypeError) as e:
crew.replay() # type: ignore purposefully throwing err
assert "task_id is required" in str(e)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_crew_task_db_init():
agent = Agent(
role="Content Writer",
goal="Write engaging content on various topics.",
backstory="You have a background in journalism and creative writing.",
)
task = Task(
description="Write a detailed article about AI in healthcare.",
expected_output="A 1 paragraph article about AI.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
with patch.object(Task, "execute_sync") as mock_execute_task:
mock_execute_task.return_value = TaskOutput(
description="Write about AI in healthcare.",
raw="Artificial Intelligence (AI) is revolutionizing healthcare by enhancing diagnostic accuracy, personalizing treatment plans, and streamlining administrative tasks.",
agent="Content Writer",
json_dict=None,
output_format=OutputFormat.RAW,
pydantic=None,
summary="Write about AI in healthcare...",
)
crew.kickoff()
# Check if this runs without raising an exception
try:
db_handler = TaskOutputStorageHandler()
db_handler.load()
assert True # If we reach this point, no exception was raised
except Exception as e:
pytest.fail(f"An exception was raised: {str(e)}")
@pytest.mark.vcr(filter_headers=["authorization"])
def test_replay_task_with_context():
agent1 = Agent(
role="Researcher",
goal="Research AI advancements.",
backstory="You are an expert in AI research.",
)
agent2 = Agent(
role="Writer",
goal="Write detailed articles on AI.",
backstory="You have a background in journalism and AI.",
)
task1 = Task(
description="Research the latest advancements in AI.",
expected_output="A detailed report on AI advancements.",
agent=agent1,
)
task2 = Task(
description="Summarize the AI advancements report.",
expected_output="A summary of the AI advancements report.",
agent=agent2,
)
task3 = Task(
description="Write an article based on the AI advancements summary.",
expected_output="An article on AI advancements.",
agent=agent2,
)
task4 = Task(
description="Create a presentation based on the AI advancements article.",
expected_output="A presentation on AI advancements.",
agent=agent2,
context=[task1],
)
crew = Crew(
agents=[agent1, agent2],
tasks=[task1, task2, task3, task4],
process=Process.sequential,
)
mock_task_output1 = TaskOutput(
description="Research the latest advancements in AI.",
raw="Detailed report on AI advancements...",
agent="Researcher",
json_dict=None,
output_format=OutputFormat.RAW,
pydantic=None,
summary="Detailed report on AI advancements...",
)
mock_task_output2 = TaskOutput(
description="Summarize the AI advancements report.",
raw="Summary of the AI advancements report...",
agent="Writer",
json_dict=None,
output_format=OutputFormat.RAW,
pydantic=None,
summary="Summary of the AI advancements report...",
)
mock_task_output3 = TaskOutput(
description="Write an article based on the AI advancements summary.",
raw="Article on AI advancements...",
agent="Writer",
json_dict=None,
output_format=OutputFormat.RAW,
pydantic=None,
summary="Article on AI advancements...",
)
mock_task_output4 = TaskOutput(
description="Create a presentation based on the AI advancements article.",
raw="Presentation on AI advancements...",
agent="Writer",
json_dict=None,
output_format=OutputFormat.RAW,
pydantic=None,
summary="Presentation on AI advancements...",
)
with patch.object(Task, "execute_sync") as mock_execute_task:
mock_execute_task.side_effect = [
mock_task_output1,
mock_task_output2,
mock_task_output3,
mock_task_output4,
]
crew.kickoff()
db_handler = TaskOutputStorageHandler()
assert db_handler.load() != []
with patch.object(Task, "execute_sync") as mock_replay_task:
mock_replay_task.return_value = mock_task_output4
replayed_output = crew.replay(str(task4.id))
assert replayed_output.raw == "Presentation on AI advancements..."
db_handler.reset()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_replay_with_context():
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
task1 = Task(
description="Context Task", expected_output="Say Task Output", agent=agent
)
task2 = Task(
description="Test Task", expected_output="Say Hi", agent=agent, context=[task1]
)
context_output = TaskOutput(
description="Context Task Output",
agent="test_agent",
raw="context raw output",
pydantic=None,
json_dict={},
output_format=OutputFormat.RAW,
)
task1.output = context_output
crew = Crew(agents=[agent], tasks=[task1, task2], process=Process.sequential)
with patch(
"crewai.utilities.task_output_storage_handler.TaskOutputStorageHandler.load",
return_value=[
{
"task_id": str(task1.id),
"output": {
"description": context_output.description,
"summary": context_output.summary,
"raw": context_output.raw,
"pydantic": context_output.pydantic,
"json_dict": context_output.json_dict,
"output_format": context_output.output_format,
"agent": context_output.agent,
},
"inputs": {},
},
{
"task_id": str(task2.id),
"output": {
"description": "Test Task Output",
"summary": None,
"raw": "test raw output",
"pydantic": None,
"json_dict": {},
"output_format": "json",
"agent": "test_agent",
},
"inputs": {},
},
],
):
crew.replay(str(task2.id))
assert crew.tasks[1].context[0].output.raw == "context raw output"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_replay_with_invalid_task_id():
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
task1 = Task(
description="Context Task", expected_output="Say Task Output", agent=agent
)
task2 = Task(
description="Test Task", expected_output="Say Hi", agent=agent, context=[task1]
)
context_output = TaskOutput(
description="Context Task Output",
agent="test_agent",
raw="context raw output",
pydantic=None,
json_dict={},
output_format=OutputFormat.RAW,
)
task1.output = context_output
crew = Crew(agents=[agent], tasks=[task1, task2], process=Process.sequential)
with patch(
"crewai.utilities.task_output_storage_handler.TaskOutputStorageHandler.load",
return_value=[
{
"task_id": str(task1.id),
"output": {
"description": context_output.description,
"summary": context_output.summary,
"raw": context_output.raw,
"pydantic": context_output.pydantic,
"json_dict": context_output.json_dict,
"output_format": context_output.output_format,
"agent": context_output.agent,
},
"inputs": {},
},
{
"task_id": str(task2.id),
"output": {
"description": "Test Task Output",
"summary": None,
"raw": "test raw output",
"pydantic": None,
"json_dict": {},
"output_format": "json",
"agent": "test_agent",
},
"inputs": {},
},
],
):
with pytest.raises(
ValueError,
match="Task with id bf5b09c9-69bd-4eb8-be12-f9e5bae31c2d not found in the crew's tasks.",
):
crew.replay("bf5b09c9-69bd-4eb8-be12-f9e5bae31c2d")
@pytest.mark.vcr(filter_headers=["authorization"])
@patch.object(Crew, "_interpolate_inputs")
def test_replay_interpolates_inputs_properly(mock_interpolate_inputs):
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
task1 = Task(description="Context Task", expected_output="Say {name}", agent=agent)
task2 = Task(
description="Test Task",
expected_output="Say Hi to {name}",
agent=agent,
context=[task1],
)
context_output = TaskOutput(
description="Context Task Output",
agent="test_agent",
raw="context raw output",
pydantic=None,
json_dict={},
output_format=OutputFormat.RAW,
)
task1.output = context_output
crew = Crew(agents=[agent], tasks=[task1, task2], process=Process.sequential)
crew.kickoff(inputs={"name": "John"})
with patch(
"crewai.utilities.task_output_storage_handler.TaskOutputStorageHandler.load",
return_value=[
{
"task_id": str(task1.id),
"output": {
"description": context_output.description,
"summary": context_output.summary,
"raw": context_output.raw,
"pydantic": context_output.pydantic,
"json_dict": context_output.json_dict,
"output_format": context_output.output_format,
"agent": context_output.agent,
},
"inputs": {"name": "John"},
},
{
"task_id": str(task2.id),
"output": {
"description": "Test Task Output",
"summary": None,
"raw": "test raw output",
"pydantic": None,
"json_dict": {},
"output_format": "json",
"agent": "test_agent",
},
"inputs": {"name": "John"},
},
],
):
crew.replay(str(task2.id))
assert crew._inputs == {"name": "John"}
assert mock_interpolate_inputs.call_count == 2
@pytest.mark.vcr(filter_headers=["authorization"])
def test_replay_setup_context():
agent = Agent(role="test_agent", backstory="Test Description", goal="Test Goal")
task1 = Task(description="Context Task", expected_output="Say {name}", agent=agent)
task2 = Task(
description="Test Task",
expected_output="Say Hi to {name}",
agent=agent,
)
context_output = TaskOutput(
description="Context Task Output",
agent="test_agent",
raw="context raw output",
pydantic=None,
json_dict={},
output_format=OutputFormat.RAW,
)
task1.output = context_output
crew = Crew(agents=[agent], tasks=[task1, task2], process=Process.sequential)
with patch(
"crewai.utilities.task_output_storage_handler.TaskOutputStorageHandler.load",
return_value=[
{
"task_id": str(task1.id),
"output": {
"description": context_output.description,
"summary": context_output.summary,
"raw": context_output.raw,
"pydantic": context_output.pydantic,
"json_dict": context_output.json_dict,
"output_format": context_output.output_format,
"agent": context_output.agent,
},
"inputs": {"name": "John"},
},
{
"task_id": str(task2.id),
"output": {
"description": "Test Task Output",
"summary": None,
"raw": "test raw output",
"pydantic": None,
"json_dict": {},
"output_format": "json",
"agent": "test_agent",
},
"inputs": {"name": "John"},
},
],
):
crew.replay(str(task2.id))
# Check if the first task's output was set correctly
assert crew.tasks[0].output is not None
assert isinstance(crew.tasks[0].output, TaskOutput)
assert crew.tasks[0].output.description == "Context Task Output"
assert crew.tasks[0].output.agent == "test_agent"
assert crew.tasks[0].output.raw == "context raw output"
assert crew.tasks[0].output.output_format == OutputFormat.RAW
assert crew.tasks[1].prompt_context == "context raw output"
def test_key():
tasks = [
Task(
description="Give me a list of 5 interesting ideas to explore for na article, what makes them unique and interesting.",
expected_output="Bullet point list of 5 important events.",
agent=researcher,
),
Task(
description="Write a 1 amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="A 4 paragraph article about AI.",
agent=writer,
),
]
crew = Crew(
agents=[researcher, writer],
process=Process.sequential,
tasks=tasks,
)
hash = hashlib.md5(
f"{researcher.key}|{writer.key}|{tasks[0].key}|{tasks[1].key}".encode()
).hexdigest()
assert crew.key == hash
def test_conditional_task_requirement_breaks_when_singular_conditional_task():
def condition_fn(output) -> bool:
return output.raw.startswith("Andrew Ng has!!")
task = ConditionalTask(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
condition=condition_fn,
)
with pytest.raises(pydantic_core._pydantic_core.ValidationError):
Crew(
agents=[researcher, writer],
tasks=[task],
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_conditional_task_last_task_when_conditional_is_true():
def condition_fn(output) -> bool:
return True
task1 = Task(
description="Say Hi",
expected_output="Hi",
agent=researcher,
)
task2 = ConditionalTask(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
condition=condition_fn,
agent=writer,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
)
result = crew.kickoff()
assert result.raw.startswith(
"1. **The Role of AI in Personalized Medicine: Revolutionizing Healthcare**"
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_conditional_task_last_task_when_conditional_is_false():
def condition_fn(output) -> bool:
return False
task1 = Task(
description="Say Hi",
expected_output="Hi",
agent=researcher,
)
task2 = ConditionalTask(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
condition=condition_fn,
agent=writer,
)
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
)
result = crew.kickoff()
assert result.raw == "Hi"
def test_conditional_task_requirement_breaks_when_task_async():
def my_condition(context):
return context.get("some_value") > 10
task = ConditionalTask(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
execute_async=True,
condition=my_condition,
agent=researcher,
)
task2 = Task(
description="Say Hi",
expected_output="Hi",
agent=writer,
)
with pytest.raises(pydantic_core._pydantic_core.ValidationError):
Crew(
agents=[researcher, writer],
tasks=[task, task2],
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_conditional_should_skip():
task1 = Task(description="Return hello", expected_output="say hi", agent=researcher)
condition_mock = MagicMock(return_value=False)
task2 = ConditionalTask(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
condition=condition_mock,
agent=writer,
)
crew_met = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
)
with patch.object(Task, "execute_sync") as mock_execute_sync:
mock_execute_sync.return_value = TaskOutput(
description="Task 1 description",
raw="Task 1 output",
agent="Researcher",
)
result = crew_met.kickoff()
assert mock_execute_sync.call_count == 1
assert condition_mock.call_count == 1
assert condition_mock() is False
assert task2.output is None
assert result.raw.startswith("Task 1 output")
@pytest.mark.vcr(filter_headers=["authorization"])
def test_conditional_should_execute():
task1 = Task(description="Return hello", expected_output="say hi", agent=researcher)
condition_mock = MagicMock(
return_value=True
) # should execute this conditional task
task2 = ConditionalTask(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
condition=condition_mock,
agent=writer,
)
crew_met = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
)
with patch.object(Task, "execute_sync") as mock_execute_sync:
mock_execute_sync.return_value = TaskOutput(
description="Task 1 description",
raw="Task 1 output",
agent="Researcher",
)
crew_met.kickoff()
assert condition_mock.call_count == 1
assert condition_mock() is True
assert mock_execute_sync.call_count == 2
@mock.patch("crewai.crew.CrewEvaluator")
@mock.patch("crewai.crew.Crew.kickoff")
def test_crew_testing_function(mock_kickoff, crew_evaluator):
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
agent=researcher,
)
crew = Crew(
agents=[researcher],
tasks=[task],
)
n_iterations = 2
crew.test(n_iterations, openai_model_name="gpt-4o-mini", inputs={"topic": "AI"})
assert len(mock_kickoff.mock_calls) == n_iterations
mock_kickoff.assert_has_calls(
[mock.call(inputs={"topic": "AI"}), mock.call(inputs={"topic": "AI"})]
)
crew_evaluator.assert_has_calls(
[
mock.call(crew, "gpt-4o-mini"),
mock.call().set_iteration(1),
mock.call().set_iteration(2),
mock.call().print_crew_evaluation_result(),
]
)
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_verbose_manager_agent():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
crew = Crew(
agents=[researcher, writer],
tasks=[task],
process=Process.hierarchical,
manager_llm="gpt-4o",
verbose=True,
)
crew.kickoff()
assert crew.manager_agent is not None
assert crew.manager_agent.verbose
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hierarchical_verbose_false_manager_agent():
task = Task(
description="Come up with a list of 5 interesting ideas to explore for an article, then write one amazing paragraph highlight for each idea that showcases how good an article about this topic could be. Return the list of ideas with their paragraph and your notes.",
expected_output="5 bullet points with a paragraph for each idea.",
)
crew = Crew(
agents=[researcher, writer],
tasks=[task],
process=Process.hierarchical,
manager_llm="gpt-4o",
verbose=False,
)
crew.kickoff()
assert crew.manager_agent is not None
assert not crew.manager_agent.verbose